CO2 Capture by mineral carbonation to obtain a usable material of industrial waste

dc.contributor.advisorRojas Roa, Nestor Y.
dc.contributor.advisorTobón, Jorge Iván
dc.contributor.authorPedraza Vega, Jenniffer Iveth
dc.contributor.researchgroupCalidad del Airespa
dc.contributor.researchgroupGrupo de Investigación en Materiales, Catálisis y Medio Ambientespa
dc.contributor.researchgroupGrupo del Cemento y Materiales de Construcciónspa
dc.date.accessioned2021-05-03T16:54:36Z
dc.date.available2021-05-03T16:54:36Z
dc.date.issued2021
dc.descriptionilustraciones, graficas, mapas, tablasspa
dc.description.abstractCarbon dioxide capture and utilization (CCU) technologies are being developed to reduce carbon dioxide emissions from the cement sector and to obtain by-products with high added value. The cement sector is the second-largest industrial emitter of carbon dioxide (CO2), contributing to 5-8 % of anthropogenic global emissions in 2015-217. Cement production consists of raw material preparation, clinker production, blending/grinding, and packaging. A major emission source of CO2 is the de-carbonation of limestone during the calcination process, which constitutes 60 % of the total clinker kiln CO2 emissions and the remaining 40 % comes from the combustion of fuels (liquid fuels, gas, coal, wastes, and biomass). The CO2 emissions from limestone calcination are inherent to chemical reactions of the raw material and cannot be avoided unless other sources of CaO would be used. Mineral carbonation (MCAP-CO2) is one of the CCU technologies that recover CO2 contained in flue gases coming from clinker kiln to obtain synthetic carbonate from the reaction between CO2 and industrial wastes rich in calcium oxide, and using these synthetic carbonates either as a final product or as an input to the cement industry. Prior studies have noted the importance of combined economic and environmental aspects to evaluate the performance of CCU technologies applied to the cement sector. In this research, it was addressed this need using technological, economic, and environmental criteria for an initial assessment (at pre-feasibility level) of implementing the MCAP-CO2 within a conventional cement plant from a net-zero emissions perspective. The analysis goes from extractive processes to blended cement production including the capture process. It is considered that flue gas (rich in CO2) and CKD streams from clinker production are directed to the MCAP-CO2 process as main inputs. This thesis provides a better understanding of the capture technologies focused on the mitigation of CO2 emissions in the cement Colombian sector. This novel approach, integrating technological, economic and environmental criteria following LCA standardized metrics, allows to establish the cost–benefit relation of implementing CCU within the cement industry. In addition, hotspots were identified and evaluated at prefeasibility level in the assessment of CCU from a sustainability perspective such as: energy costs, CO2 abatement costs and plant capacity. Furthermore, we can extend these methods to others CCU technologies if we align the goal, scope, boundaries, inventory and indicators, so they must fit to the research question.eng
dc.description.abstractEl sector del cemento es el segundo mayor emisor industrial de dióxido de carbono (CO2), contribuyendo al 5-8 % de las emisiones globales de origen antrópico entre 2015-2017. La producción de cemento consiste en la preparación de materia prima (explotación, trituración y transporte), la producción de Clinker, y la mezcla, molienda y empaque final. Una fuente importante de emisión de CO2 es la descarbonatación de la piedra caliza o calcita durante el proceso de calcinación, que constituye el 60 % de las emisiones totales de CO2 en el horno de Clinker; el 40 % restante proviene de la combustión de combustibles (combustibles líquidos, gas, carbón, desechos ordinarios e industriales y biomasa). Las emisiones de CO2 de la calcinación de la piedra caliza son inherentes a las reacciones químicas de la materia prima y no se pueden evitar a menos que se utilicen otras fuentes de CaO. El estudio de tecnologías de captura y utilización de dióxido de carbono (CCU) permite reducir las emisiones de gases de efecto invernadero (GEI) del sector cementero y obtener subproductos con alto valor agregado. La carbonatación mineral en fase acuosa (MCAP-CO2) es una de las tecnologías CCU que utiliza el CO2 proveniente los gases de combustión del horno de Clinker para obtener carbonatos sintéticos productos de la reacción entre CO2 y compuestos de óxido de calcio o magnesio, presentes en los desechos industriales, y utilizando estos carbonatos como producto final o como insumo para la industria del cemento. Investigaciones previas han señalado la importancia de la integración de los aspectos económicos y ambientales para evaluar el desempeño de las tecnologías CCU aplicadas al sector industrial en general. En esta investigación, se ha abordado esta necesidad eligiendo criterios tecnológicos, económicos y ambientales para una evaluación inicial (a nivel de pre-factibilidad) de la implementación del proceso de MCAP-CO2 en una planta de cemento bajo una perspectiva de cero emisiones de CO2. El alcance del análisis abarca desde los procesos de extracción hasta la producción de cemento teniendo en cuenta el proceso de captura de CO2 por carbonatación mineral de CKD (MCAP-CO2). Esta tesis brinda una mejor comprensión de las tecnologías de captura enfocadas a la mitigación de las emisiones de CO2 en el sector cementero colombiano. Este enfoque, que integra criterios tecnológicos, económicos y ambientales siguiendo las métricas estandarizadas del análisis de ciclo de vida -ACV-, permite establecer la relación costo-beneficio de implementar la captura y utilización dentro de la industria cementera. Además, se identificaron y evaluaron hotspots a nivel de prefactibilidad en la evaluación de CCU desde una perspectiva de sostenibilidad, tales como: costos de energía, costos de reducción de CO2 y capacidad de la planta. Asì mismo, este enfoque pueden extenderse a otras tecnologías de CCU si se alinea el objetivo, el alcance, los límites del sistema, el inventario y los indicadores, para que se ajusten a la pregunta epecìfica de investigación a resolver.spa
dc.description.degreelevelDoctoradospa
dc.description.researchareaProceso ambientalspa
dc.format.extent1 recurso en linea (213 paginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79464
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Químicaspa
dc.relation.references[1] A. Kätelhön, R. Meys, S. Deutz, S. Suh, and A. Bardow, “Climate change mitigation potential of carbon capture and utilization in the chemical industry,” Proc. Natl. Acad. Sci., vol. c, no. 20, p. 201821029, 2019, doi: 10.1073/pnas.1821029116.spa
dc.relation.references[2] International Energy Agency, (IEA), and Cement Sustainability Initiative (CSI), “Technology Roadmap: Low-Carbon Transition in the Cement Industry,” 2017. doi: 10.1007/SpringerReference_7300.spa
dc.relation.references[3] World Business Council for Sustainable Development, “Cement Industry Energy and CO2 Performance: ‘Getting the Numbers Right,’” 2016. doi: ISBN: 978-3-940388-48-3.spa
dc.relation.references[4] O. Edenhofer et al., Climate Change 2014: Mitigation of Climate Change. 2014.spa
dc.relation.references[5] K. Roh, J. H. Lee, and R. Gani, “A methodological framework for the development of feasible CO2 conversion processes,” Int. J. Greenh. Gas Control, vol. 47, pp. 250–265, Apr. 2016, doi: 10.1016/j.ijggc.2016.01.028.spa
dc.relation.references[6] IPCC, “La captación y el almacenamiento de dióxido de carbono - Resumen tecnico,” in IPCC Special Report on Carbon Dioxide Capture and Storage, vol. 17, no. 4, B. Metz, O. Davidson, H. de Coninck, M. Loos, and L. MEyer, Eds. 2005, p. 66.spa
dc.relation.references[7] B. A. F. Bernal and K. A. H. Saavedra, “DIAGNÓSTICO DE LA INDUSTRIA DEL CEMENTO EN COLOMBIA Y EVALUACIÓN DE ALTERNATIVAS TECNOLÓGICAS PARA EL CUMPLIMENTO DE LA NORMA DE EMISIÓN DE FUENTES FIJAS,” Universidad de la Salle, 2008.spa
dc.relation.references[8] A. Favier, C. De-Wolf, K. Scrivener, and G. Habert, “A sustainable future for the european cement and concrete industry. Technology assessment for full decarbonisation of the industry by 2050 The authors,” 2019.spa
dc.relation.references[9] J. Albo, L. A. Alvarez, J. M. Andres, C. Bartolome, S. Burgos, and P. Castro, Usos del CO2: Un camino hacia la sostenibilidad, 1st ed., vol. 1, no. 9. España, 2013.spa
dc.relation.references[10] IDEAM; PNUD; MADS; DNP; CANCILLERÍA, “Primer Informe Bienal de Actualización de Colombia,” p. 252, 2015, doi: 10.1007/s13398-014-0173-7.2.spa
dc.relation.references[11] Ministerio de Industria Comercio y Turismo, “PLAN DE ACCIÓN SECTORIAL DE MITIGACIÓN (PAS SECTOR INDUSTRIA,” 2014. [Online]. Available: http://www.minambiente.gov.co/images/cambioclimatico/pdf/planes_sectoriales_de_mitigación/PAS_Industria_-_Final.pdf.spa
dc.relation.references[12] E. S. Rubin, “Summary of the IPCC Special Report on Carbon Dioxide Capture and Storage,” pp. 35–41, 2006.spa
dc.relation.references[13] S. Teir, R. Kuusik, C. J. Fogelholm, and R. Zevenhoven, “Production of magnesium carbonates from serpentinite for long-term storage of CO2,” Int. J. Miner. Process., vol. 85, no. 1–3, pp. 1–15, 2007, doi: 10.1016/j.minpro.2007.08.007.spa
dc.relation.references[14] M. S. Ncongwane, J. L. Broadhurst, and J. Petersen, “Assessment of the potential carbon footprint of engineered processes for the mineral carbonation of PGM tailings,” Int. J. Greenh. Gas Control, vol. 77, no. August, pp. 70–81, 2018, doi: 10.1016/j.ijggc.2018.07.019.spa
dc.relation.references[15] A. Azdarpour, M. Asadullah, E. Mohammadian, H. Hamidi, R. Junin, and M. A. Karaei, “A review on carbon dioxide mineral carbonation through pH-swing process,” Chem. Eng. J., vol. 279, pp. 615–630, 2015, doi: 10.1016/j.cej.2015.05.064.spa
dc.relation.references[16] Element Energy, Carbon Counts, Process System Enterprise, Imperial College, and University of Sheffield, “Demonstrating CO2 capture in the UK cement, chemicals, iron and steel and oil refining sectors by 2025: A Techno-economic Study,” Cambridge, 2014. [Online]. Available: http://www.element-energy.co.uk/wordpress/wp-content/uploads/2017/06/Element_Energy_DECC_BIS_Industrial_CCS_and_CCU_final_report_14052014.pdf.spa
dc.relation.references[17] D. N. Huntzinger, J. S. Gierke, L. L. Sutter, S. K. Kawatra, and T. C. Eisele, “Mineral carbonation for carbon sequestration in cement kiln dust from waste piles,” J. Hazard. Mater., vol. 168, no. 1, pp. 31–37, 2009, doi: 10.1016/j.jhazmat.2009.01.122.spa
dc.relation.references[18] N. L. Ukwattage, P. G. Ranjith, M. Yellishetty, H. H. Bui, and T. Xu, “A laboratory-scale study of the aqueous mineral carbonation of coal fly ash for CO2 sequestration,” J. Clean. Prod., vol. 103, pp. 1–10, 2015, doi: 10.1016/j.jclepro.2014.03.005.spa
dc.relation.references[19] A. Polettini, R. Pomi, and A. Stramazzo, “CO2 sequestration through aqueous accelerated carbonation of BOF slag: A factorial study of parameters effects,” J. Environ. Manage., vol. 167, pp. 185–195, 2016, doi: 10.1016/j.jenvman.2015.11.042.spa
dc.relation.references[20] M. Dri, A. Sanna, and M. M. Maroto-Valer, “Mineral carbonation from metal wastes : Effect of solid to liquid ratio on the efficiency and characterization of carbonated products,” Appl. Energy, vol. 113, pp. 515–523, 2014, doi: 10.1016/j.apenergy.2013.07.064.spa
dc.relation.references[21] R. Ducroux and P. Jean-Baptiste, “Is CO2 capture and storage the right way for mitigating climate change?,” Greenh. Gas Control Technol., vol. 3, no. 11, pp. 2463–2466, 2015, doi: 10.1017/CBO9781107415324.004.spa
dc.relation.references[22] E. Chang, C. Chen, Y. Chen, S. Pan, and P. Chiang, “Performance evaluation for carbonation of steel-making slags in a slurry reactor,” vol. 186, pp. 2010–2011, 2011, doi: 10.1016/j.jhazmat.2010.11.038.spa
dc.relation.references[23] S. Gopinath and A. Mehra, Carbon sequestration during steel production: Modelling the dynamics of aqueous carbonation of steel slag, vol. 115. Institution of Chemical Engineers, 2016.spa
dc.relation.references[24] J. L. Galvez-Martos, A. Elhoweris, J. Morrison, and Y. Al-Horr, “Conceptual design of a CO2 capture and utilisation process based on calcium and magnesium rich brines,” J. CO2 Util., vol. 27, no. April, pp. 161–169, 2018, doi: 10.1016/j.jcou.2018.07.011.spa
dc.relation.references[25] N. Kemache, L. C. Pasquier, E. Cecchi, I. Mouedhen, J. F. Blais, and G. Mercier, “Aqueous mineral carbonation for CO2sequestration: From laboratory to pilot scale,” Fuel Process. Technol., vol. 166, pp. 209–216, 2017, doi: 10.1016/j.fuproc.2017.06.005.spa
dc.relation.references[26] Element Energy Ltd, Carbon Counts Ltd, PSE Ltd, Imperial College, and University of Sheffield, “Demonstrating CO2 capture in the UK cement , chemicals , iron and steel and oil refining sectors by 2025 : A Techno-economic Study,” 2014.spa
dc.relation.references[27] D. García-Gusano, D. Garraín, I. Herrera, H. Cabal, and Y. Lechón, “Life Cycle Assessment of applying CO2 post-combustion capture to the Spanish cement production,” J. Clean. Prod., vol. 104, pp. 328–338, 2015, doi: 10.1016/j.jclepro.2013.11.056.spa
dc.relation.references[28] A. W. Zimmermann and R. Schomäcker, “Assessing Early-Stage CO 2 utilization Technologies-Comparing Apples and Oranges?,” Energy Technol., vol. 5, no. 6, pp. 850–860, Jun. 2017, doi: 10.1002/ente.201600805.spa
dc.relation.references[29] C. C. Cormos, A. M. Cormos, and L. Petrescu, “Assessing the CO2 Emissions Reduction from Cement Industry by Carbon Capture Technologies: Conceptual Design, Process Integration and Techno-economic and Environmental Analysis,” in Computer Aided Chemical Engineering, 2017, vol. 40, pp. 2593–2598, doi: 10.1016/B978-0-444-63965-3.50434-7.spa
dc.relation.references[30] A. Monteiro, Juliana Garcia Moretz-Sohn; Goetheer, Earl; Schols, Erin; van Os, Peter; Calvo, José Francisco Pérez; Hoppe, Helmut; Bharadwaj, Hariharan Subrahmaniam; Roussanaly, Simon; Khakharia, Purvil; Feenstra, Maartje; de Jong, “D5.1 Post-capture CO2 management CO2 utilization in cement industry CO2 sequestration,” 2018. doi: 10.5281/zenodo.2597056.spa
dc.relation.references[31] K. B. Najim, Z. S. Mahmod, and A. K. M. Atea, “Experimental investigation on using Cement Kiln Dust (CKD) as a cement replacement material in producing modified cement mortar,” Constr. Build. Mater., vol. 55, pp. 5–12, 2014, doi: 10.1016/j.conbuildmat.2014.01.015.spa
dc.relation.references[32] P. Styring, E. Quadrelli, and K. Armstrong, Carbon Dioxide Utilisation: Closing the Carbon Cycle. 2014.spa
dc.relation.references[33] S. Y. Pan, A. Chiang, E. E. Chang, Y. P. Lin, H. Kim, and P. C. Chiang, “An innovative approach to integrated carbon mineralization and waste utilization: A review,” Aerosol Air Qual. Res., vol. 15, no. 3, pp. 1072–1091, 2015, doi: 10.4209/aaqr.2014.10.0240.spa
dc.relation.references[34] R. Baciocchi, G. Costa, and D. Zingaretti, “Transformation and Utilization of Carbon Dioxide,” in Transformation and Utilization of Carbon Dioxide, B. M. Bhanage and M. Arai, Eds. Springer, 2014, pp. 268–299.spa
dc.relation.references[35] A. Sanna, M. Uibu, G. Caramanna, R. Kuusik, and M. M. Maroto-Valer, “A review of mineral carbonation technologies to sequester CO2.,” Chem. Soc. Rev., vol. 43, no. 23, pp. 8049–80, 2014, doi: 10.1039/c4cs00035h.spa
dc.relation.references[36] A. Sanna, “Reduction of CO2 Emissions Through Waste Materials Recycling by Mineral Carbonation,” Handb. Clean Energy Syst., 2015, doi: 10.1002/9781118991978.hces025.spa
dc.relation.references[37] Z. Osmanovic, N. Haračić, and J. Zelić, “Properties of blastfurnace cements (CEM III/A, B, C) based on Portland cement clinker, blastfurnace slag and cement kiln dusts,” Cem. Concr. Compos., vol. 91, no. October 2016, pp. 189–197, 2018, doi: 10.1016/j.cemconcomp.2018.05.006.spa
dc.relation.references[38] R. Siddique, “Utilization of cement kiln dust (CKD) in cement mortar and concrete-an overview,” Resour. Conserv. Recycl., vol. 48, no. 4, pp. 315–338, 2006, doi: 10.1016/j.resconrec.2006.03.010.spa
dc.relation.references[39] S. Peethamparan, J. Olek, and J. Lovell, “Influence of chemical and physical characteristics of cement kiln dusts (CKDs) on their hydration behavior and potential suitability for soil stabilization,” Cem. Concr. Res., vol. 38, no. 6, pp. 803–815, 2008, doi: 10.1016/j.cemconres.2008.01.011.spa
dc.relation.references[40] R. Baciocchi, O. Capobianco, G. Costa, M. Morone, and D. Zingaretti, “Carbonation of industrial residues for CO2 storage and utilization as a treatment to achieve multiple environmental benefits,” Energy Procedia, vol. 63, pp. 5879–5886, 2014, doi: 10.1016/j.egypro.2014.11.621.spa
dc.relation.references[41] H. Ghanbari, M. Helle, and H. Saxén, “Optimization of an Integrated Steel Plant with Carbon Capturing and Utilization Processes,” IFAC-PapersOnLine, vol. 48, no. 017, pp. 12–17, 2015, doi: 10.1016/j.ifacol.2015.10.069.spa
dc.relation.references[42] C. Bartolomé, P. M. Peris, and J. D. Recalde, Estado del arte de las tecnologías de captura y almacenamiento de CO2 en la industria del cemento. España: Agrupación de fabricantes de cemento de España, 2011.spa
dc.relation.references[43] M. Mun and H. Cho, “Mineral Carbonation for Carbon Sequestration with Industrial Waste,” Energy Procedia, vol. 37, pp. 6999–7005, 2013, doi: 10.1016/j.egypro.2013.06.633.spa
dc.relation.references[44] E. R. Bobicki, Q. Liu, Z. Xu, and H. Zeng, “Carbon capture and storage using alkaline industrial wastes,” Prog. Energy Combust. Sci., vol. 38, no. 2, pp. 302–320, 2012, doi: 10.1016/j.pecs.2011.11.002.spa
dc.relation.references[45] F. Grandia, F. Clarens, S. Meca, J. D. E. Pablo, and L. Duro, “Carbonatación Acelerada de Cenizas de Incineradora para su Valorización y Captura,” Macla-Revista La Soc. Española Mineral., vol. 15, pp. 107–108, 2011.spa
dc.relation.references[46] A. a. Olajire, “A review of mineral carbonation technology in sequestration of CO2,” J. Pet. Sci. Eng., vol. 109, pp. 364–392, 2013, doi: 10.1016/j.petrol.2013.03.013.spa
dc.relation.references[47] S. Y. Pan, P. C. Chiang, Y. H. Chen, E. E. Chang, C. Da Chen, and A. L. Shen, “Process intensification of steel slag carbonation via a rotating packed Bed: Reaction kinetics and mass transfer,” Energy Procedia, vol. 63, pp. 2255–2260, 2014, doi: 10.1016/j.egypro.2014.11.244.spa
dc.relation.references[48] M. Ortega, E. D. I. Química, A. Trinidad, E. D. I. Química, and S. Barrera, “Elaboración de Materiales de Construcción a Partir de Secuestración de Carbono,” pp. 29–31, 2015.spa
dc.relation.references[49] M. H. El-Naas, M. El Gamal, S. Hameedi, and A. M. O. Mohamed, “CO2 sequestration using accelerated gas-solid carbonation of pre-treated EAF steel-making bag house dust,” J. Environ. Manage., vol. 156, pp. 218–224, 2015, doi: 10.1016/j.jenvman.2015.03.040.spa
dc.relation.references[50] I. G. García, “Carbonatación del hormigón: combinación de CO2 con las fases hidratadas del cemento y frente de cambio de pH,” UNIVERSIDAD COMPLUTENSE DE MADRID, 2011.spa
dc.relation.references[51] C. Goberna and M. Faraldos, Tecnicas de Analisis y Caracterización de Materiales. 2011.spa
dc.relation.references[52] J. F. Carvajal, “Evaluación de escorias de Córdoba para su utilización en la industria del cemento Portland,” 2012.spa
dc.relation.references[53] ANDI, “Informe del Sector Siderúrgico 2016,” Bogotá D.C., 2017. [Online]. Available: http://www.andi.com.co/Uploads/Informe del sector 2016_636536148442404034.pdf.spa
dc.relation.references[54] D. Bonenfant, L. Kharoune, R. Hausler, and P. Niquette, “CO 2 Sequestration Potential of Steel Slags at Ambient Pressure and Temperature,” Ind. Eng. Chem Res, vol. 47, no. 20, pp. 7610–7616, 2008.spa
dc.relation.references[55] R. A. Sanchez and H. A. Jakobsen, “Modeling and simulation of circulating fluidized bed reactors applied to a carbonation/calcination loop,” Particuology, vol. 15, pp. 116–128, 2014, doi: 10.1016/j.partic.2013.07.009.spa
dc.relation.references[56] G. Montes-Hernandez, R. Pérez-López, F. Renard, J. M. Nieto, and L. Charlet, “Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash,” J. Hazard. Mater., vol. 161, no. 2–3, pp. 1347–1354, 2009, doi: 10.1016/j.jhazmat.2008.04.104.spa
dc.relation.references[57] IDEAM, “Inventario Nacional de Gases de Efecto Invernadero.” p. 36, 2015.spa
dc.relation.references[58] UPME, “Plan energetico Nacional,” 2015. [Online]. Available: http://www1.upme.gov.co/Documents/PRESENTACION_PLAN_ENERGETICO_2050.pdf.spa
dc.relation.references[59] Unidad de Planeación Minero Energética - UPME, “Plan de referencia: Expansión y Generación, 2016 - 2030,” p. 481, 2016, [Online]. Available: http://www.upme.gov.co/Docs/Plan_Expansion/2016/Plan_GT_2016_2030/Plan_GT_2016_2030_Final_V1_12-12-2016.pdf.spa
dc.relation.references[60] US Geological Survey, “Cement production globally and in the U.S. from 2010 to 2017 (in million metric tons),” Statista - The Statistics Portal, 2018. https://www.statista.com/statistics/219343/cement-production-worldwide/ (accessed Dec. 11, 2018).spa
dc.relation.references[61] DANE, “Estadísticas de cemento gris (ECG),” Bogotá D.C., 2018. [Online]. Available: https://www.dane.gov.co/files/investigaciones/boletines/cemento_gris/cp_cem_gris_mar18.pdf.spa
dc.relation.references[62] CEMEX S.A.B, “Annual Report 2016,” Mexico, 2016. [Online]. Available: https://www.cemex.com/es/home.spa
dc.relation.references[63] DANE, “Boletín técnico. Estadísticas de Cemento Gris (ECG),” 2018. doi: 10.1056/NEJMicm1308004.spa
dc.relation.references[64] D. N. Huntzinger and T. D. Eatmon, “A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies,” J. Clean. Prod., vol. 17, no. 7, pp. 668–675, 2009, doi: 10.1016/j.jclepro.2008.04.007.spa
dc.relation.references[65] IPCC, “Capítulo 2 emisiones de la industria de los minerales,” 2006, doi: Directrices del IPCC de 2006 para los inventarios nacionales de gases de efecto invernadero.spa
dc.relation.references[66] Cementos Argos S.A., “Reporte Integrado - 2016,” 2016. [Online]. Available: http://www.reporteintegradoargos.co/.spa
dc.relation.references[67] CEMEX S.A.B, “Reporte integrado,” 2017.spa
dc.relation.references[68] E. A. Martínez, J. I. Tobón, and J. G. Morales, “Coal acid mine drainage treatment using cement kiln dust,” Dyna, vol. 81, no. 186, p. 87, 2014, doi: 10.15446/dyna.v81n186.38834.spa
dc.relation.references[69] E. Maryeni Karina, J. I. Tobon, and J. H. Ramirez, “Use of industrial wastes for the synthesis of belite clinker,” Mater. construcción, vol. 70, no. 339, 2020, doi: https://doi.org/10.3989/mc.2020.14219.spa
dc.relation.references[70] P. Kunal, R. Siddique, and A. Rajor, “Use of cement kiln dust in cement concrete and its leachate characteristics,” Resour. Conserv. Recycl., vol. 61, pp. 59–68, 2012, doi: 10.1016/j.resconrec.2012.01.006.spa
dc.relation.references[71] E. E. Chang, C. H. Chen, Y. H. Chen, S. Y. Pan, and P. C. Chiang, “Performance evaluation for carbonation of steel-making slags in a slurry reactor,” J. Hazard. Mater., vol. 186, no. 1, pp. 558–564, 2011, doi: 10.1016/j.jhazmat.2010.11.038.spa
dc.relation.references[72] A. Azdarpour, M. Asadullah, R. Junin, M. Manan, H. Hamidi, and A. R. M. Daud, “Carbon Dioxide Mineral Carbonation Through pH-swing Process: A Review,” Energy Procedia, vol. 61, pp. 2783–2786, 2014, doi: 10.1016/j.egypro.2014.12.311.spa
dc.relation.references[73] W. S. Adaska and D. H. Taubert, “Beneficial uses of cement kiln dust,” IEEE Cem. Ind. Tech. Conf. Rec., pp. 210–228, 2008, doi: 10.1109/CITCON.2008.24.spa
dc.relation.references[74] A. Arulrajah, A. Mohammadinia, A. D’Amico, and S. Horpibulsuk, “Cement kiln dust and fly ash blends as an alternative binder for the stabilization of demolition aggregates,” Constr. Build. Mater., vol. 145, pp. 218–225, 2017, doi: 10.1016/j.conbuildmat.2017.04.007.spa
dc.relation.references[75] A. A. Elbaz, A. M. Aboulfotoh, A. M. Dohdoh, and A. M. Wahba, “Review of beneficial uses of cement kiln dust (CKD ), fly ash ( FA ) and their mixture,” J. Mater. Environ. Sci., vol. 10, no. 11, pp. 1062–1073, 2019.spa
dc.relation.references[76] ISO, “TECHNICAL REPORT ISO / TR 27912:2016 (E) Carbon dioxide capture — Carbon dioxide capture systems , technologies,” Geneva, 2016.spa
dc.relation.references[77] Y. T. Yuen, P. N. Sharratt, and B. Jie, “Carbon dioxide mineralization process design and evaluation: concepts, case studies, and considerations,” Environ. Sci. Pollut. Res., vol. 23, no. 22, pp. 22309–22330, 2016, doi: 10.1007/s11356-016-6512-9.spa
dc.relation.references[78] S. Teir, “Fixation of carbon dioxide by producting carbonates from minerals and steelmakingslags,” 2008.spa
dc.relation.references[79] G. Montes-Hernandez, A. Pommerol, F. Renard, P. Beck, E. Quirico, and O. Brissaud, “In situ kinetic measurements of gas-solid carbonation of Ca(OH)2 by using an infrared microscope coupled to a reaction cell,” Chem. Eng. J., vol. 161, no. 1–2, pp. 250–256, 2010, doi: 10.1016/j.cej.2010.04.041.spa
dc.relation.references[80] H. Świnder, M. Michalak, and A. Uliasz-Bocheńczyk, “Modeling Kinetics of CO2 (Carbon Dioxide) Mineral Sequestration in Heterogeneous Aqueous Suspensions Systems of Cement Dust,” J. Sustain. Min., vol. 12, no. 4, pp. 1–5, 2013, doi: 10.7424/jsm130401.spa
dc.relation.references[81] H. P. Mattila, I. Grigaliu-naite, and R. Zevenhoven, “Chemical kinetics modeling and process parameter sensitivity for precipitated calcium carbonate production from steelmaking slags,” Chem. Eng. J., vol. 192, pp. 77–89, 2012, doi: 10.1016/j.cej.2012.03.068.spa
dc.relation.references[82] V. Nikulshina, M. E. Gálvez, and A. Steinfeld, “Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2-CaCO3-CaO solar thermochemical cycle,” Chem. Eng. J., vol. 129, no. 1–3, pp. 75–83, 2007, doi: 10.1016/j.cej.2006.11.003.spa
dc.relation.references[83] A. Azdarpour, M. Asadullah, R. Junin, M. Manan, H. Hamidi, and E. Mohammadian, “Direct carbonation of red gypsum to produce solid carbonates,” Fuel Process. Technol., vol. 126, pp. 429–434, 2014, doi: 10.1016/j.fuproc.2014.05.028.spa
dc.relation.references[84] L. Wang, Y. Jin, and Y. Nie, “Investigation of accelerated and natural carbonation of MSWI fly ash with a high content of Ca,” J. Hazard. Mater., vol. 174, no. 1–3, pp. 334–343, 2010, doi: 10.1016/j.jhazmat.2009.09.055.spa
dc.relation.references[85] G. Costa, R. Baciocchi, A. Polettini, R. Pomi, C. D. Hills, and P. J. Carey, “Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues,” Environ. Monit. Assess., vol. 135, no. 1–3, pp. 55–75, 2007, doi: 10.1007/s10661-007-9704-4.spa
dc.relation.references[86] N. L. Ukwattage, P. G. Ranjith, and X. Li, “Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation,” Meas. J. Int. Meas. Confed., vol. 97, pp. 15–22, 2017, doi: 10.1016/j.measurement.2016.10.057.spa
dc.relation.references[87] M. Fernández Bertos, S. J. R. Simons, C. D. Hills, and P. J. Carey, “A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2,” J. Hazard. Mater., vol. 112, no. 3, pp. 193–205, 2004, doi: 10.1016/j.jhazmat.2004.04.019.spa
dc.relation.references[88] M. Naranjo, D. T. Brownlow, and A. Garza, “CO2 capture and sequestration in the cement industry,” Energy Procedia, vol. 4, pp. 2716–2723, 2011, doi: 10.1016/j.egypro.2011.02.173.spa
dc.relation.references[89] R. Baciocchi, G. Costa, A. Polettini, R. Pomi, and V. Prigiobbe, “Comparison of different reaction routes for carbonation of APC residues,” Energy Procedia, vol. 1, no. 1, pp. 4851–4858, 2009, doi: 10.1016/j.egypro.2009.02.313.spa
dc.relation.references[90] A. González, N. Moreno, and R. Navia, “CO2 carbonation under aqueous conditions using petroleum coke combustion fly ash,” Chemosphere, vol. 117, no. 1, pp. 139–143, 2014, doi: 10.1016/j.chemosphere.2014.06.034.spa
dc.relation.references[91] R. Baciocchi, G. Costa, A. Polettini, and R. Pomi, “Influence of particle size on the carbonation of stainless steel slag for CO 2 storage,” Energy Procedia, vol. 1, no. 1, pp. 4859–4866, 2009, doi: 10.1016/j.egypro.2009.02.314.spa
dc.relation.references[92] C. Conde-Mejía, “Desarrollo y aplicación de un sistema jerarquico para el diseño de bio-refinerias,” Instituto Tecnológico de Celaya, 2013.spa
dc.relation.references[93] J. M. Douglas, “A hierarchical decision procedure for process synthesis,” AIChE J., vol. 31, no. 3, pp. 353–362, Mar. 1985, doi: 10.1002/aic.690310302.spa
dc.relation.references[94] WBCSC and International Energy Agency (IEA), “Technology Roadmap Cement,” 2009. doi: 978-3-940388-47-6.spa
dc.relation.references[95] European IPPC Bureau, “Best available techniques (BAT) for the Production of Cement, Lime and Magnesium oxide.,” 2013.spa
dc.relation.references[96] European IPCC Bureau, “Best available techniques (BAT) for the Cement Industry Reference Document,” Brussels, 1999.spa
dc.relation.references[97] N. Meunier, S. Laribi, L. Dubois, D. Thomas, and G. De Weireld, “CO2 capture in cement production and re-use: First step for the optimization of the overall process,” Energy Procedia, vol. 63, pp. 6492–6503, 2014, doi: 10.1016/j.egypro.2014.11.685.spa
dc.relation.references[98] C. D. Cooper and F. C. Alley, Air Pollution Control. Illinois: Waveland Pres, Inc, 2002.spa
dc.relation.references[99] M. John C, “TECHNOLOGY READINESS LEVELS,” J. Vis. Lang. Comput., vol. 11, no. 3, pp. 287–301, 2004.spa
dc.relation.references[100] I. de I. M. y C. IDEAM, DNP - Subidrección de Desarrollo Ambiental Sostenible, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Unidad Administrativa Especial del Sistema de Parques Nacionales, “Anexos,” in SEGUNDA COMUNICACIÓN NACIONAL ANTE LA CONVENCIÓN MARCO DE LAS NACIONES UNIDAS SOBRE CAMBIO CLIMATICO, 2010, p. 28.spa
dc.relation.references[101] B. D. Humbird and L. E. Consulting, “Expanded Technology Readiness Level ( TRL ) Definitions for the Bioeconomy,” pp. 1–7, 2018.spa
dc.relation.references[102] G. A. Buchner, J. Wunderlich, and R. Schomäcker, “Technology readiness levels guiding cost estimation in the chemical industry,” in 2018 AACE® INTERNATIONAL TECHNICAL PAPER, 2018, pp. 1–23.spa
dc.relation.references[103] G. A. Buchner, A. W. Zimmermann, A. Marxen, K. J. Stepputat, and R. Schomäcker, “Specifying Technology Readiness Levels for the Chemical Industry,” Unpubl. Work. Pap., 2018, doi: 10.1021/acs.iecr.8b05693.spa
dc.relation.references[104] C. Conde-Mejía, A. Jiménez-Gutiérrez, and M. M. El-Halwagi, “Assessment of combinations between pretreatment and conversion configurations for bioethanol production,” ACS Sustain. Chem. Eng., vol. 1, no. 8, pp. 956–965, 2013, doi: 10.1021/sc4000384.spa
dc.relation.references[105] D. Gómez and J. Watterson, “CAPÍTULO 2. Combustión estacionaria,” Directrices del IPCC 2006 para los Inventar. Nac. gases Ef. invernadero, vol. 2, pp. 1–47, 2006, doi: 10.1157/13083441.spa
dc.relation.references[106] U. S. E. P. Agency, “1.6 Wood Residue Combustion In Boilers,” AP 42, Compil. Air Pollut. Emiss. Factors, Vol. 1 Station. Point Area Sources, pp. 1–20, 2003, doi: 10.1111/j.1365-2109.2010.02488.x.spa
dc.relation.references[107] U.S. Environmental Protection Agency, “1.3 Fuel Oil Combustion,” in Compilation of Air Pollutant Emission Factors AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources., vol. I, no. 4, 1999.spa
dc.relation.references[108] U.S. Environmental Protection Agency, “1.4 Natural Gas combustion,” in Compilation of Air Pollutant Emission Factors AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources., vol. 112, no. 483, 1966, pp. 211–212.spa
dc.relation.references[109] U.S. Environmental Protection Agency, “1.1 Bituminous And Subbituminous Coal Combustion,” in Compilation of Air Pollutant Emission Factors AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources., vol. I, U.S. Environmental Protection Agency, Ed. NC, 1998.spa
dc.relation.references[110] G. A. Buchner, A. W. Zimmermann, A. E. Hohgräve, and R. Schomäcker, “Techno-economic Assessment Framework for the Chemical Industry—Based on Technology Readiness Levels,” Ind. Eng. Chem. Res., vol. 57, no. 25, pp. 8502–8517, Jun. 2018, doi: 10.1021/acs.iecr.8b01248.spa
dc.relation.references[111] U.S. Environmental Protection Agency, “11.6 Portland Cement Manufacturing,” in Compilation of Air Pollutant Emission Factors AP-42, Fifth Edition, .spa
dc.relation.references[112] I. D. Gil Chaves, J. R. G. López, J. L. García Zapata, A. Leguizamón Robayo, and G. Rodríguez Niño, “Chapter 5 Chemical Reactors,” in Process Analysis and Simulation in Chemical Engineering, 2016.spa
dc.relation.references[113] G. Chaves, J. Ricardo, L. Garc, Z. A. Leguizam, and R. G. Rodr, “Process Analysis and Simulation in Chemical Engineering,” in Process Analysis and Simulation in Chemical Engineering, 2015, pp. 1–2, 7.spa
dc.relation.references[114] I. D. Gil Chaves, J. R. G. López, J. L. García Zapata, A. Leguizamón Robayo, and G. Rodríguez Niño, “Chapter 9 Solids Operations in process simulators,” in Process Analysis and Simulation in Chemical Engineering, 2016.spa
dc.relation.references[115] OFICEMEN and CONSULNIMA, “Estudio de métodos de emisión, cálculo y estimación para las emisiones de las sustancias PRTR adecuados al sector del cemento en España,” España, 2009.spa
dc.relation.references[116] J. J. Carroll, J. D. Slupsky, and A. E. Mather, “The solubility of carbon dioxide in water,” J. Phys. Chem., vol. 20, no. 6, pp. 1201–1209, 1991, doi: 10.1063/1.555900.spa
dc.relation.references[117] A. W. Zimmermann et al., “Techno-Economic Assessment & Life-Cycle Assessment Guidelines for CO2 Utilization.” University of Michigan Library, Ann Arbor, MI, USA, p. 157, 2018, doi: 10.3998/2027.42/145436.spa
dc.relation.references[118] D. Voldsund, Mari; Anantharaman, Rahul; Berstad, David; De Lena, Edoardo; Fu, Chao; Gardarsdottir, Stefania Osk; Jamali, Armin; Pérez-Calvo, José-Francisco; Romano, Matteo; Roussanaly, Simon; Ruppert, Johannes; Stallmann, Olaf; Sutter, “D4.6 CEMCAP comparative techno-economic analysis of CO2 capture in cement plants,” 2018. doi: 10.5281/zenodo.2597091.spa
dc.relation.references[119] M. Tsagkari, J. L. Couturier, J. L. Dubois, and A. Kokossis, “Heuristics for Capital Cost Estimation: a Case Study on Biorefinery Processes,” 10th Natl. Congr. Chem. Eng., no. August, p. 9, 2015.spa
dc.relation.references[120] American Chemistry Council ACC, “2018 Elements of the BUSINESS OF CHEMISTRY,” 2018. [Online]. Available: https://www.americanchemistry.com/2018-Elements-of-the-Business-of-Chemistry.pdf.spa
dc.relation.references[121] P. Christensen et al., “Cost Estimate Classification System – As Applied in Engineering, Procurement, and Construction,” 2016. [Online]. Available: www.tcu.gov.br/autenticidade,%0Ahttps://web.aacei.org/docs/default-source/toc/toc_18r-97.pdf?sfvrsn=4.spa
dc.relation.references[122] G. A. Buchner, J. Wunderlich, and R. Schomäcker, “Technology readiness levels guiding cost estimation in the chemical industry,” Unpubl. Work. Pap., pp. 1–23, 2018.spa
dc.relation.references[123] International Standard Organisation - ISO, ISO 14040: Environmental management - Life cycle assessment - Principles and framework. 2006.spa
dc.relation.references[124] Z. Nie, “Life Cycle Modelling of Carbon Dioxide Capture and Geological Storage in Energy Production,” Imperial College London, 2009.spa
dc.relation.references[125] M. Z. Hauschild and M. A. J. Huijbregts, Life Cycle Impact Assessment, vol. 2, no. 2. Springer, 2015.spa
dc.relation.references[126] D. A. Salas, A. D. Ramirez, C. R. Rodríguez, D. M. Petroche, A. J. Boero, and J. Duque-Rivera, “Environmental impacts, life cycle assessment and potential improvement measures for cement production: a literature review,” J. Clean. Prod., vol. 113, pp. 114–122, 2016, doi: 10.1016/j.jclepro.2015.11.078.spa
dc.relation.references[127] N. Von der Assen, P. Voll, M. Peters, and A. Bardow, “Life cycle assessment of CO2 capture and utilization: a tutorial review.,” Chem. Soc. Rev., vol. 43, no. 23, pp. 7982–94, 2014, doi: 10.1039/c3cs60373c.spa
dc.relation.references[128] International Standard Organisation - ISO, ISO 14044 Environmental management — Life cycle assessment — Requirements and guidelines. 2006.spa
dc.relation.references[129] A. P. Acero, C. Rodriguez, and A. Ciroth, LCIA methods: Impact assessment methods in life cycle assessment and their impact categories. 2017.spa
dc.relation.references[130] D. A. Lane, “Getting the Most out of Technoeconomic Analyses,” no. November. pp. 38–41, 2018, doi: 10.1370/afm.563.INTRODUCTION.spa
dc.relation.references[131] U.S. Department of Energy, “Technology Readiness Assessment Guide,” Washington D.C., 2009. [Online]. Available: https://www.directives.doe.gov/directives-documents/400-series/0413.3-EGuide-04/@@images/file.spa
dc.relation.references[132] S. Michailos et al., “Methanol Worked Examples for the TEA and LCA Guidelines for CO2 Utilization,” 2018. doi: 10.3998/2027.42/145723.spa
dc.relation.references[133] National Energy Technology Laboratory - NETL, “Cost and Performance Metrics Used to Assess Carbon Utilization and Storage Technologies,” 2014.spa
dc.relation.references[134] R. Smith, Chemical process design and integration. Chichester: University of Manchester, 2005.spa
dc.relation.references[135] Brown, T.R, “Capital Cost Estimating,” Hydrocarb. Process., pp. 92–100, 2000, doi: 10.1016/B978-0-08-096659-5.00007-9.spa
dc.relation.references[136] E. S. Rubin, J. E. Davison, and H. J. Herzog, “CO2 capture and storage,” Int. J. Greenh. Gas Control, vol. 40, pp. 378–400, 2015, doi: 10.1016/j.ijggc.2015.05.018.spa
dc.relation.references[137] International Energy Agency - IEA and Energy Technology System Analysis Programme - ETSAP, “Cement Production,” 2010.spa
dc.relation.references[138] M. Boyer, J. Ponssard, M. Boyer, J. P. Economic, M. Boyer, and J. P. Ponssard, “Economic analysis of the European cement industry To cite this version : HAL Id : hal-00915646 European cement industry,” 2013.spa
dc.relation.references[139] G. J. Petley, “A method for estimating the capital cost of chemical process plants : fuzzy matching,” Loughborough University, 1997.spa
dc.relation.references[140] J. H. Taylor, “The ‘process step scoring’ method for making quick capital estimates,” Eng. Process Econ., vol. 2, no. 4, pp. 259–267, 1977, doi: 10.1016/0377-841X(77)90004-3.spa
dc.relation.references[141] K. D. Peters, M S;Tmmerhaus, Plant design and Economics for Chemical Engineers Principles, Practice and Economics of Plant and Process Design, Fourth Edi. EE.UU: McGraw Hill, 1991.spa
dc.relation.references[142] G. Towler and R. Sinnott, Chemical Engineering Design. Principles, practice and economics of plant and process design. Elsevier, 2008.spa
dc.relation.references[143] G. D. Ulrich and P. T. Vasudevan, “How to Estimate Utility Costs for a number of utilities,” no. April, pp. 66–69, 2006.spa
dc.relation.references[144] Ecoinvent Association, “The ecoinvent Database,” Ecoinvent Centre, 2013. .spa
dc.relation.references[145] E. Moreno Ruiz et al., “Documentation of changes implemented in the ecoinvent database v3.5 (2018.08.23),” Ecoinvent V3, vol. 4, pp. 1–97, 2017.spa
dc.relation.references[146] M. Finkbeiner, Special Types of Life Cycle Assessment. Berlin: Springer, Dordrecht, 2016.spa
dc.relation.references[147] M. Z. Hauschild and M. A. J. Huijbregts, LCA Compendium – The Complete World of Life Cycle Assessment. Life cycle impact assessment, vol. 2, no. 2. Springer, 2015.spa
dc.relation.references[148] Y. Cuéllar, R. Buitrago-Tello, and L. C. Belalcazar-Ceron, “Life Cycle Emissions from a Bus Rapid Transit System and Comparison with other modes of Passenger Transportation,” Ct&F-Ciencia Tecnol. Y Futur., vol. 6, no. 3, pp. 123–134, 2016, doi: 10.29047/01225383.13.spa
dc.relation.references[149] Á. Cadena et al., “Informe 5 – Informe Final: Fichas de las medidas,” 2016. [Online]. Available: https://www.minambiente.gov.co.spa
dc.relation.references[150] UPME, “Informe Mensual de Variables de Generación y del Mercado Eléctrico Colombiano - Diciembre de 2016,” Subdirección Energía Eléctrica - Grup. Generación, no. 69, p. 15, 2016, [Online]. Available: http://www.siel.gov.co/portals/0/generacion/2016/Segui_variables_dic_2016.pdf.spa
dc.relation.references[151] B. Metz, O. Davidson, H. C. De Coninck, M. Loss, and L. A. Meyer, “IPCC, 2005: IPCC Special Report on Carbon Dioxide Capture and Storage,” Cambridge, UK. New York, USA., 2005. doi: 10.1016/S0022-3476(75)80125-9.spa
dc.relation.references[152] J. I. Tobón, “Rellenos industriales minerales,” Universidad Nacional de Colombia, 2004.spa
dc.relation.references[153] E. A. Martinez, “REMOCIÓN DE SULFATOS DE DRENAJES ÁCIDOS DE MINERÍA DE CARBÓN PARA PRODUCCIÓN DE YESO SINTÉTICO MEDIANTE EL USO DE UN SUBPRODUCTO INDUSTRIAL,” UNIVERSIDAD NACIONAL DE COLOMBIA – SEDE MEDELLÍN, 2010.spa
dc.relation.references[154] ICONTEC, “NTC 5163 Terminologia relacionada con Cal y Caliza,” Bogotá D.C., 2003.spa
dc.relation.references[155] ICONTEC, “NTC 639. Pinturas. Carbonato de calcio,” Bogotá D.C., 1972.spa
dc.relation.references[156] ASTM International, “ASTM C595/C595M-18 Standard Specification for Blended Hydraulic Cements,” 2017. doi: 10.1520/C0595.spa
dc.relation.references[157] M. E. Boesch and S. Hellweg, “Identifying improvement potentials in cement production with life cycle assessment,” Environ. Sci. Technol., vol. 44, no. 23, pp. 9143–9149, 2010, doi: 10.1021/es100771k.spa
dc.relation.references[158] T. Oates, Lime and Limestone. 1960.spa
dc.relation.references[159] V. Ol, M. April, E. Abra, and E. Salvador, Economic Geology, vol. 102, no. April. 2007.spa
dc.relation.references[160] USGS, “2005 Minerals Yearbook: Cement,” 2007. [Online]. Available: https://minerals.usgs.gov/minerals/pubs/commodity/cement/cemenmyb05.pdf.spa
dc.relation.references[161] DANE (Colombia), “National production volume of gray cement in Colombia from 2013 to 2017 (in million metric tons),” Statista - The Statistics Portal. p. 1, [Online]. Available: https://www.statista.com/statistics/811140/production-volume-gray-cement-colombia/.spa
dc.relation.references[162] A. Latorre, “La industrial del cemento en Colombia. Determinantes y comportamiento de la demanda.,” Pontificia Universidad Javeriana, 2008.spa
dc.relation.references[163] M. Cárdenas, C. Mejía, and F. García, “La Industria del Cemento en Colombia,” Bogotá D.C., 2012. [Online]. Available: https://www.repository.fedesarrollo.org.co/bitstream/handle/11445/807/WP_2007_No_33.pdf?sequence=1&isAllowed=y.spa
dc.relation.references[164] D. García-Gusano, I. Herrera, D. Garraín, Y. Lechón, and H. Cabal, “Life cycle assessment of the Spanish cement industry: implementation of environmental-friendly solutions,” Clean Technol. Environ. Policy, vol. 17, no. 1, pp. 59–73, 2014, doi: 10.1007/s10098-014-0757-0.spa
dc.relation.references[165] Unidad de Planeación Minero Energética - UPME, “Boletín estadístico de Minas y Energía 2012 – 2016,” 2016. doi: 10.1017/CBO9781107415324.004.spa
dc.relation.references[166] International Energy Agency, “Renewables 2018,” 2018. doi: 10.1787/re_mar-2018-en.spa
dc.relation.references[167] S. Szima and C. C. Cormos, “Improving methanol synthesis from carbon-free H2 and captured CO2: A techno-economic and environmental evaluation,” J. CO2 Util., vol. 24, no. January, pp. 555–563, 2018, doi: 10.1016/j.jcou.2018.02.007.spa
dc.relation.references[168] US Geological Survey, “Cement prices in the United States from 2007 to 2017 (in U.S. dollars per metric ton),” Statista - The Statistics Portal. https://www.statista.com/statistics/219339/us-prices-of-cement/. (accessed Dec. 11, 2018).spa
dc.relation.references[169] U.S. Geological Survey, “Mineral commodity summaries 2018: U.S. Geological Survey,” 2018. doi: https://doi.org/10.3133/70194932.spa
dc.relation.references[170] Agencia Nacional de Minería, “Ficha: Calizas,” 2016. [Online]. Available: https://www.anm.gov.co/sites/default/files/ficha_calizas_es.pdf.spa
dc.relation.references[171] Unidad de Planeación Minero Energética - UPME, “Plan nacional de desarrollo minero con horizonte a 2025: Minería responsable con el territorio,” Bogota, 2017. [Online]. Available: http://www1.upme.gov.co/simco/PlaneacionSector/Documents/PNDM_Dic2017.pdf.spa
dc.relation.references[172] Agencia Nacional de Minería, “Producción de caliza en Colombia, Agosto de 2017,” 2017. [Online]. Available: https://www.minminas.gov.co/analisis-minero.spa
dc.relation.references[173] Unidad de Planeación Minero Energética - UPME, “Boletin estadístico de minas y energía,” Bogota, 2018. [Online]. Available: www.upme.gov.co.spa
dc.relation.references[174] Unidad de Planeación Minero Energética UPME, “Proyección De Precios De Los Energéticos Para Generación Eléctrica 2016-2035,” 2016. [Online]. Available: http://www1.upme.gov.co/Hidrocarburos/publicaciones/Proyeccion_de_los_precios_de_los_combustibles_junio_2016.pdf.spa
dc.relation.references[175] Instituto para la Diversificación y Ahorro de la Energía and ESCAN S.A., “Biomasa: Industria,” 2008. [Online]. Available: https://www.idae.es/uploads/documentos/documentos_10980_Biomasa_industria_A2008_A_402485e2.pdf.spa
dc.relation.references[176] L. Guillermo, V. Álvarez, and D. U. Eafit, “El precio de la electricidad en Colombia y comparación con referentes internacionales,” 2015.spa
dc.relation.references[177] “IRENA_Renewable_Power_Generation_Costs_in_2017_01.” .spa
dc.relation.references[178] D. Leeson, P. Fennell, N. Shah, C. Petit, and N. Mac Dowell, “A Techno-economic Analysis and Systematic Review of Carbon Capture and Storage (CCS) Applied to the Iron and Steel, Cement, Oil Refining and Pulp and Paper Industries,” Energy Procedia, vol. 114, no. November 2016, pp. 6297–6302, 2017, doi: 10.1016/j.egypro.2017.03.1766.spa
dc.relation.references[179] H. Naims, “Economics of carbon dioxide capture and utilization—a supply and demand perspective,” Environ. Sci. Pollut. Res., vol. 23, no. 22, pp. 22226–22241, 2016, doi: 10.1007/s11356-016-6810-2.spa
dc.relation.references[180] S. M. N. Hassan, P. Douglas, and E. Croiset, “Techno-economic study of CO2 capture from an existing cement plant using MEA scrubbing,” Int. J. Green Energy, vol. 4, no. 2, pp. 197–220, 2007, doi: 10.1080/01971520600873418.spa
dc.relation.references[181] A. M. Cormos and C. C. Cormos, “Reducing the carbon footprint of cement industry by post-combustion CO2 capture: Techno-economic and environmental assessment of a CCS project in Romania,” Chem. Eng. Res. Des., vol. 123, pp. 230–239, 2017, doi: 10.1016/j.cherd.2017.05.013.spa
dc.relation.references[182] J. Li, P. Tharakan, D. Macdonald, and X. Liang, “Technological, economic and financial prospects of carbon dioxide capture in the cement industry,” Energy Policy, vol. 61, pp. 1377–1387, 2013, doi: 10.1016/j.enpol.2013.05.082.spa
dc.relation.references[183] Corporación Nacional de Investigación y Fomento Forestal-CONIF, “Estudio de Costos de las Especies Forestales beneficiarias del CIF, de acuerdo con la Resolución 080 de 2013 Informe Final,” 2013.spa
dc.relation.references[184] IEA, “Electricity Information 2018 overview,” Int. Energy Agency, 2019, [Online]. Available: https://www.iea.org/statistics/electricity/.spa
dc.relation.references[185] L. Ji et al., “Insights into Carbonation Kinetics of Fly Ash from Victorian Lignite for CO2 Sequestration,” Energy and Fuels, vol. 32, no. 4, pp. 4569–4578, 2018, doi: 10.1021/acs.energyfuels.7b03137.spa
dc.relation.references[186] M. I. Yakub, S. Mohamed, and S. U. Danladi, “Technical and Economic Considerations of Post-Combustion Carbon Capture in a Coal Fired Power Plant,” Int. J. Adv. Eng. Technol., vol. 7, no. 5, pp. 1549–1581, 2014.spa
dc.relation.references[187] IPCC, IPCC Special Report on Carbon dioxide Capture and Storage. Canada: Intergovernmental Panel on Climate Change, 2005.spa
dc.relation.references[188] A. Zimmerman et al., “Techno-Economic Assessment & Life-Cycle Assessment Guidelines for CO2 Utilization,” 2018, doi: 10.3998/2027.42/145436.spa
dc.relation.references[189] M. Voldsund et al., “Comparison of technologies for CO2 capture from cement production—Part 1: Technical evaluation,” Energies, vol. 12, no. 3, 2019, doi: 10.3390/en12030559.spa
dc.relation.references[190] S. O. Gardarsdottir et al., “Comparison of technologies for CO2 capture from cement production—Part 2: Cost analysis,” Energies, vol. 12, no. 3, 2019, doi: 10.3390/en12030542.spa
dc.relation.references[191] J. H. Leie, J. H. Lee, I. K. Park, and C. H. Lee, “Techno-economic and environmental evaluation of CO2 mineralization technology based on bench-scale experiments,” J. CO2 Util., vol. 26, no. June, pp. 522–536, 2018, doi: 10.1016/j.jcou.2018.06.007.spa
dc.relation.references[192] Y. Jeong, C. W. Hargis, S. Chun, and J. Moon, “Effect of calcium carbonate fineness on calcium sulfoaluminate-belite cement,” Materials (Basel)., vol. 10, no. 8, pp. 6–10, 2017, doi: 10.3390/ma10080900.spa
dc.relation.references[193] M. Baghriche, S. Achour, and O. Baghriche, “Combined effect of cement kiln dust and calcined dolomite raw on the properties of performance magnesium phosphate cement,” Case Stud. Constr. Mater., vol. 13, 2020, doi: 10.1016/j.cscm.2020.e00386.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalCarbon Capture and Utilizationeng
dc.subject.proposalCambio climáticospa
dc.subject.proposalCaptura y utilización de dióxido de carbonospa
dc.subject.proposalcarbonatación mineralspa
dc.subject.proposalHuella de carbonospa
dc.subject.proposalCarbon footprinteng
dc.subject.proposalIndustrial wasteeng
dc.subject.proposalMineral carbonationeng
dc.subject.proposalClimate changeeng
dc.titleCO2 Capture by mineral carbonation to obtain a usable material of industrial wasteeng
dc.title.translatedCaptura de CO2 por carbonatación mineral para la obtención de un material aprovechable a partir de residuos industrialesspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameColcienciasspa
oaire.fundernameDAADspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032392675.2021.pdf
Tamaño:
5.59 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: