Síntesis y estudio de la propiedades estructurales y morfológicas de multicapas de GaSb/Mn para aplicaciones en espintrónica

dc.contributor.advisorDussan Cuenca, Anderson
dc.contributor.authorGonzález Rojas, William Iván
dc.contributor.researchgroupMateriales Nanoestructurados y sus Aplicacionesspa
dc.date.accessioned2021-09-23T21:54:45Z
dc.date.available2021-09-23T21:54:45Z
dc.date.issued2021
dc.descriptionilustraciones, gráficas, fotografíasspa
dc.description.abstractEn esta tesis se estudiaron las propiedades estructurales y morfológicas de multicapas de antimoniuro de galio con manganeso ( [GaSb/Mn]3), construidas por medio de la técnica de “DC Magnetron Sputtering”. Se establecieron las condiciones óptimas para la construcción de las multicapas, las cuales se analizaron por medio de medidas de difracción de rayos X usando los modelos, configuración bragg brentano, micro difracción y haz rasante, identificando las fases cristalinas y su correlación con las condiciones de síntesis del material. Adicional se realizó un estudio de la morfología por medio de las medidas de microscopia electrónica de barrido convencional (SEM, por sus siglas en inglés) y de alta resolución (HRSEM, por sus siglas en inglés), con el fin de establecer los mecanismos de crecimiento y el tipo de formación que caracteriza el crecimiento de nanoestructuras en el material. Para esto se realizó el depósito de [GaSb/Mn]3, en sustratos de vidrio, Si, GaSb y ITO haciendo uso del equipo del laboratorio de Materiales Nanoestructurados y sus Aplicaciones (MNYSA). En la caracterización del sistema de multicapas, pueden encontrar las fases correspondientes al material depositado, 𝑀𝑛∝ y 𝐺𝑎𝑆𝑏, así como también la conformación de otras estructuras cristalinas como son 𝑀2𝑆𝑏2, 𝑀𝑛4𝑆𝑏2 y 𝐺𝑎4𝑆𝑏4 los cuales tienen características interesantes, para futuras aplicaciones en espintrónica. Adicional en esta tesis encontraran la forma óptima para establecer el sistema de crecimiento de este compuesto [GaSb/Mn]3, a partir del estudio de la superficie en relación con el método de fabricación y la temperatura del sustrato. En las micrografías se da evidencia del sistema multicapa con los diferentes espesores de cada una de las capas y de todo el compuesto. (Texto tomado de la fuente).spa
dc.description.abstractIn this project, the structural and morphological properties of gallium antimonide with manganese ([GaSb/Mn]3), multilayers, built using the Magnetron Sputtering DC technique, were studied. Where the optimal conditions for the construction of the multilayers were established, which were analyzed by means of X-ray diffraction measurements using the models, bragg brentane, micro diffraction and grazing beam, identifying the crystalline phases and their correlation with the conditions of synthesis of the material. Additionally, a morphology study was carried out by means of conventional scanning electron microscopy (SEM) and high resolution (HRSEM) measurements, in order to establish the growth mechanisms and the formation of nanostructures in the material. For this, the deposition of [GaSb/Mn]3 was carried out on glass substrates, GaSb and ITO using the equipment present in the Laboratory of Nanostructured Materials and their Applications (MNYSA). In the characterization of the multilayer system, they can find the phases corresponding to the deposited material, 𝑀𝑛∝ and 𝐺𝑎𝑆𝑏, as well as the conformation of other crystalline structures such as 𝑀𝑛2𝑆𝑏2, 𝑀𝑛4𝑆𝑏2 y 𝐺𝑎4𝑆𝑏4, which have interesting characteristics, for future applications in spintronics. Additional in this thesis they will find the optimal way to establish the growth system of this compound [GaSb/Mn]3, from the study of the surface in relation to the manufacturing method and the substrate temperature. In the micrographs there is evidence of the multilayer system with the different thicknesses of each of the layers and of the entire compound.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaFabricación de dispositivos nanoestructurados con aplicaciones tecnológicasspa
dc.format.extentxvii, 62 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80284
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.placeBogotá - Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.references[1] A. Dussán, H. Quiroz, and J. Calderon, Nanomateriales que revolucionan la tecnología Perspectivas y aplicaciones en espintrónica, UN Ciencia. 2020.spa
dc.relation.references[2] D. S. L. Mui, Z. Wang, and H. Morkoç, “A review of III-V semiconductor based metal-insulator-semiconductor structures and devices,” Thin Solid Films, vol. 231, no. 1–2, pp. 107–124, 1993, doi: 10.1016/0040-6090(93)90707-V.spa
dc.relation.references[3] E. Monteblanco, C. Ortiz Pauyac, W. Savero, J. C. RojasSanchez, and A. Schuhl, “Espintrónica, La Electronica Del Espín Spintronics, Spin Electronics,” Rev. Cient. Tec., vol. 23, no. 1, p. 5, 2017, doi: 10.21754/tecnia.v23i1.62.spa
dc.relation.references[4] S. Ornes, “Giant magnetoresistance,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 10, p. 3710, 2013, doi: 10.1073/pnas.1302494110.spa
dc.relation.references[5] C. Heiliger, M. Gradhand, P. Zahn, and I. Mertig, “Tunneling magnetoresistance on the subnanometer scale,” Phys. Rev. Lett., vol. 99, no. 6, pp. 1–4, 2007, doi: 10.1103/PhysRevLett.99.066804.spa
dc.relation.references[6] M. Eginligil, G. Kim, Y. Yoon, J. P. Bird, H. Luo, and B. D. McCombe, “Manipulation of an unusual anomalous Hall effect in Ga1-xMnxSb random alloys,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 40, no. 6, pp. 2104–2106, 2008, doi: 10.1016/j.physe.2007.09.158.spa
dc.relation.references[7] J. A. Calderón Cómbita, “Estudio de las propiedades Ópticas y eléctricas del compuesto Ga1-xMnxSb usado para aplicaciones en espintrónica,” p. 134, 2016, [Online]. Available: http://www.bdigital.unal.edu.co/55516/.spa
dc.relation.references[8] S. A. Khandy and D. C. Gupta, “Intrinsic magnetism and thermoelectric applicability of novel halide perovskites Cs2GeMnX6 (X = Cl, Br): Route towards spintronics and energy harvesting technologies,” Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 265. 2021, doi: 10.1016/j.mseb.2020.114985.spa
dc.relation.references[9] A. Eljarrat, S. Estradé, and F. Peiró, “Er-doped Si-nc/SiO 2 multilayer,” Adv. Imaging Electron Phys., vol. 209, pp. 159–173, 2019, doi: 10.1016/bs.aiep.2018.10.004.spa
dc.relation.references[10] I. Alkorta and A. C. Legon, “Non-covalent interactions involving alkaline-earth atoms and lewis bases B: An ab initio investigation of beryllium and magnesium bonds, B...MR2(M = Be or Mg, and R = H, F or CH3),” Inorganics, vol. 7, no. 3, 2019, doi: 10.3390/INORGANICS7030035.spa
dc.relation.references[11] M. De La Mata et al., “The Role of Polarity in Nonplanar Semiconductor Nanostructures,” Nano Lett., vol. 19, no. 6, pp. 3396–3408, 2019, doi: 10.1021/acs.nanolett.9b00459.spa
dc.relation.references[12] C. Holtmann and S. Klaka, “Generaciones de semiconductores,” Rev. ABB, vol. 3, no. 1013–3135, pp. 84–90, 2014, [Online]. Available: https://library.e.abb.com/public/aee130e9abe4b42883257daf00478a45/84-90 3m460_ES_72dpi.pdf.spa
dc.relation.references[13] J. Bak-Misiuk et al., “Structural properties of (Ga,Mn)Sb thin films on GaAs(111)A substrate,” Phys. Status Solidi Curr. Top. Solid State Phys., vol. 6, no. 12, pp. 2792–2794, 2009, doi: 10.1002/pssc.200982568.spa
dc.relation.references[14] R. Han, M. Qi, S. Dong, Z. Mao, X. Lin, and P. Wu, “Electronic and magnetic properties of X-doped (X=V, Cr, Mn, and Fe) tellurene for the 2D spintronic device: Insights from the first-principles calculations,” Phys. E Low-dimensional Syst. Nanostructures, vol. 129, no. February, p. 114667, 2021, doi: 10.1016/j.physe.2021.114667.spa
dc.relation.references[15] F. D. E. C. Físicas and A. H. Grande, Director : Sistemas Magnéticos Artificiales obtenidos mediante Pulverización Catódica : Películas Delgadas Amorfas de TbFe y Multicapas de Ni / Co memoria presentada par. 2002.spa
dc.relation.references[16] J. A. Calderón, F. Mesa, and A. Dussan, “Magnetoelectric and transport properties of (GaMn)Sb thin films: A ferrimagnetic phase in dilute alloys,” Appl. Surf. Sci., vol. 396, pp. 1113–1118, 2017, doi: 10.1016/j.apsusc.2016.11.096.spa
dc.relation.references[17] J. Fernando and J. Morales, “Experimental study of multilayers magnetic behavior Cr/Gd/Cr non-homogeneous,” Universidad Nacional de Colombia, 2014.spa
dc.relation.references[18] D. Pacifici, A. Irrera, G. Franzò, M. Miritello, F. Iacona, and F. Priolo, “Erbium-doped Si nanocrystals: Optical properties and electroluminescent devices,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 16, no. 3–4, pp. 331–340, 2003, doi: 10.1016/S1386-9477(02)00615-X.spa
dc.relation.references[19] Z. X. Song, J. A. Wang, Y. H. Li, F. Ma, K. W. Xu, and S. W. Guo, “The self-formation graded diffusion barrier of Zr/ZrN,” Microelectron. Eng., vol. 87, no. 3, pp. 391–393, 2010, doi: 10.1016/j.mee.2009.07.028.spa
dc.relation.references[20] M. Lindorf, H. Rohrmann, G. Span, and M. Albrecht, “Effect of Percolation on Structural and Electrical Properties of MIC Processed SiGe/Al Multilayers,” J. Electron. Mater., vol. 45, no. 3, pp. 1730–1733, 2016, doi: 10.1007/s11664-015-4190-x.spa
dc.relation.references[21] P. Grunberg, R. Schreiber, Y. Pang~’ Kernforschungsanlage, M. B. Brodsky, and H. Sowers, “PHYSICAL REVIEW LETTERS Layered Magnetic Structures: Evidence for Antiferromagnetic Coupling of Fe Layers across Cr Interlayers,” 1986.spa
dc.relation.references[22] A. Fert and F. N. Van Dau, “Spintronics, from giant magnetoresistance to magnetic skyrmions and topological insulators,” Comptes Rendus Phys., vol. 20, no. 7–8, pp. 817–831, 2019, doi: 10.1016/j.crhy.2019.05.020.spa
dc.relation.references[23] X. Cai, J. Yang, P. Zhang, and S. H. Wei, “Origin of Deep Be Acceptor Levels in Nitride Semiconductors: The Roles of Chemical and Strain Effects,” Phys. Rev. Appl., vol. 11, no. 3, p. 1, 2019, doi: 10.1103/PhysRevApplied.11.034019.spa
dc.relation.references[24] M. K. Lui and C. C. Ling, “Liquid encapsulated Czochralski grown undoped p-type gallium antimonide studied by temperature-dependent Hall measurement,” Semicond. Sci. Technol., vol. 20, no. 12, pp. 1157–1161, 2005, doi: 10.1088/0268-1242/20/12/002.spa
dc.relation.references[25] B. Martinez et al., “Standardizing large format 5" GaSb and InSb substrate production,” Infrared Technol. Appl. XLIII, vol. 10177, no. c, p. 101772L, 2017, doi: 10.1117/12.2263961.spa
dc.relation.references[26] Y. Wang, S. Hu, Y. Lv, and N. Dai, “Surface morphology of LPE-growth GaSb quantum dots,” Sel. Pap. from Conf. Photoelectron. Technol. Comm. Chinese Soc. Astronaut. 2014, Part II, vol. 9522, p. 95222X, 2015, doi: 10.1117/12.2182638.spa
dc.relation.references[27] S. Niu et al., “Brief Review of Epitaxy and Emission Properties of GaSb and Related Semiconductors,” Crystals, vol. 7, no. 11, p. 337, 2017, doi: 10.3390/cryst7110337.spa
dc.relation.references[28] P. S. Dutta, H. L. Bhat, and V. Kumar, “The physics and technology of gallium antimonide: An emerging optoelectronic material,” J. Appl. Phys., vol. 81, no. 9, pp. 5821–5870, 1997, doi: 10.1063/1.365356.spa
dc.relation.references[29] E. Casta, “Estudio teórico de las propiedades estructurales , electrónicas y magnéticas del compuesto semiconductor GaSb dopado con,” 2017.spa
dc.relation.references[30] A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys., vol. 105, no. 9, 2009, doi: 10.1063/1.3099572.spa
dc.relation.references[31] J. O. Kim, T. D. Nguyen, Z. Ku, A. Urbas, S.-W. Kang, and S. J. Lee, “Short wavelength infrared photodetector and light emitting diode based on InGaAsSb,” Infrared Technol. Appl. XLIII, vol. 10177, p. 101772M, 2017, doi: 10.1117/12.2264969.spa
dc.relation.references[32] F. Karouta, A. Marbeuf, A. Joullié, and J. H. Fan, “Low temperature phase diagram of the Ga1-xInxAsySb1-y system,” J. Cryst. Growth, vol. 79, no. 1–3, pp. 445–450, 1986, doi: 10.1016/0022-0248(86)90475-6.spa
dc.relation.references[33] S. Franchi, Molecular beam epitaxy: fundamentals, historical background and future prospects. Elsevier Inc., 2013.spa
dc.relation.references[34] S. Basu and T. Adhikari, “Variation of band gap with Mn concentration in Ga1-xMnxSb - A new III-V diluted magnetic semiconductor,” Solid State Commun., vol. 95, no. 1, pp. 53–55, 1995, doi: 10.1016/0038-1098(95)00160-3.spa
dc.relation.references[35] C. Subramanian and K. N. Strafford, “Review of multicomponent and multilayer coatings for tribological applications,” Wear, vol. 165, no. 1, pp. 85–95, 1993, doi: 10.1016/0043-1648(93)90376-W.spa
dc.relation.references[36] D. M. Marulanda Cardona, “Multicapas nanoestructuradas de Cr/CrNx como barrera de difusión entre Cu y Si,” vol. 3, no. d, p. 235, 2011, [Online]. Available: http://www.bdigital.unal.edu.co/4805/.spa
dc.relation.references[37] E. Nieto, P. Durán, C. Moure, and J. Fernández, “Películas delgadas: fabricación y aplicaciones.,” Boletín la Soc. Española Cerámica y Vidr., vol. 33, no. 5, pp. 245–258, 1994.spa
dc.relation.references[38] M. C. Martos, “Premios Nóbel 2000 : Kilby , Alferov y Kroemer ( Física ), Heeger , Mcdiarmid , Shirakawa ( Química ),” LLULL, pp. 754–759, 2000.spa
dc.relation.references[39] L. Karmakar and D. Das, “Prominent c-axis oriented Si-doped ZnO thin film prepared at low substrate temperature in RF magnetron sputtering and its UV sensing in p-Si/n-SZO heterojunction structures,” J. Phys. Chem. Solids, vol. 151, no. March 2020, p. 109907, 2021, doi: 10.1016/j.jpcs.2020.109907.spa
dc.relation.references[40] M. Henini, “Molecular beam epitaxy,” Mol. Beam Ep., 2013, doi: 10.1016/C2010-0-68986-3.spa
dc.relation.references[41] K. College and L. England, “Molecular beam epitaxy,” p. 157, 1986.spa
dc.relation.references[42] P. Vogt et al., “Adsorption-controlled growth of Ga2O3by suboxide molecular-beam epitaxy,” APL Mater., vol. 9, no. 3, 2021, doi: 10.1063/5.0035469.spa
dc.relation.references[43] J. E. Greene, “Review Article: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 35, no. 5, p. 05C204, 2017, doi: 10.1116/1.4998940.spa
dc.relation.references[44] E. Gerstner, “Answers on a postcard,” Nat. Phys., vol. 4, no. S1, pp. S6–S6, 2008, doi: 10.1038/nphys857.spa
dc.relation.references[45] J. E. Brittain, “The magnetron and the beginnings of the microwave age,” Phys. Today, vol. 38, no. 7, pp. 60–67, 1985, doi: 10.1063/1.880982.spa
dc.relation.references[46] T. B. Coatings and E. Components, “on Gas Flow Sputtered 61ST SVC TECHNICAL CONFERENCE The Tailoring of Interfaces,” 2018.spa
dc.relation.references[47] D. M. Mattox and M. Plus, “History Corner A Short History : Magnetron Sputter Deposition,” 2015.spa
dc.relation.references[48] C. E. Prados, Sistemas Magnéticos Artificiales obtenidos mediante Pulverización Catódica: películas Delgadas Amorfas de TbFe y Multicapas de Ni/Co. 1995.spa
dc.relation.references[49] T. G. Source, “diagram-dc-magnatron,” Magnetron Sputtering, 2019. http://www.semicore.com/news/94-what-is-dc-sputtering.spa
dc.relation.references[50] “diagram-sputtering-process,” Magnetron Sputtering, 2019. https://www.google.com/search?q=plasma+sputtering&source=lnms&tbm=isch&sa=X&ved=0ahUKEwj059Gcj67jAhWC1lkKHV47CPwQ_AUIECgB&biw=1600&bih=789#imgrc=cRiyWOFw5V3GbM:spa
dc.relation.references[51] Semicore, “The Global Source,” 2020. http://www.semicore.com/news/92-what-is-rf-sputtering.spa
dc.relation.references[52] J. Smith, William & Hashemi, Fundamentos de la ciencia e ingeniería de materiales. 2006.spa
dc.relation.references[53] D. M. Mattox, Atomistic Film Growth and Some Growth-Related Film Properties. 2010.spa
dc.relation.references[54] D. M. M. Mattox, Handbook of Physical Vapor Deposition ( PVD ) Processig Film Formation , Adhesion , Surface Preparation and Contamination Control. 1998.spa
dc.relation.references[55] D. M. Mattox, Film Characterization and Some Basic Film Properties. 2010.spa
dc.relation.references[56] S. V. Borisov and N. V. Podberezskaya, “X-ray diffraction analysis: A brief history and achievements of the first century,” J. Struct. Chem., vol. 53, pp. 1–3, 2012, doi: 10.1134/S0022476612070013.spa
dc.relation.references[57] D. Schwarzenbach, “The success story of crystallography,” Acta Crystallogr. Sect. A Found. Crystallogr., vol. 68, no. 1, pp. 57–67, 2012, doi: 10.1107/S0108767311030303.spa
dc.relation.references[58] W. A. De Morais, M. T. Vasques, R. D. M. Nobre, F. José, and G. Landgraf, “Proposta de Procedimento para Estimar a Rigidez em Metais Texturizados pela Análise dos Dados de EBSD Proposal of a Procedure to Estimate the Stiffness in Textured Metals through EBSD Data Analysis,” vol. 9, no. August, 2020.spa
dc.relation.references[59] H. Quiroz, “Preparación y estudio de las propiedades estructurales, opticas y morfológicas de nanotubos de TiO2 para su aplicación en sensores ópticos,” Universidad Nacional de Colombia, 2014.spa
dc.relation.references[60] H. P. Rooksby, “The powder method in X-ray crystallography by L. V. Azaroff and J. Buerger ,” Acta Crystallogr., vol. 11, no. 10, pp. 753–754, 1958, doi: 10.1107/s0365110x58002097.spa
dc.relation.references[61] B. He, “Recent advances in two-dimensional X-ray diffraction,” Acta Crystallogr. Sect. A Found. Crystallogr., vol. 67, no. a1, pp. C670–C670, 2011, doi: 10.1107/s0108767311083048.spa
dc.relation.references[62] A. Leineweber and E. J. Mittemeijer, “Notes on the order-of-reflection dependence of microstrain broadening,” J. Appl. Crystallogr., vol. 43, no. 5 PART 1, pp. 981–989, 2010, doi: 10.1107/S0021889810030451.spa
dc.relation.references[63] H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr., vol. 2, no. 2, pp. 65–71, 1969, doi: 10.1107/s0021889869006558.spa
dc.relation.references[64] J. M. Albella, Láminas Delgadas y Recubrimientos: preparación, propiedades y aplicaciones, CSIC Solan. Madrid, 2003.spa
dc.relation.references[65] P. Stanford and P. Pte, Biomaterials for MEMS. Singapour: 2011.spa
dc.relation.references[66] K. Hassani, X-ray Microdiffracion Techniques to Study the Microstructure of Materials, no. July. 2006.spa
dc.relation.references[67] (2014). Publishing, p.p 55-65, “Oliver H. Seeck, Bridget M. Murphy, X-ray Diffraction Modern Experimental Techniques, Stanford.”spa
dc.relation.references[68] R. A Young, “The Reitveld Method,” Journal of Applied Physics, vol. 8, no. 4. 1993, Oxford: Oxford University, pp. 143–147, 1989.spa
dc.relation.references[69] D. J. Raquejo, “Desarrollo de un Protocolo para la Aplicación del Método Rietveld y del Estádar Interno en la Caracterización de Materiales Cerámicos con Contenido de Amorfos,” EAFIT, 2015.spa
dc.relation.references[70] A. Albinati and B. T. M. Willis, “The Rietveld method in neutron and X-ray powder diffraction,” J. Appl. Crystallogr., vol. 15, no. 4, pp. 361–374, 1982, doi: 10.1107/s0021889882012187.spa
dc.relation.references[71] D. Marulanda, “Unbalanced Magnetron Sputtering System for Producyg Corrosion Resistance Multilayer Coatings - Sistema de Sputtering con Magnetron Multicapas Resistentes a la Corrosión.,” Dyna, pp. 74–79, 2012.spa
dc.relation.references[72] H. P. Quiroz, J. A. Calderón, and A. Dussán, Nanomateriales que revolucionan la tecnología Perspectivas y aplicaciones en espintrónica. 2020.spa
dc.relation.references[73] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. M. Ritchie, J. H. J. Scott, and D. C. Joy, “Scanning electron microscopy and x-ray microanalysis,” in Scanning Electron Microscopy and X-ray Microanalysis, 4 edition., Springer, Ed. 2017, pp. 1–550.spa
dc.relation.references[74] H. Technology, “Miradas tecnológicas: Historical Technology, Materials and Conservation (Sem and Microanalysis),” Conserv. Sience, pp. 72–76, 2013.spa
dc.relation.references[75] Microscopiooptico.org, “Partes Del Microscopio Y Sus Funciones,” pp. 1–7, 2021, [Online]. Available: https://www.microscopioelectronico.top/.spa
dc.relation.references[76] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. M. Ritchie, J. H. J. Scott, and D. C. Joy, Microscopy and X-Ray Microanalysis. 2018.spa
dc.relation.references[77] G. Q. M. Marticorena, S. M. Duhalde, “Aplicaciones de láseres pulsados al procesamiento de biomateriales,” UBA, p. 358, 2017.spa
dc.relation.references[78] M. Urbanek et al., “Focused ion beam fabrication of spintronic nanostructures: An optimization of the milling process,” Nanotechnology, vol. 21, no. 14, 2010, doi: 10.1088/0957-4484/21/14/145304.spa
dc.relation.references[79] J. Zemann, “Crystal structures, 2 nd edition. Vol. 1 by R. W. G. Wyckoff ,” Acta Crystallogr., vol. 18, no. 1, pp. 139–139, 1965, doi: 10.1107/s0365110x65000361.spa
dc.relation.references[80] X. Marti, I. Fina, and T. Jungwirth, “Prospect for antiferromagnetic spintronics,” IEEE Trans. Magn., vol. 51, no. 4, pp. 5–8, 2015, doi: 10.1109/TMAG.2014.2358939.spa
dc.relation.references[81] L. Urías and D. Ortiz, “Magnetismo en nanopartículas de manganeso,” TIP Rev. Espec. en Ciencias Químico-Biológicas, vol. 7, no. 2, pp. 83–92, 2004, doi: https://www.redalyc.org/articulo.oa?id=43270204.spa
dc.relation.references[82] C. Chen et al., “Magnetic properties and magneto-optical Kerr effect of Mn/Sb multilayer films on various substrates,” J. Appl. Phys., vol. 89, no. 12, pp. 8035–8037, 2001, doi: 10.1063/1.1370112.spa
dc.relation.references[83] N. D. Sarmiento Cruz, I. F. Rodríguez Ballesteros, H. P. Quiroz Gaitán, A. D. Cuenca, and X. A. Velásquez Moya, “Artículo en prensa / Article in press Physical Properties of GaSb Nanostructures for Spintronic Applications,” pp. 89–97, 2019.spa
dc.relation.references[84] Elementos.org.es/galio, “Elementos.” pp. 1–6, 2021, [Online]. Available: elementos.org.es/galio.spa
dc.relation.references[85] A. Fert, “The origin, development and future of spintronics,” Uspekhi Fiz. Nauk, vol. 178, no. 12, p. 1336, 2008, doi: 10.3367/ufnr.0178.200812f.1336.spa
dc.relation.references[86] M. Salamanca, “Propiedades ópticas-estructurales y morfológicas de aleaciones ternarias de GaAsMn crecidas por sputtering.,” Universidad Nacional de Colombia, 2010.spa
dc.relation.references[87] A. Anders, L. Berkeley, and C. Road, “A structure zone diagram including plasma based deposition and ion etching,” pp. 1–15, 2009, doi: https://doi.org/10.1016/j.tsf.2009.10.145.spa
dc.relation.references[88] L. Angarita, “Síntesis de películas delgadas por la técnica de magnetrón sputtering a partir de blancos de RENIO y BORO,” EAFIT, 2017.spa
dc.relation.references[89] A. Aguilar and J. León, “Estudio de la aplicación del plasma frío de baja presión para limpieza y esterilización de equipo médico de acero inoxidable de grado quirúrgico,” U. Poitécnica Salesiana, 2014.spa
dc.relation.references[90] P. A. Scherer and H. P. Bochem, “Energy-dispersive X-ray microanalysis of the methanogen Methanosarcina barkeri ‘Fusaro’ grown on methanol and in the presence of heavy metals,” Curr. Microbiol., vol. 9, no. 4, pp. 187–193, 1983, doi: 10.1007/BF01567579.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.proposalEspintrónicaspa
dc.subject.proposalSpintronicseng
dc.subject.proposalX-ray diffractioneng
dc.subject.proposalDifractogramaspa
dc.subject.proposalDiffractogrameng
dc.subject.proposalDifracción de rayos Xspa
dc.subject.proposalPulverización catódica por magnetrónspa
dc.subject.proposalMagnetron sputteringeng
dc.subject.unescoRayos Xspa
dc.subject.unescoX-rayseng
dc.subject.unescoElectromagnetismospa
dc.subject.unescoElectromagnetismeng
dc.subject.unescoCiencias físicasspa
dc.subject.unescoPhysical scienceseng
dc.titleSíntesis y estudio de la propiedades estructurales y morfológicas de multicapas de GaSb/Mn para aplicaciones en espintrónicaspa
dc.title.translatedSynthesis and study of the structural and morphological properties of GaSb/Mn multilayers for applications in spintronicseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053326850.2021.pdf
Tamaño:
2.74 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: