Análisis proteómico de la abeja Apis mellifera expuesta al herbicida glifosato y al insecticida imidacloprid

dc.contributor.advisorArenas Suarez, Nelson Enrique
dc.contributor.advisorTorres Rodríguez, Ángela Graciela
dc.contributor.authorMaya Aguirre, Carlos Andrés
dc.date.accessioned2024-08-01T22:01:13Z
dc.date.available2024-08-01T22:01:13Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografías, tablasspa
dc.description.abstractEn la actualidad se usan herbicidas como el glifosato e insecticidas como el imidacloprid con el fin de controlar plagas o malezas o flora arvense que interfieren en la producción de alimentos a nivel mundial para soportar el incremento poblacional. El uso no controlado de estos plaguicidas causa anualmente una reducción importante en el número de agentes polinizadores, entre ellos las abejas. Los estudios encaminados en el análisis de los efectos de plaguicidas sobre las abejas van en aumento y han reportado afecciones tanto a nivel metabólico como neurológico, asociándose estas afecciones a las pérdidas de estos polinizadores. En este trabajo se estudió mediante análisis proteómico, las variaciones en expresión diferencial de proteínas de cabeza y tórax-abdomen de abejas A. mellifera tratadas de manera aguda con dosis subletales del herbicida glifosato y del insecticida imidacloprid. Para la obtención de los extractos proteicos tanto de cabeza como de tórax-abdomen, se evaluaron dos buffers de extracción (buffer fosfatos/RIPA y bicarbonato de amonio) y cuatro estrategias de precipitación (ácido tricloroacético en dos concentraciones, acetona y acetonitrilo). A partir de los resultados obtenidos, se seleccionaron el buffer de extracción de fosfato/RIPA y la estrategia de precipitación con acetona, los cuales permitieron la obtención de un extracto con un alto contenido de proteína total. En el análisis proteómico de los extractos obtenidos, se detectaron 92 proteínas en total de las cuales 49 proteínas fueron diferencialmente detectadas respecto al grupo Control (47 proteínas en baja expresión y 2 proteínas en alta expresión). En análisis de estas proteínas se encontró que, en los extractos proteicos de las abejas tratadas con glifosato, 14 proteínas pertenecían a cabeza y 6 proteínas a tórax-abdomen. Adicionalmente, se encontró que, en los extractos proteicos de abejas tratadas con imidacloprid 18 proteínas pertenecían a cabeza y 11 proteínas a tórax-abdomen. En cabeza, el glifosato causa desbalances bioenergéticos y neurológicos debido a su similitud con el fosfoenolpiruvato, inhibiendo el ciclo de Krebs y la producción de ATP, además de dañar las mitocondrias. El imidacloprid afecta la transcripción de genes esenciales para el metabolismo y la estructura celular provocando fallos motores y cognitivos. En tórax y abdomen, las proteínas relacionadas con el estrés oxidativo y la detoxificación se encontraron en alta expresión, sugiriendo mecanismos de defensa específicos. Los resultados muestran que el glifosato y el imidacloprid, aunque con blancos de acción distintos, generan efectos adversos en la fisiología de las abejas africanizadas de A. mellifera. Este estudio destaca la necesidad de evaluar los efectos de pesticidas de uso común en la agricultura sobre las abejas, sugiriendo enfoques biotecnológicos para un desarrollo sostenible que proteja a estos importantes polinizadores (Texto tomado de la fuente).spa
dc.description.abstractCurrently, herbicides such as glyphosate and insecticides such as imidacloprid are used in order to control pests or weeds or weed flora that interfere with food production worldwide to support population increase. The uncontrolled use of these pesticides annually causes a significant reduction in the number of pollinators, including bees. Studies aimed at analyzing the effects of pesticides on bees are increasing and have reported conditions at both a metabolic and neurological level, these conditions being associated with the losses of these pollinators. In this work, the variations in differential expression of head and thorax-abdomen proteins of A. mellifera bees treated acutely with sublethal doses of the herbicide glyphosate and the insecticide imidacloprid were studied by proteomic analysis. To obtain protein extracts from both the head and thorax-abdomen, two extraction buffers (phosphate buffer/RIPA and ammonium bicarbonate) and four precipitation strategies (trichloroacetic acid in two concentrations, acetone and acetonitrile) were evaluated. Based on the results obtained, the phosphate/RIPA extraction buffer and the acetone precipitation strategy were selected, which allowed obtaining an extract with a high total protein content. In the proteomic analysis of the extracts obtained, a total of 92 proteins were detected, of which 49 were differentially detected compared to the control (47 proteins in low expression and 2 proteins in high expression). In analysis of these proteins, it was found that, in the protein extracts of bees treated with glyphosate, 14 proteins belonged to the head and 6 proteins to the thorax-abdomen. Additionally, it was found that, in the protein extracts of bees treated with imidacloprid, 18 proteins belonged to the head and 11 proteins belonged to the thorax-abdomen. In the head, glyphosate causes bioenergetic and neurological imbalances due to its similarity to phosphoenolpyruvate, inhibiting the Krebs cycle and ATP production, as well as damaging mitochondria. Imidacloprid affects the transcription of genes essential for metabolism and cellular structure, leading to motor and cognitive failures. In the thorax and abdomen, proteins related to 9 oxidative stress and detoxification are overexpressed, suggesting specific defense mechanisms. The results indicate that glyphosate and imidacloprid, despite having different targets, have adverse effects on the physiology of A. mellifera Africanized bees. This study emphasizes the need to evaluate the effects of commonly used pesticides in agriculture on bees, suggesting biotechnological approaches for sustainable development to protect these important pollinators.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Biotecnologíaspa
dc.description.methodsCon el fin de dar respuesta a la pregunta de investigación, se planteó la siguiente metodología experimental, la cual consta de selección de condiciones de extracción de proteínas totales, mediante lisis de cabeza y tórax-abdomen de las abejas. Posteriormente se evaluaron estrategias de precipitación proteica con el fin de obtener el mayor contenido de proteínas totales posibles.spa
dc.format.extent130 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.cospa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86683
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Biotecnologíaspa
dc.relation.referencesAbraham, J., Benhotons, G. S., Krampah, I., Tagba, J., Amissah, C., & Abraham, J. D. (2018). Commercially formulated glyphosate can kill non‐target pollinator bees under laboratory conditions. Entomologia Experimentalis et Applicata, 166(8), 695-702. https://doi.org/10.1111/eea.12694spa
dc.relation.referencesAbreu, F. C. P., Freitas, F. C. P., & Simões, Z. L. P. (2018). Circadian clock genes are differentially modulated during the daily cycles and chronological age in the social honeybee (Apis mellifera). Apidologie, 49(1), 71-83. https://doi.org/10.1007/s13592-017-0558-7spa
dc.relation.referencesAggarwal, S., & Yadav, A. K. (2016). False Discovery Rate Estimation in Proteomics. En K. Jung (Ed.), Statistical Analysis in Proteomics (Vol. 1362, pp. 119-128). Springer New York. https://doi.org/10.1007/978-1-4939-3106-4_7spa
dc.relation.referencesAinsworth, E. A., & Ort, D. R. (2010). How Do We Improve Crop Production in a Warming World? Plant Physiology, 154(2), 526-530. https://doi.org/10.1104/pp.110.161349spa
dc.relation.referencesAizen, M. A., Garibaldi, L. A., Cunningham, S. A., & Klein, A. M. (2009). How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Annals of botany, 103(9), 1579-1588. https://doi.org/10.1093/aob/mcp076spa
dc.relation.referencesAkashe, M. M., Pawade, U. V., & Nikam, A. V. (2018). CLASSIFICATION OF PESTICIDES: A REVIEW. International Journal of Research in Ayurveda and Pharmacy, 9(4). https://doi.org/10.7897/2277-4343.094131spa
dc.relation.referencesAl-Amrani, S., Al-Jabri, Z., Al-Zaabi, A., Alshekaili, J., & Al-Khabori, M. (2021). Proteomics: Concepts and applications in human medicine. World Journal of Biological Chemistry, 12(5). https://doi.org/10.4331/wjbc.v12.i5.57spa
dc.relation.referencesAlori, E. T., & Babalola, O. O. (2018). Microbial Inoculants for Improving Crop Quality and Human Health in Africa. Frontiers in Microbiology, 9, 2213. https://doi.org/10.3389/fmicb.2018.02213spa
dc.relation.referencesAlthaus, S. L., Berenbaum, M. R., Jordan, J., & Shalmon, D. A. (2021). No buzz for bees: Media coverage of pollinator decline. Proceedings of the National Academy of Sciences, 118(2), e2002552117. https://doi.org/10.1073/pnas.2002552117spa
dc.relation.referencesAnhalt, J. C., Moorman, T. B., & Koskinen, W. C. (2007). Biodegradation of imidacloprid by an isolated soil microorganism. Journal of Environmental Science and Health, Part B, 42(5), 509-514. https://doi.org/10.1080/03601230701391401spa
dc.relation.referencesAslam, B., Basit, M., Nisar, M. A., Khurshid, M., & Rasool, M. H. (2017). Proteomics: Technologies and Their Applications. Journal of Chromatographic Science, 55(2), 182-196. https://doi.org/10.1093/chromsci/bmw167spa
dc.relation.referencesBanks, R. E., Dunn, M. J., Hochstrasser, D. F., Sanchez, J. C., Blackstock, W., Pappin, D. J., & Selby, P. J. (2000). Proteomics: New perspectives, new biomedical opportunities. Lancet, 356(9243). https://doi.org/10.1016/S0140-6736(00)03214-1spa
dc.relation.referencesBarr, D. B., & Buckley, B. (2011). In vivo biomarkers and biomonitoring in reproductive and developmental toxicity. En Reproductive and Developmental Toxicology (pp. 253-265). Elsevier. https://doi.org/10.1016/B978-0-12-382032-7.10020-7spa
dc.relation.referencesBattisti, L., Potrich, M., Sampaio, A. R., Ghisi, N. de C., Costa-Maia, F. M., Abati, R., Martinez, C. B. dos R., & Sofia, S. H. (2021). Is glyphosate toxic to bees? A meta-analytical review. Science of the Total Environment, 767. https://doi.org/10.1016/j.scitotenv.2021.145397spa
dc.relation.referencesBellés, X., Martín, D., & Piulachs, M.-D. (2005). THE MEVALONATE PATHWAY AND THE SYNTHESIS OF JUVENILE HORMONE IN INSECTS. Annual Review of Entomology, 50(1), 181-199. https://doi.org/10.1146/annurev.ento.50.071803.130356spa
dc.relation.referencesBennett, M. M., Welchert, A. C., Carroll, M., Shafir, S., Smith, B. H., & Corby-Harris, V. (2022). Unbalanced fatty acid diets impair discrimination ability of honey bee workers to damaged and healthy brood odors. Journal of Experimental Biology, 225(7), jeb244103. https://doi.org/10.1242/jeb.244103spa
dc.relation.referencesBernardi, P. (1999). Mitochondrial Transport of Cations: Channels, Exchangers, and Permeability Transition. Physiological Reviews, 79(4), 1127-1155. https://doi.org/10.1152/physrev.1999.79.4.1127spa
dc.relation.referencesBlot, N., Veillat, L., Rouzé, R., & Delatte, H. (2019). Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota. PLOS ONE, 14(4), e0215466. https://doi.org/10.1371/journal.pone.0215466spa
dc.relation.referencesBoily, M., Sarrasin, B., DeBlois, C., Aras, P., & Chagnon, M. (2013). Acetylcholinesterase in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: Laboratory and field experiments. Environmental Science and Pollution Research, 20(8). https://doi.org/10.1007/s11356-013-1568-2spa
dc.relation.referencesBourke, P. M., Evers, J. B., Bijma, P., van Apeldoorn, D. F., Smulders, M. J. M., Kuyper, T. W., Mommer, L., & Bonnema, G. (2021). Breeding Beyond Monoculture: Putting the “Intercrop” Into Crops. Frontiers in Plant Science, 12. https://www.frontiersin.org/articles/10.3389/fpls.2021.734167spa
dc.relation.referencesBreer, H., & Sattelle, D. B. (1987). Molecular properties and functions of insect acetylcholine receptors. Journal of Insect Physiology, 33(11), 771-790. https://doi.org/10.1016/0022-1910(87)90025-4spa
dc.relation.referencesBrown, M. J. F., & Paxton, R. J. (2009). The conservation of bees: A global perspective. Apidologie, 40(3), 410-416. https://doi.org/10.1051/apido/2009019 Buckingham, S., Lapied, B., Corronc, H., & Sattelle, F. (1997). Imidacloprid actions on insect neuronal acetylcholine receptors. Journal of Experimental Biology, 200(21), 2685-2692. https://doi.org/10.1242/jeb.200.21.2685spa
dc.relation.referencesCalderone, N. W. (2012). Insect Pollinated Crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009. PLoS ONE, 7(5), e37235. https://doi.org/10.1371/journal.pone.0037235spa
dc.relation.referencesCalvo-Rodriguez, M., Hou, S. S., Snyder, A. C., Kharitonova, E. K., Russ, A. N., Das, S., Fan, Z., Muzikansky, A., Garcia-Alloza, M., Serrano-Pozo, A., Hudry, E., & Bacskai, B. J. (2020). Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease. Nature Communications, 11(1), 2146. https://doi.org/10.1038/s41467-020-16074-2spa
dc.relation.referencesCarr, S., Aebersold, R., Baldwin, M., Burlingame, A., Clauser, K., & Nesvizhskii, A. (2004). The Need for Guidelines in Publication of Peptide and Protein Identification Data. Molecular & Cellular Proteomics, 3(6), 531-533. https://doi.org/10.1074/mcp.T400006-MCP200spa
dc.relation.referencesCatae, A. F., Roat, T. C., Pratavieira, M., Silva Menegasso, A. R. D., Palma, M. S., & Malaspina, O. (2018). Exposure to a sublethal concentration of imidacloprid and the side effects on target and nontarget organs of Apis mellifera (Hymenoptera, Apidae). Ecotoxicology, 27(2), 109-121. https://doi.org/10.1007/s10646-017-1874-4spa
dc.relation.referencesCaudle, W. M. (2015). Occupational exposures and parkinsonism. En Handbook of Clinical Neurology (Vol. 131, pp. 225-239). Elsevier. https://doi.org/10.1016/B978-0-444-62627-1.00013-5spa
dc.relation.referencesCerda, R., Avelino, J., Gary, C., Tixier, P., Lechevallier, E., & Allinne, C. (2017). Primary and secondary yield losses caused by pests and diseases: Assessment and modeling in coffee. PLoS ONE, 12(1). https://doi.org/10.1371/journal.pone.0169133spa
dc.relation.referencesChaimanee, V., Evans, J. D., Chen, Y., Jackson, C., & Pettis, J. S. (2016). Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos. Journal of Insect Physiology, 89, 1-8. https://doi.org/10.1016/j.jinsphys.2016.03.004spa
dc.relation.referencesChaufan, G., Coalova, I., & Molina, M. D. C. R. D. (2014). Glyphosate commercial formulation causes cytotoxicity, oxidative effects, and apoptosis on human cells: Differences with its active ingredient. International Journal of Toxicology, 33(1). https://doi.org/10.1177/1091581813517906spa
dc.relation.referencesChen, T., Tan, J., Wan, Z., Zou, Y., Afewerky, H. K., Zhang, Z., & Zhang, T. (2017). Effects of commonly used pesticides in China on the mitochondria and ubiquitin-proteasome system in Parkinson’s disease. International Journal of Molecular Sciences, 18(12). https://doi.org/10.3390/ijms18122507spa
dc.relation.referencesChen, Y., Xu, J., Zheng, X., Zhang, Q., Wang, B., Zhao, M., Ye, C., Song, P., Yang, D., & Lu, X. (2022). Effects of glyphosate herbicide Roundup® on antioxidant enzymes activity and detoxification-related gene expression in honey bees ( Apis mellifera ). Journal of Apicultural Research, 1-8. https://doi.org/10.1080/00218839.2022.2130455spa
dc.relation.referencesCostas-Ferreira, C., Durán, R., & Faro, L. R. F. (2022). Toxic Effects of Glyphosate on the Nervous System: A Systematic Review. International Journal of Molecular Sciences, 23(9), 4605. https://doi.org/10.3390/ijms23094605spa
dc.relation.referencesCullen, M. G., Bliss, L., Stanley, D. A., & Carolan, J. C. (2023). Investigating the effects of glyphosate on the bumblebee proteome and microbiota. Science of The Total Environment, 864, 161074. https://doi.org/10.1016/j.scitotenv.2022.161074spa
dc.relation.referencesDavies, T. G. E., Field, L. M., Usherwood, P. N. R., & Williamson, M. S. (2007). DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life, 59(3), 151-162. https://doi.org/10.1080/15216540701352042spa
dc.relation.referencesDavis, F. R. (2019). Pesticides and the perils of synecdoche in the history of science and environmental history. History of Science, 57(4). https://doi.org/10.1177/0073275319848964spa
dc.relation.referencesDéglise, P., Grünewald, B., & Gauthier, M. (2002). The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neuroscience Letters, 321(1-2), 13-16. https://doi.org/10.1016/S0304-3940(01)02400-4spa
dc.relation.referencesDing, F., Peng, W., Diao, J.-X., Zhang, L., & Sun, Y. (2013). Characteristics and Essences upon Conjugation of Imidacloprid with Two Model Proteins. Journal of Agricultural and Food Chemistry, 61(19), 4497-4505. https://doi.org/10.1021/jf3048065spa
dc.relation.referencesDong, Y., Ng, E., Lu, J., Fenwick, T., Tao, Y., Bertain, S., Sandoval, M., Bermudez, E., Hou, Z., Patten, P., Lassner, M., & Siehl, D. (2019). Desensitizing plant EPSP synthase to glyphosate: Optimized global sequence context accommodates a glycine-to-alanine change in the active site. Journal of Biological Chemistry, 294(2), 716-725. https://doi.org/10.1074/jbc.RA118.006134spa
dc.relation.referencesEaston-Calabria, A., Demary, K. C., & Oner, N. J. (2019). Beyond Pollination: Honey Bees (Apis mellifera) as Zootherapy Keystone Species. Frontiers in Ecology and Evolution, 6, 161. https://doi.org/10.3389/fevo.2018.00161spa
dc.relation.referencesEl-Shenawy, N. S. (2009). Oxidative stress responses of rats exposed to Roundup and its active ingredient glyphosate. Environmental Toxicology and Pharmacology, 28(3). https://doi.org/10.1016/j.etap.2009.06.001spa
dc.relation.referencesEnsley, S. (2007). Imidacloprid. Veterinary Toxicology, 505-507. https://doi.org/10.1016/B978-012370467-2/50141-3spa
dc.relation.referencesFaita, M. R., Chaves, A., Corrêa, C. C. G., Silveira, V., & Nodari, R. O. (2022). Proteomic profiling of royal jelly produced by Apis mellifera L. exposed to food containing herbicide-based glyphosate. Chemosphere, 292. https://doi.org/10.1016/j.chemosphere.2021.133334spa
dc.relation.referencesFahrbach, S. E., & Robinson, G. E. (1996). Juvenile Hormone, Behavioral Maturation, and Brain Structure in the Honey Bee. Developmental Neuroscience, 18(1-2), 102-114. https://doi.org/10.1159/000111474spa
dc.relation.referencesFaita, M. R., Oliveira, E. de M., Alves, V. V., Orth, A. I., & Nodari, R. O. (2018). Changes in hypopharyngeal glands of nurse bees (Apis mellifera) induced by pollen-containing sublethal doses of the herbicide Roundup®. Chemosphere, 211. https://doi.org/10.1016/j.chemosphere.2018.07.189spa
dc.relation.referencesGaribaldi, L. A., Steffan-Dewenter, I., Winfree, R., Aizen, M. A., Bommarco, R., Cunningham, S. A., Kremen, C., Carvalheiro, L. G., Harder, L. D., Afik, O., Bartomeus, I., Benjamin, F., Boreux, V., Cariveau, D., Chacoff, N. P., Dudenhöffer, J. H., Freitas, B. M., Ghazoul, J., Greenleaf, S., … Klein, A. M. (2013). Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science, 340(6127). https://doi.org/10.1126/science.1230200spa
dc.relation.referencesGavin, A. C., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J. M., Michon, A. M., Cruciat, C. M., Remor, M., Höfert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., … Superti-Furga, G. (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415(6868). https://doi.org/10.1038/415141aspa
dc.relation.referencesGeorge, J., & Shukla, Y. (2013). Emptying of Intracellular Calcium Pool and Oxidative Stress Imbalance Are Associated with the Glyphosate-Induced Proliferation in Human Skin Keratinocytes HaCaT Cells. ISRN Dermatology, 2013. https://doi.org/10.1155/2013/825180spa
dc.relation.referencesGeorge W Ware, & David M Whitacre. (2004). The pesticide book (6th ed.). (Meister Media Worldwide, Ed.)spa
dc.relation.referencesGomes, M. P., Smedbol, E., Chalifour, A., Hénault-Ethier, L., Labrecque, M., Lepage, L., Lucotte, M., & Juneau, P. (2014). Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: An overview. Journal of Experimental Botany, 65(17), 4691-4703. https://doi.org/10.1093/jxb/eru269spa
dc.relation.referencesGoulson, D. (2013). REVIEW: An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology, 50(4), 977-987. https://doi.org/10.1111/1365-2664.12111spa
dc.relation.referencesGoulson, D., Nicholls, E., Botías, C., & Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science (New York, N.Y.), 347(6229), 1255957. https://doi.org/10.1126/science.1255957spa
dc.relation.referencesGrünewald, B., & Siefert, P. (2019). Acetylcholine and Its Receptors in Honeybees: Involvement in Development and Impairments by Neonicotinoids. Insects, 10(12), 420. https://doi.org/10.3390/insects10120420spa
dc.relation.referencesGuo, J., Wang, Z., Chen, Y., Cao, J., Tian, W., Ma, B., & Dong, Y. (2021). Active components and biological functions of royal jelly. Journal of Functional Foods, 82, 104514. https://doi.org/10.1016/j.jff.2021.104514spa
dc.relation.referencesGupta, V. K., Pathak, A., Siddiqi, N. J., & Sharma, B. (2016). Carbofuran Modulating Functions of Acetylcholinesterase from Rat Brain In Vitro. Advances in Biology, 2016. https://doi.org/10.1155/2016/3760967spa
dc.relation.referencesHald, A. B. (1999). Weed vegetation (wild flora) of long established organic versus conventional cereal fields in Denmark. Annals of Applied Biology, 134(3). https://doi.org/10.1111/j.1744-7348.1999.tb05269.xspa
dc.relation.referencesHauser, F., Cazzamali, G., Williamson, M., Blenau, W., & Grimmelikhuijzen, C. J. P. (2006). A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Progress in Neurobiology, 80(1), 1-19. https://doi.org/10.1016/j.pneurobio.2006.07.005spa
dc.relation.referencesHelmer, S. H., Kerbaol, A., Aras, P., Jumarie, C., & Boily, M. (2015). Effects of realistic doses of atrazine, metolachlor, and glyphosate on lipid peroxidation and diet-derived antioxidants in caged honey bees (Apis mellifera). Environmental Science and Pollution Research, 22(11), 8010-8021. https://doi.org/10.1007/s11356-014-2879-7spa
dc.relation.referencesHertel, R., Gibhardt, J., Martienssen, M., Kuhn, R., & Commichau, F. M. (2021). Molecular mechanisms underlying glyphosate resistance in bacteria. Environmental Microbiology, 23(6), 2891-2905. https://doi.org/10.1111/1462-2920.15534spa
dc.relation.referencesHolt, J. S. (2013). Herbicides. En Encyclopedia of Biodiversity (pp. 87-95). Elsevier. https://doi.org/10.1016/B978-0-12-384719-5.00070-8spa
dc.relation.referencesHu, Y.-T., Wu, T.-C., Yang, E.-C., Wu, P.-C., Lin, P.-T., & Wu, Y.-L. (2017). Regulation of genes related to immune signaling and detoxification in Apis mellifera by an inhibitor of histone deacetylation. Scientific Reports, 7(1), 41255. https://doi.org/10.1038/srep41255spa
dc.relation.referencesHung, K. L. J., Kingston, J. M., Albrecht, M., Holway, D. A., & Kohn, J. R. (2018). The worldwide importance of honey bees as pollinators in natural habitats. Proceedings of the Royal Society B: Biological Sciences, 285(1870). https://doi.org/10.1098/rspb.2017.2140spa
dc.relation.referencesJayaraj, R., Megha, P., & Sreedev, P. (2016). Review Article. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdisciplinary Toxicology, 9(3-4), 90-100. https://doi.org/10.1515/intox-2016-0012spa
dc.relation.referencesJohn, R., Aravindakumar, C. T., & Aravind, U. K. (2023). Delineating the cascade of molecular events in protein aggregation triggered by Glyphosate, aminomethylphosphonic acid, and Roundup in serum albumins. Journal of Hazardous Materials, 459, 132158. https://doi.org/10.1016/j.jhazmat.2023.132158spa
dc.relation.referencesJohnson, R. M., Ellis, M. D., Mullin, C. A., & Frazier, M. (2010). Pesticides and honey bee toxicity – USA. Apidologie, 41(3), 312-331. https://doi.org/10.1051/apido/2010018spa
dc.relation.referencesJungbauer, A., & Hahn, R. (2009). Chapter 22 Ion-Exchange Chromatography. En Methods in Enzymology (Vol. 463, pp. 349-371). Elsevier. https://doi.org/10.1016/S0076-6879(09)63022-6spa
dc.relation.referencesKalyabina, V. P., Esimbekova, E. N., Kopylova, K. V., & Kratasyuk, V. A. (2021). Pesticides: Formulants, distribution pathways and effects on human health – a review. Toxicology Reports, 8, 1179-1192. https://doi.org/10.1016/j.toxrep.2021.06.004spa
dc.relation.referencesKanissery, R., Gairhe, B., Kadyampakeni, D., Batuman, O., & Alferez, F. (2019). Glyphosate: Its Environmental Persistence and Impact on Crop Health and Nutrition. Plants, 8(11), 499. https://doi.org/10.3390/plants8110499spa
dc.relation.referencesKhalifa, S. A. M., Elshafiey, E. H., Shetaia, A. A., El-Wahed, A. A. A., Algethami, A. F., Musharraf, S. G., Alajmi, M. F., Zhao, C., Masry, S. H. D., Abdel-Daim, M. M., Halabi, M. F., Kai, G., Naggar, Y. A., Bishr, M., Diab, M. A. M., & El-Seedi, H. R. (2021). Overview of bee pollination and its economic value for crop production. Insects, 12(8). https://doi.org/10.3390/insects12080688spa
dc.relation.referencesKim, K.-H., Kabir, E., & Jahan, S. A. (2017). Exposure to pesticides and the associated human health effects. Science of The Total Environment, 575, 525-535. https://doi.org/10.1016/j.scitotenv.2016.09.009spa
dc.relation.referencesKishore, G. M., & Shah, D. M. (1988). Amino Acid Biosynthesis Inhibitors as Herbicides. Annual Review of Biochemistry, 57(1), 627-663. https://doi.org/10.1146/annurev.bi.57.070188.003211spa
dc.relation.referencesKopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A., & Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment International, 132, 105078. https://doi.org/10.1016/j.envint.2019.105078spa
dc.relation.referencesKovac, H., Stabentheiner, A., & Brodschneider, R. (2009). Contribution of honeybee drones of different age to colonial thermoregulation. Apidologie, 40(1), 82-95. https://doi.org/10.1051/apido/2008069spa
dc.relation.referencesKroeger, P. T., Tokusumi, T., & Schulz, R. A. (2012). Transcriptional regulation of eater gene expression in Drosophila blood cells. Genesis, 50(1), 41-49. https://doi.org/10.1002/dvg.20787spa
dc.relation.referencesKrohn, C.-D. (Ed.). (2002). Frontmatter. En Metropolen des Exils (pp. 1-4). De Gruyter. https://doi.org/10.1515/9783112422885-fmspa
dc.relation.referencesKaya, M., Mujtaba, M., Bulut, E., Akyuz, B., Zelencova, L., & Sofi, K. (2015). Fluctuation in physicochemical properties of chitins extracted from different body parts of honeybee. Carbohydrate Polymers, 132, 9-16. ttps://doi.org/10.1016/j.carbpol.2015.06.008spa
dc.relation.referencesLal, R., & Moldenhauer, W. C. (1987). Effects of soil erosion on crop productivity. Critical Reviews in Plant Sciences, 5(4), 303-367. https://doi.org/10.1080/07352688709382244spa
dc.relation.referencesLancaster, S. H., Hollister, E. B., Senseman, S. A., & Gentry, T. J. (2010). Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate. Pest Management Science, 66(1), 59-64. https://doi.org/10.1002/ps.1831spa
dc.relation.referencesLiu, C., Ma, Y., Zhao, J., Nussinov, R., Zhang, Y.-C., Cheng, F., & Zhang, Z.-K. (2020). Computational network biology: Data, models, and applications. Physics Reports, 846, 1-66. https://doi.org/10.1016/j.physrep.2019.12.004spa
dc.relation.referencesLiu, N., Li, T., Wang, Y., & Liu, S. (2021). G-Protein Coupled Receptors (GPCRs) in Insects—A Potential Target for New Insecticide Development. Molecules, 26(10), 2993. https://doi.org/10.3390/molecules26102993spa
dc.relation.referencesLoewenstein, Y., Raimondo, D., Redfern, O. C., Watson, J., Frishman, D., Linial, M., Orengo, C., Thornton, J., & Tramontano, A. (2009). Protein function annotation by homology-based inference. Genome Biology, 10(2), 207. https://doi.org/10.1186/gb-2009-10-2-207spa
dc.relation.referencesŁozowicka, B., Kaczyński, P., Mojsak, P., Rusiłowska, J., Beknazarova, Z., Ilyasova, G., & Absatarova, D. (2020). Systemic and non-systemic pesticides in apples from Kazakhstan and their impact on human health. Journal of Food Composition and Analysis, 90, 103494. https://doi.org/10.1016/j.jfca.2020.103494spa
dc.relation.referencesMaori, E., Navarro, I. C., Boncristiani, H., Seilly, D. J., Rudolph, K. L. M., Sapetschnig, A., Lin, C. C., Ladbury, J. E., Evans, J. D., Heeney, J. L., & Miska, E. A. (2019). A Secreted RNA Binding Protein Forms RNA-Stabilizing Granules in the Honeybee Royal Jelly. Molecular Cell, 74(3). https://doi.org/10.1016/j.molcel.2019.03.010spa
dc.relation.referencesMarrazza, G. (2014). Piezoelectric Biosensors for Organophosphate and Carbamate Pesticides: A Review. Biosensors, 4(3), 301-317. https://doi.org/10.3390/bios4030301 Martin-Culma, N. Y., & Arenas-Suárez, N. E. A.-S. E. (2018). Daño colateral en abejas por la exposición a pesticidas de uso agrícola. Entramado, 14(1). https://doi.org/10.18041/entramado.2018v14n1.27113spa
dc.relation.referencesMartinez, A., & Al-Ahmad, A. J. (2019). Effects of glyphosate and aminomethylphosphonic acid on an isogeneic model of the human blood-brain barrier. Toxicology Letters, 304, 39-49. https://doi.org/10.1016/j.toxlet.2018.12.013spa
dc.relation.referencesMatošević, A., & Bosak, A. (s. f.). Carbamate group as structural motif in drugs: A review of carbamate derivatives used as therapeutic agents. https://doi.org/10.2478/aiht-2020-71-3466spa
dc.relation.referencesMcAfee, A., Metz, B. N., Milone, J. P., Foster, L. J., & Tarpy, D. R. (2022). Drone honey bees are disproportionately sensitive to abiotic stressors despite expressing high levels of stress response proteins. Communications Biology, 5(1). https://doi.org/10.1038/s42003-022-03092-7spa
dc.relation.referencesMedhe, S. (2018). Ionization Techniques in Mass Spectrometry: A Review. Mass Spectrometry & Purification Techniques, 04(01). https://doi.org/10.4172/2469-9861.1000126spa
dc.relation.referencesMedhe, S. (2018). Mass spectrometry: Detectors review. Chemical and Biomolecular Engineering, 3(4), 51-58.spa
dc.relation.referencesMesnage, R., & Antoniou, M. N. (2018). Ignoring Adjuvant Toxicity Falsifies the Safety Profile of Commercial Pesticides. Frontiers in Public Health, 5, 361. https://doi.org/10.3389/fpubh.2017.00361spa
dc.relation.referencesMesnage, R., Székács, A., & Zaller, J. G. (2021). 1 - Herbicides: Brief history, agricultural use, and potential alternatives for weed control. En R. Mesnage & J. G. Zaller (Eds.), Herbicides (pp. 1-20). Elsevier. https://doi.org/10.1016/B978-0-12-823674-1.00002-Xspa
dc.relation.referencesMoreno Villamil, R., Vélez Velandia, D., Gómez Hoyos, A. José., Higuera Diaz, D., Carvajal González, J., López Vargas, C. M., & Melo, D. (Eds.). (2018). Iniciativa colombiana de polinizadores. Ministerio Ambiental y Desarrollo Sostenible : Corporación Autónoma Regional de Cundinamarca (CAR) : Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt.spa
dc.relation.referencesNasuti, C., Cantalamessa, F., Falcioni, G., & Gabbianelli, R. (2003). Different effects of type I and type II pyrethroids on erythrocyte plasma membrane properties and enzymatic activity in rats. Toxicology, 191(2-3). https://doi.org/10.1016/S0300-483X(03)00207-5spa
dc.relation.referencesNicodemo, D., Maioli, M. A., Medeiros, H. C. D., Guelfi, M., Balieira, K. V. B., Jong, D. D., & Mingatto, F. E. (2014). Fipronil and imidacloprid reduce honeybee mitochondrial activity. Environmental Toxicology and Chemistry, 33(9). https://doi.org/10.1002/etc.2655spa
dc.relation.referencesNicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., & Hens, L. (2016). Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Frontiers in Public Health, 4. https://doi.org/10.3389/fpubh.2016.00148spa
dc.relation.referencesOberemok, V. V., Laikova, K. V., Gninenko, Y. I., Zaitsev, A. S., Nyadar, P. M., & Adeyemi, T. A. (2015). A short history of insecticides. Journal of Plant Protection Research, 55(3), 221-226. https://doi.org/10.1515/jppr-2015-0033spa
dc.relation.referencesOllerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120(3). https://doi.org/10.1111/j.1600-0706.2010.18644.xspa
dc.relation.referencesO’Neil, N. J., Bailey, M. L., & Hieter, P. (2017). Synthetic lethality and cancer. Nature Reviews Genetics, 18(10), 613-623. https://doi.org/10.1038/nrg.2017.47spa
dc.relation.referencesOrtea, I., O’Connor, G., & Maquet, A. (2016). Review on proteomics for food authentication. Journal of Proteomics, 147. https://doi.org/10.1016/j.jprot.2016.06.033spa
dc.relation.referencesPandey, A., & Mann, M. (2000). Proteomics to study genes and genomes. Nature, 405(6788), 837-846. https://doi.org/10.1038/35015709spa
dc.relation.referencesPang, S., Lin, Z., Zhang, Y., Zhang, W., Alansary, N., Mishra, S., Bhatt, P., & Chen, S. (2020). Insights into the Toxicity and Degradation Mechanisms of Imidacloprid Via Physicochemical and Microbial Approaches. Toxics, 8(3), 65. https://doi.org/10.3390/toxics8030065spa
dc.relation.referencesRader, R., Bartomeus, I., Garibaldi, L. A., Garratt, M. P. D., Howlett, B. G., Winfree, R., Cunningham, S. A., Mayfield, M. M., Arthur, A. D., Andersson, G. K. S., Bommarco, R., Brittain, C., Carvalheiro, L. G., Chacoff, N. P., Entling, M. H., Foully, B., Freitas, B. M., Gemmill-Herren, B., Ghazoul, J., … Woyciechowski, M. (2016). Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences, 113(1), 146-151. https://doi.org/10.1073/pnas.1517092112spa
dc.relation.referencesRaman, R. (2017). The impact of Genetically Modified (GM) crops in modern agriculture: A review. GM Crops & Food, 8(4), 195-208. https://doi.org/10.1080/21645698.2017.1413522spa
dc.relation.referencesRamón-Sierra, J. M., Ruiz-Ruiz, J. C., & De La Luz Ortiz-Vázquez, E. (2015). Electrophoresis characterisation of protein as a method to establish the entomological origin of stingless bee honeys. Food Chemistry, 183, 43-48. https://doi.org/10.1016/j.foodchem.2015.03.015spa
dc.relation.referencesRawat, D., Bains, A., Chawla, P., Kaushik, R., Yadav, R., Kumar, A., Sridhar, K., & Sharma, M. (2023). Hazardous impacts of glyphosate on human and environment health: Occurrence and detection in food. Chemosphere, 329, 138676. https://doi.org/10.1016/j.chemosphere.2023.138676spa
dc.relation.referencesRaymann, K., Motta, E. V. S., Girard, C., Riddington, I. M., Dinser, J. A., & Moran, N. A. (2018). Imidacloprid decreases honey bee survival rates but does not affect the gut microbiome. Applied and Environmental Microbiology, 84(13). https://doi.org/10.1128/AEM.00545-18spa
dc.relation.referencesRequier, F. (2019). Honey Bees in Latin America. En R. A. Ilyasov & H. W. Kwon (Eds.), Phylogenetics of Bees (1.a ed., pp. 206-221). CRC Press. https://doi.org/10.1201/b22405-9 Resolución No. 092101 de 2021. (2021). Resolución No. 092101 de 2021. https://www.ica.gov.co/getattachment/6a3ce116-697d-413b-a07c-b5e478363a84/2021R92101.aspx.spa
dc.relation.referencesRichmond, M. E. (2018). Glyphosate: A review of its global use, environmental impact, and potential health effects on humans and other species. Journal of Environmental Studies and Sciences, 8(4), 416-434. https://doi.org/10.1007/s13412-018-0517-2spa
dc.relation.referencesRoat, T. C., Santos-Pinto, J. R. A. dos, Santos, L. D. dos, Santos, K. S., Malaspina, O., & Palma, M. S. (2014). Modification of the brain proteome of Africanized honeybees (Apis mellifera) exposed to a sub‐lethal doses of the insecticide fipronil. Ecotoxicology, 23(9). https://doi.org/10.1007/s10646-014-1305-8spa
dc.relation.referencesRoy, D., Debnath, P., Mondal, D., & Sarkar, P. (2018). Colony Collapse Disorder of Honey Bee: A Neoteric Ruction in Global Apiculture. Current Journal of Applied Science and Technology, 26(3). https://doi.org/10.9734/cjast/2018/38218spa
dc.relation.referencesRybakova, K. N., Bruggeman, F. J., Tomaszewska, A., Moné, M. J., Carlberg, C., & Westerhoff, H. V. (2015). Multiplex Eukaryotic Transcription (In)activation: Timing, Bursting and Cycling of a Ratchet Clock Mechanism. PLOS Computational Biology, 11(4), e1004236. https://doi.org/10.1371/journal.pcbi.1004236spa
dc.relation.referencesSabourmoghaddam, N., Zakaria, M. P., & Omar, D. (2015). Evidence for the microbial degradation of imidacloprid in soils of Cameron Highlands. Journal of the Saudi Society of Agricultural Sciences, 14(2), 182-188. https://doi.org/10.1016/j.jssas.2014.03.002spa
dc.relation.referencesSafari-Alighiarloo, N., Taghizadeh, M., Rezaei-Tavirani, M., Goliaei, B., & Peyvandi, A. A. (2014). Protein-protein interaction networks (PPI) and complex diseases. Gastroenterology and Hepatology from Bed to Bench, 7(1), 17-31.spa
dc.relation.referencesSalgado, YP. (2019). Impacto metabólico de insecticidas sistémicos (Fipronil e Imidacloprid) y no sistémicos (Clorpirifos) sobre el estrés oxidativo en Apis mellifera [Tesis de grado programa de Zootecnia, Universidad de Cundinamarca]. Repositorio Institucional Universidad de Cundinamarca. Https://repositorio.ucundinamarca.edu.co/handle/20.500.12558/1845. Universidad de Cundinamarca.spa
dc.relation.referencesSeifert, J. (2005). Neonicotinoids. Encyclopedia of Toxicology, 196-200. https://doi.org/10.1016/B0-12-369400-0/00675-Xspa
dc.relation.referencesSharma, D., Sangha, G. K., & Khera, K. S. (2015). Triazophos-induced oxidative stress and histomorphological changes in ovary of female Wistar rats. Pesticide Biochemistry and Physiology, 117. https://doi.org/10.1016/j.pestbp.2014.09.004spa
dc.relation.referencesShi, L., Xu, H., Wu, Y., Li, X., Zou, L., Gao, J., & Chen, H. (2017). Alpha7-nicotinic acetylcholine receptors involve the imidacloprid-induced inhibition of IgE-mediated rat and human mast cell activation. RSC Advances, 7(82), 51896-51906. https://doi.org/10.1039/C7RA07862Espa
dc.relation.referencesSilberman, J., & Taylor, A. (2018). Carbamate Toxicity. En StatPearls. Singh, B. K., & Walker, A. (2006). Microbial degradation of organophosphorus compounds. FEMS Microbiology Reviews, 30(3), 428-471. https://doi.org/10.1111/j.1574-6976.2006.00018.xspa
dc.relation.referencesSingh, S., Kumar, V., Gill, J. P. K., Datta, S., Singh, S., Dhaka, V., Kapoor, D., Wani, A. B., Dhanjal, D. S., Kumar, M., Harikumar, S. L., & Singh, J. (2020). Herbicide Glyphosate: Toxicity and Microbial Degradation. International Journal of Environmental Research and Public Health, 17(20), 7519. https://doi.org/10.3390/ijerph17207519spa
dc.relation.referencesSinha, A., & Mann, M. (2020). A beginner’s guide to mass spectrometry–based proteomics. The Biochemist, 42(5), 64-69. https://doi.org/10.1042/BIO20200057spa
dc.relation.referencesSmith, D. F. Q., Camacho, E., Thakur, R., Barron, A. J., Dong, Y., Dimopoulos, G., Broderick, N. A., & Casadevall, A. (2021). Glyphosate inhibits melanization and increases susceptibility to infection in insects. PLoS Biology, 19(5). https://doi.org/10.1371/journal.pbio.3001182spa
dc.relation.referencesSoderlund, D. M., Clark, J. M., Sheets, L. P., Mullin, L. S., Piccirillo, V. J., Sargent, D., Stevens, J. T., & Weiner, M. L. (2002). Mechanisms of pyrethroid neurotoxicity: Implications for cumulative risk assessment. Toxicology, 171(1). https://doi.org/10.1016/S0300-483X(01)00569-8spa
dc.relation.referencesSrivastava, D. P., Yu, E. J., Kennedy, K., Chatwin, H., Reale, V., Hamon, M., Smith, T., & Evans, P. D. (2005). Rapid, Nongenomic Responses to Ecdysteroids and Catecholamines Mediated by a Novel Drosophila G-Protein-Coupled Receptor. The Journal of Neuroscience, 25(26), 6145-6155. https://doi.org/10.1523/JNEUROSCI.1005-05.2005spa
dc.relation.referencesSuchail, S., Guez, D., & Belzunces, L. P. (2000). Characteristics of imidacloprid toxicity in two Apis mellifera subspecies. Environmental Toxicology and Chemistry, 19(7). https://doi.org/10.1002/etc.5620190726spa
dc.relation.referencesSukkar, D., Kanso, A., Laval-Gilly, P., & Falla-Angel, J. (2023). A clash on the Toll pathway: Competitive action between pesticides and zymosan A on components of innate immunity in Apis mellifera. Frontiers in Immunology, 14, 1247582. https://doi.org/10.3389/fimmu.2023.1247582spa
dc.relation.referencesSzklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. von. (2019). STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607-D613. https://doi.org/10.1093/nar/gky1131spa
dc.relation.referencesThompson, L. A., Darwish, W. S., Ikenaka, Y., Nakayama, S. M. M., Mizukawa, H., & Ishizuka, M. (2017). Organochlorine pesticide contamination of foods in Africa: Incidence and public health significance. Journal of Veterinary Medical Science, 79(4), 751-764. https://doi.org/10.1292/jvms.16-0214spa
dc.relation.referencesTibatá, V., Arias, E., Corona, M., Ariza, F., Figueroa-Ramírez, J., & Junca, H. (2017). Determination of the Africanized mitotypes in populations of honey bees ( Apis mellifera L.) of Colombia. Journal of Apicultural Research, 57, 1-9. https://doi.org/10.1080/00218839.2017.1409065spa
dc.relation.referencesTzin, V., & Galili, G. (2010). The Biosynthetic Pathways for Shikimate and Aromatic Amino Acids in Arabidopsis thaliana. The Arabidopsis Book, 2010(8). https://doi.org/10.1199/tab.0132 Unwin, N. (2013). Nicotinic acetylcholine receptor and the structural basis of neuromuscular transmission: Insights from Torpedo postsynaptic membranes. Quarterly Reviews of Biophysics, 46(4), 283-322. https://doi.org/10.1017/S0033583513000061spa
dc.relation.referencesVafopoulou, X., & Steel, C. G. H. (2006). Hormone nuclear receptor (EcR) exhibits circadian cycling in certain tissues, but not others, during development in Rhodnius prolixus (Hemiptera). Cell and Tissue Research, 323(3), 443-455. https://doi.org/10.1007/s00441-005-0076-1spa
dc.relation.referencesVaknin, I., Willinger, O., Mandl, J., Heuberger, H., Ben-Ami, D., Zeng, Y., Goldberg, S., Orenstein, Y., & Amit, R. (2024). A universal system for boosting gene expression in eukaryotic cell-lines. Nature Communications, 15(1), 2394. https://doi.org/10.1038/s41467-024-46573-5spa
dc.relation.referencesvan Dijk, M., Morley, T., Rau, M. L., & Saghai, Y. (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food, 2(7), 494-501. https://doi.org/10.1038/s43016-021-00322-9spa
dc.relation.referencesVarela-Martínez, D. A., Fuentes-Molina, N., & Riaño-Herrera, D. A. (2022). A Historical Review of the Use of Pesticides in Colombian Agriculture [Preprint]. EARTH SCIENCES. https://doi.org/10.20944/preprints202204.0277.v2spa
dc.relation.referencesVäremo, L., Nookaew, I., & Nielsen, J. (2013). Novel insights into obesity and diabetes through genome-scale metabolic modeling. Frontiers in Physiology, 4 APR. https://doi.org/10.3389/fphys.2013.00092spa
dc.relation.referencesVaudel, M., Sickmann, A., & Martens, L. (2012). Current methods for global proteome identification. Expert Review of Proteomics, 9(5), 519-532. https://doi.org/10.1586/epr.12.51spa
dc.relation.referencesVerma, A. K., & Verma, A. K. (2018). ECOLOGICAL BALANCE : AN INDISPENSABLE NEED FOR HUMAN SURVIVAL. Journal of Experimental Zoology India, 21(1).spa
dc.relation.referencesWang, B., Habermehl, C., & Jiang, L. (2022). Metabolomic analysis of honey bee (Apis mellifera L.) response to glyphosate exposure. Molecular Omics, 18(7), 635-642. https://doi.org/10.1039/D2MO00046Fspa
dc.relation.referencesWei, J. C., Wei, B., Yang, W., He, C. W., Su, H. X., Wan, J. B., Li, P., & Wang, Y. T. (2018). Trace determination of carbamate pesticides in medicinal plants by a fluorescent technique. Food and Chemical Toxicology, 119. https://doi.org/10.1016/j.fct.2017.12.019spa
dc.relation.referencesWilde, J., Frączek, R. J., Siuda, M., Bąk, B., Hatjina, F., & Miszczak, A. (2016). The influence of sublethal doses of imidacloprid on protein content and proteolytic activity in honey bees ( Apis mellifera L.). Journal of Apicultural Research, 55(2). https://doi.org/10.1080/00218839.2016.1211394spa
dc.relation.referencesWilkins, M. R., Sanchez, J. C., Gooley, A. A., Appel, R. D., Humphery-Smith, I., Hochstrasser, D. F., & Williams, K. L. (1995). Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it. Biotechnology and Genetic Engineering Reviews, 13(1). https://doi.org/10.1080/02648725.1996.10647923spa
dc.relation.referencesWilson, E. O. (1971). The insect societies. Cambridge, Massachusetts, USA, Harvard University Press.spa
dc.relation.referencesWu, Y.-Y., Luo, Q.-H., Hou, C.-S., Wang, Q., Dai, P.-L., Gao, J., Liu, Y.-J., & Diao, Q.-Y. (2017). Sublethal effects of imidacloprid on targeting muscle and ribosomal protein related genes in the honey bee Apis mellifera L. Scientific Reports, 7(1), 15943. https://doi.org/10.1038/s41598-017-16245-0spa
dc.relation.referencesXiao, X., Haas, J., & Nauen, R. (2023). Functional orthologs of honeybee CYP6AQ1 in stingless bees degrade the butenolide insecticide flupyradifurone. Ecotoxicology and Environmental Safety, 268, 115719. https://doi.org/10.1016/j.ecoenv.2023.115719spa
dc.relation.referencesYamamoto, I., Tomizawa, M., Saito, T., Miyamoto, T., Yabuta, G., & Kagabu, S. (1995). Molecular Mechanism for Selective Toxicity of Nicotinoids and Neonicotinoids. Journal of Pesticide Science, 20(1). https://doi.org/10.1584/jpestics.20.33spa
dc.relation.referencesZaluski, R., Bittarello, A., Vieira, J., Braga, C., Padilha, P., Fernandes, M., Bovi, T., & Orsi, R. (2020). Modification of the head proteome of nurse honeybees (Apis mellifera) exposed to field-relevant doses of pesticides. Scientific Reports, 10. https://doi.org/10.1038/s41598-020-59070-8spa
dc.relation.referencesZgurzynski M. & Lushington G. (2019). Glyphosate Impact on Apis mellifera Navigation: A Combined Behavioral and Cheminformatics Study. EC Pharmacology and Toxicology, 7.8, 806-824.spa
dc.relation.referencesZhang, G., Ueberheide, B. M., Waldemarson, S., Myung, S., Molloy, K., Eriksson, J., Chait, B. T., Neubert, T. A., & Fenyö, D. (2010). Protein Quantitation Using Mass Spectrometry. En D. Fenyö (Ed.), Computational Biology (Vol. 673, pp. 211-222). Humana Press. https://doi.org/10.1007/978-1-60761-842-3_13spa
dc.relation.referencesZhao, H., Li, G., Guo, D., Wang, Y., Liu, Q., Gao, Z., Wang, H., Liu, Z., Guo, X., & Xu, B. (2020). Transcriptomic and metabolomic landscape of the molecular effects of glyphosate commercial formulation on Apis mellifera ligustica and Apis cerana cerana. Science of the Total Environment, 744. https://doi.org/10.1016/j.scitotenv.2020.140819spa
dc.relation.referencesZhao, L., Zhao, J., Zhong, K., Tong, A., & Jia, D. (2022). Targeted protein degradation: Mechanisms, strategies and application. Signal Transduction and Targeted Therapy, 7(1), 113. https://doi.org/10.1038/s41392-022-00966-4spa
dc.relation.referencesZhao, Y., & Lin, Y.-H. (2010). Whole-Cell Protein Identification Using the Concept of Unique Peptides. Genomics, Proteomics & Bioinformatics, 8(1), 33-41. https://doi.org/10.1016/S1672-0229(10)60004-6spa
dc.relation.referencesZhu, Y. C., Yao, J., Adamczyk, J., & Luttrell, R. (2017a). Feeding toxicity and impact of imidacloprid formulation and mixtures with six representative pesticides at residue concentrations on honey bee physiology (Apis mellifera). PLoS ONE, 12(6). https://doi.org/10.1371/journal.pone.0178421spa
dc.relation.referencesZhu, Y. C., Yao, J., Adamczyk, J., & Luttrell, R. (2017b). Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera). PLoS ONE, 12(5). https://doi.org/10.1371/journal.pone.0176837spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.ddc590 - Animales::592 - Invertebradosspa
dc.subject.lembABEJA MELIFERAspa
dc.subject.lembHoneybeeeng
dc.subject.lembGLIFOSATOspa
dc.subject.lembGlyphosateeng
dc.subject.lembHERBICIDASspa
dc.subject.lembHerbicideseng
dc.subject.lembINSECTICIDASspa
dc.subject.lembInsecticideseng
dc.subject.lembCONTROL DE MALEZASspa
dc.subject.lembWeed controleng
dc.subject.lembCONTROL DE PLAGASspa
dc.subject.lembPest controleng
dc.subject.lembABEJAS-RESISTENCIA A INSECTICIDASspa
dc.subject.lembBees- resistance to insecticideseng
dc.subject.proposalAbeja de la mielspa
dc.subject.proposalExpresión proteicaspa
dc.subject.proposalGlifosato, imidaclopridspa
dc.subject.proposalRedes de interacción proteicaspa
dc.subject.proposalMetabolismospa
dc.subject.proposalEfectos neurológicosspa
dc.subject.proposalApis melliferaeng
dc.subject.proposalProteomics, glyphosateeng
dc.subject.proposalImidacloprideng
dc.subject.proposalProtein-protein interaction networkseng
dc.subject.proposalMetabolismeng
dc.subject.proposalNeurological effectseng
dc.titleAnálisis proteómico de la abeja Apis mellifera expuesta al herbicida glifosato y al insecticida imidaclopridspa
dc.title.translatedProteomic Analysis of the Honeybee Apis mellifera Exposed to the Herbicide Glyphosate and the Insecticide Imidacloprideng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Maya-Aguirre_Análisis proteómico de la abeja Apis mellifera expuesta al herbicida glifosato y al insecticida imidacloprid.pdf
Tamaño:
2.63 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: