Análisis proteómico de la abeja Apis mellifera expuesta al herbicida glifosato y al insecticida imidacloprid
dc.contributor.advisor | Arenas Suarez, Nelson Enrique | |
dc.contributor.advisor | Torres Rodríguez, Ángela Graciela | |
dc.contributor.author | Maya Aguirre, Carlos Andrés | |
dc.date.accessioned | 2024-08-01T22:01:13Z | |
dc.date.available | 2024-08-01T22:01:13Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, fotografías, tablas | spa |
dc.description.abstract | En la actualidad se usan herbicidas como el glifosato e insecticidas como el imidacloprid con el fin de controlar plagas o malezas o flora arvense que interfieren en la producción de alimentos a nivel mundial para soportar el incremento poblacional. El uso no controlado de estos plaguicidas causa anualmente una reducción importante en el número de agentes polinizadores, entre ellos las abejas. Los estudios encaminados en el análisis de los efectos de plaguicidas sobre las abejas van en aumento y han reportado afecciones tanto a nivel metabólico como neurológico, asociándose estas afecciones a las pérdidas de estos polinizadores. En este trabajo se estudió mediante análisis proteómico, las variaciones en expresión diferencial de proteínas de cabeza y tórax-abdomen de abejas A. mellifera tratadas de manera aguda con dosis subletales del herbicida glifosato y del insecticida imidacloprid. Para la obtención de los extractos proteicos tanto de cabeza como de tórax-abdomen, se evaluaron dos buffers de extracción (buffer fosfatos/RIPA y bicarbonato de amonio) y cuatro estrategias de precipitación (ácido tricloroacético en dos concentraciones, acetona y acetonitrilo). A partir de los resultados obtenidos, se seleccionaron el buffer de extracción de fosfato/RIPA y la estrategia de precipitación con acetona, los cuales permitieron la obtención de un extracto con un alto contenido de proteína total. En el análisis proteómico de los extractos obtenidos, se detectaron 92 proteínas en total de las cuales 49 proteínas fueron diferencialmente detectadas respecto al grupo Control (47 proteínas en baja expresión y 2 proteínas en alta expresión). En análisis de estas proteínas se encontró que, en los extractos proteicos de las abejas tratadas con glifosato, 14 proteínas pertenecían a cabeza y 6 proteínas a tórax-abdomen. Adicionalmente, se encontró que, en los extractos proteicos de abejas tratadas con imidacloprid 18 proteínas pertenecían a cabeza y 11 proteínas a tórax-abdomen. En cabeza, el glifosato causa desbalances bioenergéticos y neurológicos debido a su similitud con el fosfoenolpiruvato, inhibiendo el ciclo de Krebs y la producción de ATP, además de dañar las mitocondrias. El imidacloprid afecta la transcripción de genes esenciales para el metabolismo y la estructura celular provocando fallos motores y cognitivos. En tórax y abdomen, las proteínas relacionadas con el estrés oxidativo y la detoxificación se encontraron en alta expresión, sugiriendo mecanismos de defensa específicos. Los resultados muestran que el glifosato y el imidacloprid, aunque con blancos de acción distintos, generan efectos adversos en la fisiología de las abejas africanizadas de A. mellifera. Este estudio destaca la necesidad de evaluar los efectos de pesticidas de uso común en la agricultura sobre las abejas, sugiriendo enfoques biotecnológicos para un desarrollo sostenible que proteja a estos importantes polinizadores (Texto tomado de la fuente). | spa |
dc.description.abstract | Currently, herbicides such as glyphosate and insecticides such as imidacloprid are used in order to control pests or weeds or weed flora that interfere with food production worldwide to support population increase. The uncontrolled use of these pesticides annually causes a significant reduction in the number of pollinators, including bees. Studies aimed at analyzing the effects of pesticides on bees are increasing and have reported conditions at both a metabolic and neurological level, these conditions being associated with the losses of these pollinators. In this work, the variations in differential expression of head and thorax-abdomen proteins of A. mellifera bees treated acutely with sublethal doses of the herbicide glyphosate and the insecticide imidacloprid were studied by proteomic analysis. To obtain protein extracts from both the head and thorax-abdomen, two extraction buffers (phosphate buffer/RIPA and ammonium bicarbonate) and four precipitation strategies (trichloroacetic acid in two concentrations, acetone and acetonitrile) were evaluated. Based on the results obtained, the phosphate/RIPA extraction buffer and the acetone precipitation strategy were selected, which allowed obtaining an extract with a high total protein content. In the proteomic analysis of the extracts obtained, a total of 92 proteins were detected, of which 49 were differentially detected compared to the control (47 proteins in low expression and 2 proteins in high expression). In analysis of these proteins, it was found that, in the protein extracts of bees treated with glyphosate, 14 proteins belonged to the head and 6 proteins to the thorax-abdomen. Additionally, it was found that, in the protein extracts of bees treated with imidacloprid, 18 proteins belonged to the head and 11 proteins belonged to the thorax-abdomen. In the head, glyphosate causes bioenergetic and neurological imbalances due to its similarity to phosphoenolpyruvate, inhibiting the Krebs cycle and ATP production, as well as damaging mitochondria. Imidacloprid affects the transcription of genes essential for metabolism and cellular structure, leading to motor and cognitive failures. In the thorax and abdomen, proteins related to 9 oxidative stress and detoxification are overexpressed, suggesting specific defense mechanisms. The results indicate that glyphosate and imidacloprid, despite having different targets, have adverse effects on the physiology of A. mellifera Africanized bees. This study emphasizes the need to evaluate the effects of commonly used pesticides in agriculture on bees, suggesting biotechnological approaches for sustainable development to protect these important pollinators. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Biotecnología | spa |
dc.description.methods | Con el fin de dar respuesta a la pregunta de investigación, se planteó la siguiente metodología experimental, la cual consta de selección de condiciones de extracción de proteínas totales, mediante lisis de cabeza y tórax-abdomen de las abejas. Posteriormente se evaluaron estrategias de precipitación proteica con el fin de obtener el mayor contenido de proteínas totales posibles. | spa |
dc.format.extent | 130 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86683 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Biotecnología | spa |
dc.relation.references | Abraham, J., Benhotons, G. S., Krampah, I., Tagba, J., Amissah, C., & Abraham, J. D. (2018). Commercially formulated glyphosate can kill non‐target pollinator bees under laboratory conditions. Entomologia Experimentalis et Applicata, 166(8), 695-702. https://doi.org/10.1111/eea.12694 | spa |
dc.relation.references | Abreu, F. C. P., Freitas, F. C. P., & Simões, Z. L. P. (2018). Circadian clock genes are differentially modulated during the daily cycles and chronological age in the social honeybee (Apis mellifera). Apidologie, 49(1), 71-83. https://doi.org/10.1007/s13592-017-0558-7 | spa |
dc.relation.references | Aggarwal, S., & Yadav, A. K. (2016). False Discovery Rate Estimation in Proteomics. En K. Jung (Ed.), Statistical Analysis in Proteomics (Vol. 1362, pp. 119-128). Springer New York. https://doi.org/10.1007/978-1-4939-3106-4_7 | spa |
dc.relation.references | Ainsworth, E. A., & Ort, D. R. (2010). How Do We Improve Crop Production in a Warming World? Plant Physiology, 154(2), 526-530. https://doi.org/10.1104/pp.110.161349 | spa |
dc.relation.references | Aizen, M. A., Garibaldi, L. A., Cunningham, S. A., & Klein, A. M. (2009). How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Annals of botany, 103(9), 1579-1588. https://doi.org/10.1093/aob/mcp076 | spa |
dc.relation.references | Akashe, M. M., Pawade, U. V., & Nikam, A. V. (2018). CLASSIFICATION OF PESTICIDES: A REVIEW. International Journal of Research in Ayurveda and Pharmacy, 9(4). https://doi.org/10.7897/2277-4343.094131 | spa |
dc.relation.references | Al-Amrani, S., Al-Jabri, Z., Al-Zaabi, A., Alshekaili, J., & Al-Khabori, M. (2021). Proteomics: Concepts and applications in human medicine. World Journal of Biological Chemistry, 12(5). https://doi.org/10.4331/wjbc.v12.i5.57 | spa |
dc.relation.references | Alori, E. T., & Babalola, O. O. (2018). Microbial Inoculants for Improving Crop Quality and Human Health in Africa. Frontiers in Microbiology, 9, 2213. https://doi.org/10.3389/fmicb.2018.02213 | spa |
dc.relation.references | Althaus, S. L., Berenbaum, M. R., Jordan, J., & Shalmon, D. A. (2021). No buzz for bees: Media coverage of pollinator decline. Proceedings of the National Academy of Sciences, 118(2), e2002552117. https://doi.org/10.1073/pnas.2002552117 | spa |
dc.relation.references | Anhalt, J. C., Moorman, T. B., & Koskinen, W. C. (2007). Biodegradation of imidacloprid by an isolated soil microorganism. Journal of Environmental Science and Health, Part B, 42(5), 509-514. https://doi.org/10.1080/03601230701391401 | spa |
dc.relation.references | Aslam, B., Basit, M., Nisar, M. A., Khurshid, M., & Rasool, M. H. (2017). Proteomics: Technologies and Their Applications. Journal of Chromatographic Science, 55(2), 182-196. https://doi.org/10.1093/chromsci/bmw167 | spa |
dc.relation.references | Banks, R. E., Dunn, M. J., Hochstrasser, D. F., Sanchez, J. C., Blackstock, W., Pappin, D. J., & Selby, P. J. (2000). Proteomics: New perspectives, new biomedical opportunities. Lancet, 356(9243). https://doi.org/10.1016/S0140-6736(00)03214-1 | spa |
dc.relation.references | Barr, D. B., & Buckley, B. (2011). In vivo biomarkers and biomonitoring in reproductive and developmental toxicity. En Reproductive and Developmental Toxicology (pp. 253-265). Elsevier. https://doi.org/10.1016/B978-0-12-382032-7.10020-7 | spa |
dc.relation.references | Battisti, L., Potrich, M., Sampaio, A. R., Ghisi, N. de C., Costa-Maia, F. M., Abati, R., Martinez, C. B. dos R., & Sofia, S. H. (2021). Is glyphosate toxic to bees? A meta-analytical review. Science of the Total Environment, 767. https://doi.org/10.1016/j.scitotenv.2021.145397 | spa |
dc.relation.references | Bellés, X., Martín, D., & Piulachs, M.-D. (2005). THE MEVALONATE PATHWAY AND THE SYNTHESIS OF JUVENILE HORMONE IN INSECTS. Annual Review of Entomology, 50(1), 181-199. https://doi.org/10.1146/annurev.ento.50.071803.130356 | spa |
dc.relation.references | Bennett, M. M., Welchert, A. C., Carroll, M., Shafir, S., Smith, B. H., & Corby-Harris, V. (2022). Unbalanced fatty acid diets impair discrimination ability of honey bee workers to damaged and healthy brood odors. Journal of Experimental Biology, 225(7), jeb244103. https://doi.org/10.1242/jeb.244103 | spa |
dc.relation.references | Bernardi, P. (1999). Mitochondrial Transport of Cations: Channels, Exchangers, and Permeability Transition. Physiological Reviews, 79(4), 1127-1155. https://doi.org/10.1152/physrev.1999.79.4.1127 | spa |
dc.relation.references | Blot, N., Veillat, L., Rouzé, R., & Delatte, H. (2019). Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota. PLOS ONE, 14(4), e0215466. https://doi.org/10.1371/journal.pone.0215466 | spa |
dc.relation.references | Boily, M., Sarrasin, B., DeBlois, C., Aras, P., & Chagnon, M. (2013). Acetylcholinesterase in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: Laboratory and field experiments. Environmental Science and Pollution Research, 20(8). https://doi.org/10.1007/s11356-013-1568-2 | spa |
dc.relation.references | Bourke, P. M., Evers, J. B., Bijma, P., van Apeldoorn, D. F., Smulders, M. J. M., Kuyper, T. W., Mommer, L., & Bonnema, G. (2021). Breeding Beyond Monoculture: Putting the “Intercrop” Into Crops. Frontiers in Plant Science, 12. https://www.frontiersin.org/articles/10.3389/fpls.2021.734167 | spa |
dc.relation.references | Breer, H., & Sattelle, D. B. (1987). Molecular properties and functions of insect acetylcholine receptors. Journal of Insect Physiology, 33(11), 771-790. https://doi.org/10.1016/0022-1910(87)90025-4 | spa |
dc.relation.references | Brown, M. J. F., & Paxton, R. J. (2009). The conservation of bees: A global perspective. Apidologie, 40(3), 410-416. https://doi.org/10.1051/apido/2009019 Buckingham, S., Lapied, B., Corronc, H., & Sattelle, F. (1997). Imidacloprid actions on insect neuronal acetylcholine receptors. Journal of Experimental Biology, 200(21), 2685-2692. https://doi.org/10.1242/jeb.200.21.2685 | spa |
dc.relation.references | Calderone, N. W. (2012). Insect Pollinated Crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009. PLoS ONE, 7(5), e37235. https://doi.org/10.1371/journal.pone.0037235 | spa |
dc.relation.references | Calvo-Rodriguez, M., Hou, S. S., Snyder, A. C., Kharitonova, E. K., Russ, A. N., Das, S., Fan, Z., Muzikansky, A., Garcia-Alloza, M., Serrano-Pozo, A., Hudry, E., & Bacskai, B. J. (2020). Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease. Nature Communications, 11(1), 2146. https://doi.org/10.1038/s41467-020-16074-2 | spa |
dc.relation.references | Carr, S., Aebersold, R., Baldwin, M., Burlingame, A., Clauser, K., & Nesvizhskii, A. (2004). The Need for Guidelines in Publication of Peptide and Protein Identification Data. Molecular & Cellular Proteomics, 3(6), 531-533. https://doi.org/10.1074/mcp.T400006-MCP200 | spa |
dc.relation.references | Catae, A. F., Roat, T. C., Pratavieira, M., Silva Menegasso, A. R. D., Palma, M. S., & Malaspina, O. (2018). Exposure to a sublethal concentration of imidacloprid and the side effects on target and nontarget organs of Apis mellifera (Hymenoptera, Apidae). Ecotoxicology, 27(2), 109-121. https://doi.org/10.1007/s10646-017-1874-4 | spa |
dc.relation.references | Caudle, W. M. (2015). Occupational exposures and parkinsonism. En Handbook of Clinical Neurology (Vol. 131, pp. 225-239). Elsevier. https://doi.org/10.1016/B978-0-444-62627-1.00013-5 | spa |
dc.relation.references | Cerda, R., Avelino, J., Gary, C., Tixier, P., Lechevallier, E., & Allinne, C. (2017). Primary and secondary yield losses caused by pests and diseases: Assessment and modeling in coffee. PLoS ONE, 12(1). https://doi.org/10.1371/journal.pone.0169133 | spa |
dc.relation.references | Chaimanee, V., Evans, J. D., Chen, Y., Jackson, C., & Pettis, J. S. (2016). Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos. Journal of Insect Physiology, 89, 1-8. https://doi.org/10.1016/j.jinsphys.2016.03.004 | spa |
dc.relation.references | Chaufan, G., Coalova, I., & Molina, M. D. C. R. D. (2014). Glyphosate commercial formulation causes cytotoxicity, oxidative effects, and apoptosis on human cells: Differences with its active ingredient. International Journal of Toxicology, 33(1). https://doi.org/10.1177/1091581813517906 | spa |
dc.relation.references | Chen, T., Tan, J., Wan, Z., Zou, Y., Afewerky, H. K., Zhang, Z., & Zhang, T. (2017). Effects of commonly used pesticides in China on the mitochondria and ubiquitin-proteasome system in Parkinson’s disease. International Journal of Molecular Sciences, 18(12). https://doi.org/10.3390/ijms18122507 | spa |
dc.relation.references | Chen, Y., Xu, J., Zheng, X., Zhang, Q., Wang, B., Zhao, M., Ye, C., Song, P., Yang, D., & Lu, X. (2022). Effects of glyphosate herbicide Roundup® on antioxidant enzymes activity and detoxification-related gene expression in honey bees ( Apis mellifera ). Journal of Apicultural Research, 1-8. https://doi.org/10.1080/00218839.2022.2130455 | spa |
dc.relation.references | Costas-Ferreira, C., Durán, R., & Faro, L. R. F. (2022). Toxic Effects of Glyphosate on the Nervous System: A Systematic Review. International Journal of Molecular Sciences, 23(9), 4605. https://doi.org/10.3390/ijms23094605 | spa |
dc.relation.references | Cullen, M. G., Bliss, L., Stanley, D. A., & Carolan, J. C. (2023). Investigating the effects of glyphosate on the bumblebee proteome and microbiota. Science of The Total Environment, 864, 161074. https://doi.org/10.1016/j.scitotenv.2022.161074 | spa |
dc.relation.references | Davies, T. G. E., Field, L. M., Usherwood, P. N. R., & Williamson, M. S. (2007). DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life, 59(3), 151-162. https://doi.org/10.1080/15216540701352042 | spa |
dc.relation.references | Davis, F. R. (2019). Pesticides and the perils of synecdoche in the history of science and environmental history. History of Science, 57(4). https://doi.org/10.1177/0073275319848964 | spa |
dc.relation.references | Déglise, P., Grünewald, B., & Gauthier, M. (2002). The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neuroscience Letters, 321(1-2), 13-16. https://doi.org/10.1016/S0304-3940(01)02400-4 | spa |
dc.relation.references | Ding, F., Peng, W., Diao, J.-X., Zhang, L., & Sun, Y. (2013). Characteristics and Essences upon Conjugation of Imidacloprid with Two Model Proteins. Journal of Agricultural and Food Chemistry, 61(19), 4497-4505. https://doi.org/10.1021/jf3048065 | spa |
dc.relation.references | Dong, Y., Ng, E., Lu, J., Fenwick, T., Tao, Y., Bertain, S., Sandoval, M., Bermudez, E., Hou, Z., Patten, P., Lassner, M., & Siehl, D. (2019). Desensitizing plant EPSP synthase to glyphosate: Optimized global sequence context accommodates a glycine-to-alanine change in the active site. Journal of Biological Chemistry, 294(2), 716-725. https://doi.org/10.1074/jbc.RA118.006134 | spa |
dc.relation.references | Easton-Calabria, A., Demary, K. C., & Oner, N. J. (2019). Beyond Pollination: Honey Bees (Apis mellifera) as Zootherapy Keystone Species. Frontiers in Ecology and Evolution, 6, 161. https://doi.org/10.3389/fevo.2018.00161 | spa |
dc.relation.references | El-Shenawy, N. S. (2009). Oxidative stress responses of rats exposed to Roundup and its active ingredient glyphosate. Environmental Toxicology and Pharmacology, 28(3). https://doi.org/10.1016/j.etap.2009.06.001 | spa |
dc.relation.references | Ensley, S. (2007). Imidacloprid. Veterinary Toxicology, 505-507. https://doi.org/10.1016/B978-012370467-2/50141-3 | spa |
dc.relation.references | Faita, M. R., Chaves, A., Corrêa, C. C. G., Silveira, V., & Nodari, R. O. (2022). Proteomic profiling of royal jelly produced by Apis mellifera L. exposed to food containing herbicide-based glyphosate. Chemosphere, 292. https://doi.org/10.1016/j.chemosphere.2021.133334 | spa |
dc.relation.references | Fahrbach, S. E., & Robinson, G. E. (1996). Juvenile Hormone, Behavioral Maturation, and Brain Structure in the Honey Bee. Developmental Neuroscience, 18(1-2), 102-114. https://doi.org/10.1159/000111474 | spa |
dc.relation.references | Faita, M. R., Oliveira, E. de M., Alves, V. V., Orth, A. I., & Nodari, R. O. (2018). Changes in hypopharyngeal glands of nurse bees (Apis mellifera) induced by pollen-containing sublethal doses of the herbicide Roundup®. Chemosphere, 211. https://doi.org/10.1016/j.chemosphere.2018.07.189 | spa |
dc.relation.references | Garibaldi, L. A., Steffan-Dewenter, I., Winfree, R., Aizen, M. A., Bommarco, R., Cunningham, S. A., Kremen, C., Carvalheiro, L. G., Harder, L. D., Afik, O., Bartomeus, I., Benjamin, F., Boreux, V., Cariveau, D., Chacoff, N. P., Dudenhöffer, J. H., Freitas, B. M., Ghazoul, J., Greenleaf, S., … Klein, A. M. (2013). Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science, 340(6127). https://doi.org/10.1126/science.1230200 | spa |
dc.relation.references | Gavin, A. C., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J. M., Michon, A. M., Cruciat, C. M., Remor, M., Höfert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., … Superti-Furga, G. (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415(6868). https://doi.org/10.1038/415141a | spa |
dc.relation.references | George, J., & Shukla, Y. (2013). Emptying of Intracellular Calcium Pool and Oxidative Stress Imbalance Are Associated with the Glyphosate-Induced Proliferation in Human Skin Keratinocytes HaCaT Cells. ISRN Dermatology, 2013. https://doi.org/10.1155/2013/825180 | spa |
dc.relation.references | George W Ware, & David M Whitacre. (2004). The pesticide book (6th ed.). (Meister Media Worldwide, Ed.) | spa |
dc.relation.references | Gomes, M. P., Smedbol, E., Chalifour, A., Hénault-Ethier, L., Labrecque, M., Lepage, L., Lucotte, M., & Juneau, P. (2014). Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: An overview. Journal of Experimental Botany, 65(17), 4691-4703. https://doi.org/10.1093/jxb/eru269 | spa |
dc.relation.references | Goulson, D. (2013). REVIEW: An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology, 50(4), 977-987. https://doi.org/10.1111/1365-2664.12111 | spa |
dc.relation.references | Goulson, D., Nicholls, E., Botías, C., & Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science (New York, N.Y.), 347(6229), 1255957. https://doi.org/10.1126/science.1255957 | spa |
dc.relation.references | Grünewald, B., & Siefert, P. (2019). Acetylcholine and Its Receptors in Honeybees: Involvement in Development and Impairments by Neonicotinoids. Insects, 10(12), 420. https://doi.org/10.3390/insects10120420 | spa |
dc.relation.references | Guo, J., Wang, Z., Chen, Y., Cao, J., Tian, W., Ma, B., & Dong, Y. (2021). Active components and biological functions of royal jelly. Journal of Functional Foods, 82, 104514. https://doi.org/10.1016/j.jff.2021.104514 | spa |
dc.relation.references | Gupta, V. K., Pathak, A., Siddiqi, N. J., & Sharma, B. (2016). Carbofuran Modulating Functions of Acetylcholinesterase from Rat Brain In Vitro. Advances in Biology, 2016. https://doi.org/10.1155/2016/3760967 | spa |
dc.relation.references | Hald, A. B. (1999). Weed vegetation (wild flora) of long established organic versus conventional cereal fields in Denmark. Annals of Applied Biology, 134(3). https://doi.org/10.1111/j.1744-7348.1999.tb05269.x | spa |
dc.relation.references | Hauser, F., Cazzamali, G., Williamson, M., Blenau, W., & Grimmelikhuijzen, C. J. P. (2006). A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Progress in Neurobiology, 80(1), 1-19. https://doi.org/10.1016/j.pneurobio.2006.07.005 | spa |
dc.relation.references | Helmer, S. H., Kerbaol, A., Aras, P., Jumarie, C., & Boily, M. (2015). Effects of realistic doses of atrazine, metolachlor, and glyphosate on lipid peroxidation and diet-derived antioxidants in caged honey bees (Apis mellifera). Environmental Science and Pollution Research, 22(11), 8010-8021. https://doi.org/10.1007/s11356-014-2879-7 | spa |
dc.relation.references | Hertel, R., Gibhardt, J., Martienssen, M., Kuhn, R., & Commichau, F. M. (2021). Molecular mechanisms underlying glyphosate resistance in bacteria. Environmental Microbiology, 23(6), 2891-2905. https://doi.org/10.1111/1462-2920.15534 | spa |
dc.relation.references | Holt, J. S. (2013). Herbicides. En Encyclopedia of Biodiversity (pp. 87-95). Elsevier. https://doi.org/10.1016/B978-0-12-384719-5.00070-8 | spa |
dc.relation.references | Hu, Y.-T., Wu, T.-C., Yang, E.-C., Wu, P.-C., Lin, P.-T., & Wu, Y.-L. (2017). Regulation of genes related to immune signaling and detoxification in Apis mellifera by an inhibitor of histone deacetylation. Scientific Reports, 7(1), 41255. https://doi.org/10.1038/srep41255 | spa |
dc.relation.references | Hung, K. L. J., Kingston, J. M., Albrecht, M., Holway, D. A., & Kohn, J. R. (2018). The worldwide importance of honey bees as pollinators in natural habitats. Proceedings of the Royal Society B: Biological Sciences, 285(1870). https://doi.org/10.1098/rspb.2017.2140 | spa |
dc.relation.references | Jayaraj, R., Megha, P., & Sreedev, P. (2016). Review Article. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdisciplinary Toxicology, 9(3-4), 90-100. https://doi.org/10.1515/intox-2016-0012 | spa |
dc.relation.references | John, R., Aravindakumar, C. T., & Aravind, U. K. (2023). Delineating the cascade of molecular events in protein aggregation triggered by Glyphosate, aminomethylphosphonic acid, and Roundup in serum albumins. Journal of Hazardous Materials, 459, 132158. https://doi.org/10.1016/j.jhazmat.2023.132158 | spa |
dc.relation.references | Johnson, R. M., Ellis, M. D., Mullin, C. A., & Frazier, M. (2010). Pesticides and honey bee toxicity – USA. Apidologie, 41(3), 312-331. https://doi.org/10.1051/apido/2010018 | spa |
dc.relation.references | Jungbauer, A., & Hahn, R. (2009). Chapter 22 Ion-Exchange Chromatography. En Methods in Enzymology (Vol. 463, pp. 349-371). Elsevier. https://doi.org/10.1016/S0076-6879(09)63022-6 | spa |
dc.relation.references | Kalyabina, V. P., Esimbekova, E. N., Kopylova, K. V., & Kratasyuk, V. A. (2021). Pesticides: Formulants, distribution pathways and effects on human health – a review. Toxicology Reports, 8, 1179-1192. https://doi.org/10.1016/j.toxrep.2021.06.004 | spa |
dc.relation.references | Kanissery, R., Gairhe, B., Kadyampakeni, D., Batuman, O., & Alferez, F. (2019). Glyphosate: Its Environmental Persistence and Impact on Crop Health and Nutrition. Plants, 8(11), 499. https://doi.org/10.3390/plants8110499 | spa |
dc.relation.references | Khalifa, S. A. M., Elshafiey, E. H., Shetaia, A. A., El-Wahed, A. A. A., Algethami, A. F., Musharraf, S. G., Alajmi, M. F., Zhao, C., Masry, S. H. D., Abdel-Daim, M. M., Halabi, M. F., Kai, G., Naggar, Y. A., Bishr, M., Diab, M. A. M., & El-Seedi, H. R. (2021). Overview of bee pollination and its economic value for crop production. Insects, 12(8). https://doi.org/10.3390/insects12080688 | spa |
dc.relation.references | Kim, K.-H., Kabir, E., & Jahan, S. A. (2017). Exposure to pesticides and the associated human health effects. Science of The Total Environment, 575, 525-535. https://doi.org/10.1016/j.scitotenv.2016.09.009 | spa |
dc.relation.references | Kishore, G. M., & Shah, D. M. (1988). Amino Acid Biosynthesis Inhibitors as Herbicides. Annual Review of Biochemistry, 57(1), 627-663. https://doi.org/10.1146/annurev.bi.57.070188.003211 | spa |
dc.relation.references | Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A., & Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment International, 132, 105078. https://doi.org/10.1016/j.envint.2019.105078 | spa |
dc.relation.references | Kovac, H., Stabentheiner, A., & Brodschneider, R. (2009). Contribution of honeybee drones of different age to colonial thermoregulation. Apidologie, 40(1), 82-95. https://doi.org/10.1051/apido/2008069 | spa |
dc.relation.references | Kroeger, P. T., Tokusumi, T., & Schulz, R. A. (2012). Transcriptional regulation of eater gene expression in Drosophila blood cells. Genesis, 50(1), 41-49. https://doi.org/10.1002/dvg.20787 | spa |
dc.relation.references | Krohn, C.-D. (Ed.). (2002). Frontmatter. En Metropolen des Exils (pp. 1-4). De Gruyter. https://doi.org/10.1515/9783112422885-fm | spa |
dc.relation.references | Kaya, M., Mujtaba, M., Bulut, E., Akyuz, B., Zelencova, L., & Sofi, K. (2015). Fluctuation in physicochemical properties of chitins extracted from different body parts of honeybee. Carbohydrate Polymers, 132, 9-16. ttps://doi.org/10.1016/j.carbpol.2015.06.008 | spa |
dc.relation.references | Lal, R., & Moldenhauer, W. C. (1987). Effects of soil erosion on crop productivity. Critical Reviews in Plant Sciences, 5(4), 303-367. https://doi.org/10.1080/07352688709382244 | spa |
dc.relation.references | Lancaster, S. H., Hollister, E. B., Senseman, S. A., & Gentry, T. J. (2010). Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate. Pest Management Science, 66(1), 59-64. https://doi.org/10.1002/ps.1831 | spa |
dc.relation.references | Liu, C., Ma, Y., Zhao, J., Nussinov, R., Zhang, Y.-C., Cheng, F., & Zhang, Z.-K. (2020). Computational network biology: Data, models, and applications. Physics Reports, 846, 1-66. https://doi.org/10.1016/j.physrep.2019.12.004 | spa |
dc.relation.references | Liu, N., Li, T., Wang, Y., & Liu, S. (2021). G-Protein Coupled Receptors (GPCRs) in Insects—A Potential Target for New Insecticide Development. Molecules, 26(10), 2993. https://doi.org/10.3390/molecules26102993 | spa |
dc.relation.references | Loewenstein, Y., Raimondo, D., Redfern, O. C., Watson, J., Frishman, D., Linial, M., Orengo, C., Thornton, J., & Tramontano, A. (2009). Protein function annotation by homology-based inference. Genome Biology, 10(2), 207. https://doi.org/10.1186/gb-2009-10-2-207 | spa |
dc.relation.references | Łozowicka, B., Kaczyński, P., Mojsak, P., Rusiłowska, J., Beknazarova, Z., Ilyasova, G., & Absatarova, D. (2020). Systemic and non-systemic pesticides in apples from Kazakhstan and their impact on human health. Journal of Food Composition and Analysis, 90, 103494. https://doi.org/10.1016/j.jfca.2020.103494 | spa |
dc.relation.references | Maori, E., Navarro, I. C., Boncristiani, H., Seilly, D. J., Rudolph, K. L. M., Sapetschnig, A., Lin, C. C., Ladbury, J. E., Evans, J. D., Heeney, J. L., & Miska, E. A. (2019). A Secreted RNA Binding Protein Forms RNA-Stabilizing Granules in the Honeybee Royal Jelly. Molecular Cell, 74(3). https://doi.org/10.1016/j.molcel.2019.03.010 | spa |
dc.relation.references | Marrazza, G. (2014). Piezoelectric Biosensors for Organophosphate and Carbamate Pesticides: A Review. Biosensors, 4(3), 301-317. https://doi.org/10.3390/bios4030301 Martin-Culma, N. Y., & Arenas-Suárez, N. E. A.-S. E. (2018). Daño colateral en abejas por la exposición a pesticidas de uso agrícola. Entramado, 14(1). https://doi.org/10.18041/entramado.2018v14n1.27113 | spa |
dc.relation.references | Martinez, A., & Al-Ahmad, A. J. (2019). Effects of glyphosate and aminomethylphosphonic acid on an isogeneic model of the human blood-brain barrier. Toxicology Letters, 304, 39-49. https://doi.org/10.1016/j.toxlet.2018.12.013 | spa |
dc.relation.references | Matošević, A., & Bosak, A. (s. f.). Carbamate group as structural motif in drugs: A review of carbamate derivatives used as therapeutic agents. https://doi.org/10.2478/aiht-2020-71-3466 | spa |
dc.relation.references | McAfee, A., Metz, B. N., Milone, J. P., Foster, L. J., & Tarpy, D. R. (2022). Drone honey bees are disproportionately sensitive to abiotic stressors despite expressing high levels of stress response proteins. Communications Biology, 5(1). https://doi.org/10.1038/s42003-022-03092-7 | spa |
dc.relation.references | Medhe, S. (2018). Ionization Techniques in Mass Spectrometry: A Review. Mass Spectrometry & Purification Techniques, 04(01). https://doi.org/10.4172/2469-9861.1000126 | spa |
dc.relation.references | Medhe, S. (2018). Mass spectrometry: Detectors review. Chemical and Biomolecular Engineering, 3(4), 51-58. | spa |
dc.relation.references | Mesnage, R., & Antoniou, M. N. (2018). Ignoring Adjuvant Toxicity Falsifies the Safety Profile of Commercial Pesticides. Frontiers in Public Health, 5, 361. https://doi.org/10.3389/fpubh.2017.00361 | spa |
dc.relation.references | Mesnage, R., Székács, A., & Zaller, J. G. (2021). 1 - Herbicides: Brief history, agricultural use, and potential alternatives for weed control. En R. Mesnage & J. G. Zaller (Eds.), Herbicides (pp. 1-20). Elsevier. https://doi.org/10.1016/B978-0-12-823674-1.00002-X | spa |
dc.relation.references | Moreno Villamil, R., Vélez Velandia, D., Gómez Hoyos, A. José., Higuera Diaz, D., Carvajal González, J., López Vargas, C. M., & Melo, D. (Eds.). (2018). Iniciativa colombiana de polinizadores. Ministerio Ambiental y Desarrollo Sostenible : Corporación Autónoma Regional de Cundinamarca (CAR) : Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt. | spa |
dc.relation.references | Nasuti, C., Cantalamessa, F., Falcioni, G., & Gabbianelli, R. (2003). Different effects of type I and type II pyrethroids on erythrocyte plasma membrane properties and enzymatic activity in rats. Toxicology, 191(2-3). https://doi.org/10.1016/S0300-483X(03)00207-5 | spa |
dc.relation.references | Nicodemo, D., Maioli, M. A., Medeiros, H. C. D., Guelfi, M., Balieira, K. V. B., Jong, D. D., & Mingatto, F. E. (2014). Fipronil and imidacloprid reduce honeybee mitochondrial activity. Environmental Toxicology and Chemistry, 33(9). https://doi.org/10.1002/etc.2655 | spa |
dc.relation.references | Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., & Hens, L. (2016). Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Frontiers in Public Health, 4. https://doi.org/10.3389/fpubh.2016.00148 | spa |
dc.relation.references | Oberemok, V. V., Laikova, K. V., Gninenko, Y. I., Zaitsev, A. S., Nyadar, P. M., & Adeyemi, T. A. (2015). A short history of insecticides. Journal of Plant Protection Research, 55(3), 221-226. https://doi.org/10.1515/jppr-2015-0033 | spa |
dc.relation.references | Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120(3). https://doi.org/10.1111/j.1600-0706.2010.18644.x | spa |
dc.relation.references | O’Neil, N. J., Bailey, M. L., & Hieter, P. (2017). Synthetic lethality and cancer. Nature Reviews Genetics, 18(10), 613-623. https://doi.org/10.1038/nrg.2017.47 | spa |
dc.relation.references | Ortea, I., O’Connor, G., & Maquet, A. (2016). Review on proteomics for food authentication. Journal of Proteomics, 147. https://doi.org/10.1016/j.jprot.2016.06.033 | spa |
dc.relation.references | Pandey, A., & Mann, M. (2000). Proteomics to study genes and genomes. Nature, 405(6788), 837-846. https://doi.org/10.1038/35015709 | spa |
dc.relation.references | Pang, S., Lin, Z., Zhang, Y., Zhang, W., Alansary, N., Mishra, S., Bhatt, P., & Chen, S. (2020). Insights into the Toxicity and Degradation Mechanisms of Imidacloprid Via Physicochemical and Microbial Approaches. Toxics, 8(3), 65. https://doi.org/10.3390/toxics8030065 | spa |
dc.relation.references | Rader, R., Bartomeus, I., Garibaldi, L. A., Garratt, M. P. D., Howlett, B. G., Winfree, R., Cunningham, S. A., Mayfield, M. M., Arthur, A. D., Andersson, G. K. S., Bommarco, R., Brittain, C., Carvalheiro, L. G., Chacoff, N. P., Entling, M. H., Foully, B., Freitas, B. M., Gemmill-Herren, B., Ghazoul, J., … Woyciechowski, M. (2016). Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences, 113(1), 146-151. https://doi.org/10.1073/pnas.1517092112 | spa |
dc.relation.references | Raman, R. (2017). The impact of Genetically Modified (GM) crops in modern agriculture: A review. GM Crops & Food, 8(4), 195-208. https://doi.org/10.1080/21645698.2017.1413522 | spa |
dc.relation.references | Ramón-Sierra, J. M., Ruiz-Ruiz, J. C., & De La Luz Ortiz-Vázquez, E. (2015). Electrophoresis characterisation of protein as a method to establish the entomological origin of stingless bee honeys. Food Chemistry, 183, 43-48. https://doi.org/10.1016/j.foodchem.2015.03.015 | spa |
dc.relation.references | Rawat, D., Bains, A., Chawla, P., Kaushik, R., Yadav, R., Kumar, A., Sridhar, K., & Sharma, M. (2023). Hazardous impacts of glyphosate on human and environment health: Occurrence and detection in food. Chemosphere, 329, 138676. https://doi.org/10.1016/j.chemosphere.2023.138676 | spa |
dc.relation.references | Raymann, K., Motta, E. V. S., Girard, C., Riddington, I. M., Dinser, J. A., & Moran, N. A. (2018). Imidacloprid decreases honey bee survival rates but does not affect the gut microbiome. Applied and Environmental Microbiology, 84(13). https://doi.org/10.1128/AEM.00545-18 | spa |
dc.relation.references | Requier, F. (2019). Honey Bees in Latin America. En R. A. Ilyasov & H. W. Kwon (Eds.), Phylogenetics of Bees (1.a ed., pp. 206-221). CRC Press. https://doi.org/10.1201/b22405-9 Resolución No. 092101 de 2021. (2021). Resolución No. 092101 de 2021. https://www.ica.gov.co/getattachment/6a3ce116-697d-413b-a07c-b5e478363a84/2021R92101.aspx. | spa |
dc.relation.references | Richmond, M. E. (2018). Glyphosate: A review of its global use, environmental impact, and potential health effects on humans and other species. Journal of Environmental Studies and Sciences, 8(4), 416-434. https://doi.org/10.1007/s13412-018-0517-2 | spa |
dc.relation.references | Roat, T. C., Santos-Pinto, J. R. A. dos, Santos, L. D. dos, Santos, K. S., Malaspina, O., & Palma, M. S. (2014). Modification of the brain proteome of Africanized honeybees (Apis mellifera) exposed to a sub‐lethal doses of the insecticide fipronil. Ecotoxicology, 23(9). https://doi.org/10.1007/s10646-014-1305-8 | spa |
dc.relation.references | Roy, D., Debnath, P., Mondal, D., & Sarkar, P. (2018). Colony Collapse Disorder of Honey Bee: A Neoteric Ruction in Global Apiculture. Current Journal of Applied Science and Technology, 26(3). https://doi.org/10.9734/cjast/2018/38218 | spa |
dc.relation.references | Rybakova, K. N., Bruggeman, F. J., Tomaszewska, A., Moné, M. J., Carlberg, C., & Westerhoff, H. V. (2015). Multiplex Eukaryotic Transcription (In)activation: Timing, Bursting and Cycling of a Ratchet Clock Mechanism. PLOS Computational Biology, 11(4), e1004236. https://doi.org/10.1371/journal.pcbi.1004236 | spa |
dc.relation.references | Sabourmoghaddam, N., Zakaria, M. P., & Omar, D. (2015). Evidence for the microbial degradation of imidacloprid in soils of Cameron Highlands. Journal of the Saudi Society of Agricultural Sciences, 14(2), 182-188. https://doi.org/10.1016/j.jssas.2014.03.002 | spa |
dc.relation.references | Safari-Alighiarloo, N., Taghizadeh, M., Rezaei-Tavirani, M., Goliaei, B., & Peyvandi, A. A. (2014). Protein-protein interaction networks (PPI) and complex diseases. Gastroenterology and Hepatology from Bed to Bench, 7(1), 17-31. | spa |
dc.relation.references | Salgado, YP. (2019). Impacto metabólico de insecticidas sistémicos (Fipronil e Imidacloprid) y no sistémicos (Clorpirifos) sobre el estrés oxidativo en Apis mellifera [Tesis de grado programa de Zootecnia, Universidad de Cundinamarca]. Repositorio Institucional Universidad de Cundinamarca. Https://repositorio.ucundinamarca.edu.co/handle/20.500.12558/1845. Universidad de Cundinamarca. | spa |
dc.relation.references | Seifert, J. (2005). Neonicotinoids. Encyclopedia of Toxicology, 196-200. https://doi.org/10.1016/B0-12-369400-0/00675-X | spa |
dc.relation.references | Sharma, D., Sangha, G. K., & Khera, K. S. (2015). Triazophos-induced oxidative stress and histomorphological changes in ovary of female Wistar rats. Pesticide Biochemistry and Physiology, 117. https://doi.org/10.1016/j.pestbp.2014.09.004 | spa |
dc.relation.references | Shi, L., Xu, H., Wu, Y., Li, X., Zou, L., Gao, J., & Chen, H. (2017). Alpha7-nicotinic acetylcholine receptors involve the imidacloprid-induced inhibition of IgE-mediated rat and human mast cell activation. RSC Advances, 7(82), 51896-51906. https://doi.org/10.1039/C7RA07862E | spa |
dc.relation.references | Silberman, J., & Taylor, A. (2018). Carbamate Toxicity. En StatPearls. Singh, B. K., & Walker, A. (2006). Microbial degradation of organophosphorus compounds. FEMS Microbiology Reviews, 30(3), 428-471. https://doi.org/10.1111/j.1574-6976.2006.00018.x | spa |
dc.relation.references | Singh, S., Kumar, V., Gill, J. P. K., Datta, S., Singh, S., Dhaka, V., Kapoor, D., Wani, A. B., Dhanjal, D. S., Kumar, M., Harikumar, S. L., & Singh, J. (2020). Herbicide Glyphosate: Toxicity and Microbial Degradation. International Journal of Environmental Research and Public Health, 17(20), 7519. https://doi.org/10.3390/ijerph17207519 | spa |
dc.relation.references | Sinha, A., & Mann, M. (2020). A beginner’s guide to mass spectrometry–based proteomics. The Biochemist, 42(5), 64-69. https://doi.org/10.1042/BIO20200057 | spa |
dc.relation.references | Smith, D. F. Q., Camacho, E., Thakur, R., Barron, A. J., Dong, Y., Dimopoulos, G., Broderick, N. A., & Casadevall, A. (2021). Glyphosate inhibits melanization and increases susceptibility to infection in insects. PLoS Biology, 19(5). https://doi.org/10.1371/journal.pbio.3001182 | spa |
dc.relation.references | Soderlund, D. M., Clark, J. M., Sheets, L. P., Mullin, L. S., Piccirillo, V. J., Sargent, D., Stevens, J. T., & Weiner, M. L. (2002). Mechanisms of pyrethroid neurotoxicity: Implications for cumulative risk assessment. Toxicology, 171(1). https://doi.org/10.1016/S0300-483X(01)00569-8 | spa |
dc.relation.references | Srivastava, D. P., Yu, E. J., Kennedy, K., Chatwin, H., Reale, V., Hamon, M., Smith, T., & Evans, P. D. (2005). Rapid, Nongenomic Responses to Ecdysteroids and Catecholamines Mediated by a Novel Drosophila G-Protein-Coupled Receptor. The Journal of Neuroscience, 25(26), 6145-6155. https://doi.org/10.1523/JNEUROSCI.1005-05.2005 | spa |
dc.relation.references | Suchail, S., Guez, D., & Belzunces, L. P. (2000). Characteristics of imidacloprid toxicity in two Apis mellifera subspecies. Environmental Toxicology and Chemistry, 19(7). https://doi.org/10.1002/etc.5620190726 | spa |
dc.relation.references | Sukkar, D., Kanso, A., Laval-Gilly, P., & Falla-Angel, J. (2023). A clash on the Toll pathway: Competitive action between pesticides and zymosan A on components of innate immunity in Apis mellifera. Frontiers in Immunology, 14, 1247582. https://doi.org/10.3389/fimmu.2023.1247582 | spa |
dc.relation.references | Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. von. (2019). STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607-D613. https://doi.org/10.1093/nar/gky1131 | spa |
dc.relation.references | Thompson, L. A., Darwish, W. S., Ikenaka, Y., Nakayama, S. M. M., Mizukawa, H., & Ishizuka, M. (2017). Organochlorine pesticide contamination of foods in Africa: Incidence and public health significance. Journal of Veterinary Medical Science, 79(4), 751-764. https://doi.org/10.1292/jvms.16-0214 | spa |
dc.relation.references | Tibatá, V., Arias, E., Corona, M., Ariza, F., Figueroa-Ramírez, J., & Junca, H. (2017). Determination of the Africanized mitotypes in populations of honey bees ( Apis mellifera L.) of Colombia. Journal of Apicultural Research, 57, 1-9. https://doi.org/10.1080/00218839.2017.1409065 | spa |
dc.relation.references | Tzin, V., & Galili, G. (2010). The Biosynthetic Pathways for Shikimate and Aromatic Amino Acids in Arabidopsis thaliana. The Arabidopsis Book, 2010(8). https://doi.org/10.1199/tab.0132 Unwin, N. (2013). Nicotinic acetylcholine receptor and the structural basis of neuromuscular transmission: Insights from Torpedo postsynaptic membranes. Quarterly Reviews of Biophysics, 46(4), 283-322. https://doi.org/10.1017/S0033583513000061 | spa |
dc.relation.references | Vafopoulou, X., & Steel, C. G. H. (2006). Hormone nuclear receptor (EcR) exhibits circadian cycling in certain tissues, but not others, during development in Rhodnius prolixus (Hemiptera). Cell and Tissue Research, 323(3), 443-455. https://doi.org/10.1007/s00441-005-0076-1 | spa |
dc.relation.references | Vaknin, I., Willinger, O., Mandl, J., Heuberger, H., Ben-Ami, D., Zeng, Y., Goldberg, S., Orenstein, Y., & Amit, R. (2024). A universal system for boosting gene expression in eukaryotic cell-lines. Nature Communications, 15(1), 2394. https://doi.org/10.1038/s41467-024-46573-5 | spa |
dc.relation.references | van Dijk, M., Morley, T., Rau, M. L., & Saghai, Y. (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food, 2(7), 494-501. https://doi.org/10.1038/s43016-021-00322-9 | spa |
dc.relation.references | Varela-Martínez, D. A., Fuentes-Molina, N., & Riaño-Herrera, D. A. (2022). A Historical Review of the Use of Pesticides in Colombian Agriculture [Preprint]. EARTH SCIENCES. https://doi.org/10.20944/preprints202204.0277.v2 | spa |
dc.relation.references | Väremo, L., Nookaew, I., & Nielsen, J. (2013). Novel insights into obesity and diabetes through genome-scale metabolic modeling. Frontiers in Physiology, 4 APR. https://doi.org/10.3389/fphys.2013.00092 | spa |
dc.relation.references | Vaudel, M., Sickmann, A., & Martens, L. (2012). Current methods for global proteome identification. Expert Review of Proteomics, 9(5), 519-532. https://doi.org/10.1586/epr.12.51 | spa |
dc.relation.references | Verma, A. K., & Verma, A. K. (2018). ECOLOGICAL BALANCE : AN INDISPENSABLE NEED FOR HUMAN SURVIVAL. Journal of Experimental Zoology India, 21(1). | spa |
dc.relation.references | Wang, B., Habermehl, C., & Jiang, L. (2022). Metabolomic analysis of honey bee (Apis mellifera L.) response to glyphosate exposure. Molecular Omics, 18(7), 635-642. https://doi.org/10.1039/D2MO00046F | spa |
dc.relation.references | Wei, J. C., Wei, B., Yang, W., He, C. W., Su, H. X., Wan, J. B., Li, P., & Wang, Y. T. (2018). Trace determination of carbamate pesticides in medicinal plants by a fluorescent technique. Food and Chemical Toxicology, 119. https://doi.org/10.1016/j.fct.2017.12.019 | spa |
dc.relation.references | Wilde, J., Frączek, R. J., Siuda, M., Bąk, B., Hatjina, F., & Miszczak, A. (2016). The influence of sublethal doses of imidacloprid on protein content and proteolytic activity in honey bees ( Apis mellifera L.). Journal of Apicultural Research, 55(2). https://doi.org/10.1080/00218839.2016.1211394 | spa |
dc.relation.references | Wilkins, M. R., Sanchez, J. C., Gooley, A. A., Appel, R. D., Humphery-Smith, I., Hochstrasser, D. F., & Williams, K. L. (1995). Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it. Biotechnology and Genetic Engineering Reviews, 13(1). https://doi.org/10.1080/02648725.1996.10647923 | spa |
dc.relation.references | Wilson, E. O. (1971). The insect societies. Cambridge, Massachusetts, USA, Harvard University Press. | spa |
dc.relation.references | Wu, Y.-Y., Luo, Q.-H., Hou, C.-S., Wang, Q., Dai, P.-L., Gao, J., Liu, Y.-J., & Diao, Q.-Y. (2017). Sublethal effects of imidacloprid on targeting muscle and ribosomal protein related genes in the honey bee Apis mellifera L. Scientific Reports, 7(1), 15943. https://doi.org/10.1038/s41598-017-16245-0 | spa |
dc.relation.references | Xiao, X., Haas, J., & Nauen, R. (2023). Functional orthologs of honeybee CYP6AQ1 in stingless bees degrade the butenolide insecticide flupyradifurone. Ecotoxicology and Environmental Safety, 268, 115719. https://doi.org/10.1016/j.ecoenv.2023.115719 | spa |
dc.relation.references | Yamamoto, I., Tomizawa, M., Saito, T., Miyamoto, T., Yabuta, G., & Kagabu, S. (1995). Molecular Mechanism for Selective Toxicity of Nicotinoids and Neonicotinoids. Journal of Pesticide Science, 20(1). https://doi.org/10.1584/jpestics.20.33 | spa |
dc.relation.references | Zaluski, R., Bittarello, A., Vieira, J., Braga, C., Padilha, P., Fernandes, M., Bovi, T., & Orsi, R. (2020). Modification of the head proteome of nurse honeybees (Apis mellifera) exposed to field-relevant doses of pesticides. Scientific Reports, 10. https://doi.org/10.1038/s41598-020-59070-8 | spa |
dc.relation.references | Zgurzynski M. & Lushington G. (2019). Glyphosate Impact on Apis mellifera Navigation: A Combined Behavioral and Cheminformatics Study. EC Pharmacology and Toxicology, 7.8, 806-824. | spa |
dc.relation.references | Zhang, G., Ueberheide, B. M., Waldemarson, S., Myung, S., Molloy, K., Eriksson, J., Chait, B. T., Neubert, T. A., & Fenyö, D. (2010). Protein Quantitation Using Mass Spectrometry. En D. Fenyö (Ed.), Computational Biology (Vol. 673, pp. 211-222). Humana Press. https://doi.org/10.1007/978-1-60761-842-3_13 | spa |
dc.relation.references | Zhao, H., Li, G., Guo, D., Wang, Y., Liu, Q., Gao, Z., Wang, H., Liu, Z., Guo, X., & Xu, B. (2020). Transcriptomic and metabolomic landscape of the molecular effects of glyphosate commercial formulation on Apis mellifera ligustica and Apis cerana cerana. Science of the Total Environment, 744. https://doi.org/10.1016/j.scitotenv.2020.140819 | spa |
dc.relation.references | Zhao, L., Zhao, J., Zhong, K., Tong, A., & Jia, D. (2022). Targeted protein degradation: Mechanisms, strategies and application. Signal Transduction and Targeted Therapy, 7(1), 113. https://doi.org/10.1038/s41392-022-00966-4 | spa |
dc.relation.references | Zhao, Y., & Lin, Y.-H. (2010). Whole-Cell Protein Identification Using the Concept of Unique Peptides. Genomics, Proteomics & Bioinformatics, 8(1), 33-41. https://doi.org/10.1016/S1672-0229(10)60004-6 | spa |
dc.relation.references | Zhu, Y. C., Yao, J., Adamczyk, J., & Luttrell, R. (2017a). Feeding toxicity and impact of imidacloprid formulation and mixtures with six representative pesticides at residue concentrations on honey bee physiology (Apis mellifera). PLoS ONE, 12(6). https://doi.org/10.1371/journal.pone.0178421 | spa |
dc.relation.references | Zhu, Y. C., Yao, J., Adamczyk, J., & Luttrell, R. (2017b). Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera). PLoS ONE, 12(5). https://doi.org/10.1371/journal.pone.0176837 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
dc.subject.ddc | 590 - Animales::592 - Invertebrados | spa |
dc.subject.lemb | ABEJA MELIFERA | spa |
dc.subject.lemb | Honeybee | eng |
dc.subject.lemb | GLIFOSATO | spa |
dc.subject.lemb | Glyphosate | eng |
dc.subject.lemb | HERBICIDAS | spa |
dc.subject.lemb | Herbicides | eng |
dc.subject.lemb | INSECTICIDAS | spa |
dc.subject.lemb | Insecticides | eng |
dc.subject.lemb | CONTROL DE MALEZAS | spa |
dc.subject.lemb | Weed control | eng |
dc.subject.lemb | CONTROL DE PLAGAS | spa |
dc.subject.lemb | Pest control | eng |
dc.subject.lemb | ABEJAS-RESISTENCIA A INSECTICIDAS | spa |
dc.subject.lemb | Bees- resistance to insecticides | eng |
dc.subject.proposal | Abeja de la miel | spa |
dc.subject.proposal | Expresión proteica | spa |
dc.subject.proposal | Glifosato, imidacloprid | spa |
dc.subject.proposal | Redes de interacción proteica | spa |
dc.subject.proposal | Metabolismo | spa |
dc.subject.proposal | Efectos neurológicos | spa |
dc.subject.proposal | Apis mellifera | eng |
dc.subject.proposal | Proteomics, glyphosate | eng |
dc.subject.proposal | Imidacloprid | eng |
dc.subject.proposal | Protein-protein interaction networks | eng |
dc.subject.proposal | Metabolism | eng |
dc.subject.proposal | Neurological effects | eng |
dc.title | Análisis proteómico de la abeja Apis mellifera expuesta al herbicida glifosato y al insecticida imidacloprid | spa |
dc.title.translated | Proteomic Analysis of the Honeybee Apis mellifera Exposed to the Herbicide Glyphosate and the Insecticide Imidacloprid | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Maya-Aguirre_Análisis proteómico de la abeja Apis mellifera expuesta al herbicida glifosato y al insecticida imidacloprid.pdf
- Tamaño:
- 2.63 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Biotecnología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: