En 5 día(s), 6 hora(s) y 57 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Obtención y caracterización de películas nanoestructuradas de austenita expandida depositadas sobre acero inoxidable empleando la técnica de pulverización catódica magnetrón cc en fase reactiva

dc.contributor.advisorGarzón Ospina, Carlos Mariospa
dc.contributor.authorVergara Lozano, Giovanny Andrésspa
dc.contributor.researchgroupMicroscopía eléctrónicaspa
dc.date.accessioned2020-07-02T20:32:20Zspa
dc.date.available2020-07-02T20:32:20Zspa
dc.date.issued2019spa
dc.description.abstractPor medio de pulverización catódica en atmósfera reactiva se depositaron películas nanoestructuradas, cristalinas y sin nitruros de cromo, sobre sustratos de acero utilizando un blanco del acero austenítico UNS S31603. Estas presentaron estructura ferrítica, austenítica, dúplex (ferrita + austenita) o nitruro MN (M: metal), dependiendo de los parámetros de operación del reactor y del flujo de N2. La concentración de nitrógeno varió desde cero (Ar 1,2 sccm) hasta cerca de 50 %-at (Ar 1,2 sccm + N2 11,2 sccm). La dureza de las películas estuvo entre 8 – 13 GPa, mientras la dureza del blanco fue 2 – 3 GPa. El carácter dúctil – frágil de las películas varió, desde ductilidad muy elevada hasta comportamiento frágil ante cargas de indentación. De forma similar, se obtuvieron películas con elevada adherencia y baja cohesión al sustrato. Este trabajo propone un análisis para explicar la dependencia entre los parámetros de operación del reactor, la estructura, las propiedades mecánicas y las adherencias observadas.spa
dc.description.abstractStainless Steel (SS) crystalline films, with no chromium nitride formation, were deposited on SS substrates by reactive sputtering, using a UNS S31603 target. Films obtained showed different structures, namely ferrite, austenite, duplex (ferrite + austenite) and MN nitride, according to both operational reactor parameters and N2 flow rate. Nitrogen uptake in film varied between N-lean films (Ar 1,2 sccm) up to near 50 %-at N (Ar 1,2 sccm + N2 11,2 sccm). Films hardness varied 8-13 GPa, while target hardness was around 2 – 3 GPa. Film ductile vs fragile character varied from very high ductile films, up to films with fragile performance films under contact indentation loads. In a similar manner, film-substrate adherence varied from extremely high up to films with cohesive failure, in both micro-indentation and scratch test. In this research, a depth analysis of sputtering parameters, film structure, and film tribomechanical performance is presented.spa
dc.description.degreelevelMaestríaspa
dc.format.extent137spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77731
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesF. I. Alresheedi y J. E. Krzanowski, “The Effects of Ti Additions and Deposition Parameters on the Structural and Mechanical Properties of Stainless Steel-Nitride Thin Films”, Coatings, vol. 9, núm. 5, p. 329, 2019.spa
dc.relation.referencesF. I. Alresheedi y J. E. Krzanowski, “Structure and morphology of stainless steel coatings sputter-deposited in a nitrogen/argon atmosphere”, Surf. Coatings Technol., vol. 314, pp. 105–112, 2017.spa
dc.relation.referencesN. Merakeb, A. Messai, y A. I. Ayesh, “Investigation of phase transformation for ferrite-austenite structure in stainless steel thin films”, Thin Solid Films, vol. 606, pp. 120–126, may 2016.spa
dc.relation.referencesC. Pan, L. Liu, Y. Li, y F. Wang, “Pitting corrosion of 304ss nanocrystalline thin film”, Corros. Sci., vol. 73, pp. 32–43, ago. 2013.spa
dc.relation.referencesT. Li, L. Liu, B. Zhang, Y. Li, y F. Wang, “Crevice corrosion behavior of nanocrystalline stainless steel fabricated by magnetron sputtering in chloride containing solution”, J. Electrochem. Soc., vol. 162, núm. 7, pp. C354–C361, abr. 2015.spa
dc.relation.referencesK. L. Dahm y P. A. Dearnley, “On the nature, properties and wear response of s-phase (nitrogen-alloyed stainless steel) coatings on AISI 316L”, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 214, núm. 4, pp. 181–198, 2000.spa
dc.relation.referencesP. A. Dearnley y G. Aldrich-Smith, “Corrosion-wear mechanisms of hard coated austenitic 316L stainless steels”, Wear, vol. 256, núm. 5, pp. 491–499, 2004.spa
dc.relation.referencesG. Aldrich-Smith, D. G. Teer, y P. A. Dearnley, “Corrosion-wear response of sputtered CrN and S-phase coated austenitic stainless steel”, Surf. Coatings Technol., vol. 116–119, pp. 1161–1165, sep. 1999.spa
dc.relation.referencesT. Li, L. Liu, B. Zhang, Y. Li, y F. Wang, “An investigation on the continuous and uniform thin membrane passive film formed on sputtered nanocrystalline stainless steel”, Corros. Sci., vol. 104, pp. 71–83, mar. 2016.spa
dc.relation.referencesS. D. Dahlgren, “Equilibrium phases in 304L stainless steel obtained by sputter-deposition”, Metall. Trans., vol. 1, núm. 11, pp. 3095–3099, 1970.spa
dc.relation.referencesM. Varasteh, K. Parvin, C. Boekema, y K. Porush, “Mössbauer spectroscopy and magnetic properties of copper-304 stainless steel multilayer films”, J. Appl. Phys., vol. 87, núm. 9, pp. 6842–6844, may 2000.spa
dc.relation.referencesJ. P. Eymery, N. Merakeb, P. Goudeau, A. Fnidiki, y B. Bouzabata, “A Mössbauer comparative study of the local environment in metastable 304 stainless steel films depending on the preparation mode”, J. Magn. Magn. Mater., vol. 256, núm. 1–3, pp. 227–236, ene. 2003.spa
dc.relation.referencesX. Zhang, A. Misra, H. Wang, A. L. Lima, M. F. Hundley, y R. G. Hoagland, “Effects of deposition parameters on residual stresses, hardness and electrical resistivity of nanoscale twinned 330 stainless steel thin films”, J. Appl. Phys., vol. 97, núm. 9, p. 094302, may 2005.spa
dc.relation.referencesE. Carretero, R. Alonso, y C. Pelayo, “Optical and electrical properties of stainless steel oxynitride thin films deposited in an in-line sputtering system”, Appl. Surf. Sci., vol. 379, pp. 249–258, ago. 2016.spa
dc.relation.referencesK. H. Lo, C. H. Shek, y J. K. L. Lai, “Recent developments in stainless steels”, Mater. Sci. Eng. R Reports, vol. 65, núm. 4–6, pp. 39–104, may 2009.spa
dc.relation.referencesC. G. Figueiredo Pina, K. L. Dahm, J. Fisher, y P. A. Dearnley, “The damage tolerance of S-phase coated biomedical grade stainless steel”, Wear, vol. 263, núm. 7-12 SPEC. ISS., pp. 1081–1086, sep. 2007.spa
dc.relation.referencesR. C. Juang, Y. C. Yeh, B. H. Chang, W. C. Chen, y T. W. Chung, “Preparation of solar selective absorbing coatings by magnetron sputtering from a single stainless steel target”, Thin Solid Films, vol. 518, núm. 19, pp. 5501–5504, jul. 2010.spa
dc.relation.referencesX. Ma, Q. Wei, N. Liu, y X. Wang, “Preparation and optical properties of Cu/SS-TiON(HMVF)/SS-TiON(LMVF)/Al2O3 novel solar selective absorbing film”, Mater. Sci. Eng. Powder Metall., vol. 22, núm. 1, pp. 86–93, 2017.spa
dc.relation.referencesX. H. Gao, Z. M. Guo, Q. F. Geng, P. J. Ma, y G. Liu, “Microstructure and Optical Properties of SS/Mo/Al2O3 Spectrally Selective Solar Absorber Coating”, J. Mater. Eng. Perform., vol. 26, núm. 1, pp. 161–167, ene. 2017.spa
dc.relation.referencesS. Fryska y J. Baranowska, “Microstructure of reactive magnetron sputtered S-phase coatings with a diffusion sub-layer”, Vacuum, vol. 142, pp. 72–80, ago. 2017.spa
dc.relation.referencesT. Suszko et al., “Amorphous FeCrNi/a-C:H coatings with self-organizednanotubular structure”, Scr. Mater., vol. 136, pp. 24–28, jul. 2017.spa
dc.relation.referencesU. M. R. Seelam y C. Suryanarayana, “Metallography of Sputter-Deposited SS304+Al Coatings”, Metallogr. Microstruct. Anal., vol. 2, núm. 5, pp. 287–298, 2013.spa
dc.relation.referencesJ. Baranowska, S. Fryska, y T. Suszko, “The influence of temperature and nitrogen pressure on S-phase coatings deposition by reactive magnetron sputtering”, Vacuum, vol. 90, núm. 1, pp. 160–164, 2013.spa
dc.relation.referencesAtlas Steels, The Atlas Steels Technical Handbook of Stainless Steels, núm. August. Atlas Steels Technical Department, 2013.spa
dc.relation.referencesM. Metikoš-Huković, R. Babić, Z. Grubač, Ž. Petrović, y N. Lajçi, “High corrosion resistance of austenitic stainless steel alloyed with nitrogen in an acid solution”, Corros. Sci., vol. 53, núm. 6, pp. 2176–2183, jun. 2011.spa
dc.relation.referencesH. Li, Z. Jiang, Y. Yang, Y. Cao, y Z. Zhang, “Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels”, Int. J. Miner. Metall. Mater., vol. 16, núm. 5, pp. 517–524, oct. 2009.spa
dc.relation.referencesY. X. Qiao, Y. G. Zheng, W. Ke, y P. C. Okafor, “Electrochemical behaviour of high nitrogen stainless steel in acidic solutions”, Corros. Sci., vol. 51, núm. 5, pp. 979–986, may 2009.spa
dc.relation.referencesH. Wang y J. A. Turner, “Anodic behavior of high nitrogen-bearing steels in PEMFC environments”, J. Power Sources, vol. 180, núm. 2, pp. 791–796, jun. 2008.spa
dc.relation.referencesD. López, N. Alonso Falleiros, y A. Paulo Tschiptschin, “Effect of nitrogen on the corrosion-erosion synergism in an austenitic stainless steel”, Tribol. Int., vol. 44, núm. 5, pp. 610–616, 2011.spa
dc.relation.referencesA. P. Tschiptschin, C. M. Garzón, y D. M. Lopez, “Chapter 15 Scratch resistance of high nitrogen austenitic stainless steels”, en Tribology and Interface Engineering Series, vol. 51, núm. 3, Elsevier, 2006, pp. 280–293.spa
dc.relation.referencesNaveena, V. D. Vijayanand, V. Ganesan, K. Laha, y M. D. Mathew, “Evaluation of the effect of nitrogen on creep properties of 316LN stainless steel from impression creep tests”, Mater. Sci. Eng. A, vol. 552, pp. 112–118, 2012.spa
dc.relation.referencesM. Sumita, T. Hanawa, y S. H. Teoh, “Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials - Review”, Mater. Sci. Eng. C, vol. 24, núm. 6-8 SPEC. ISS., pp. 753–760, 2004.spa
dc.relation.referencesZ. Diao, H. Luo, R. Wang, y J. Xiang, “Constitutive Analysis of Stress-Strain Curves of a High-Nitrogen Austenitic Stainless Steel”, J. Iron Steel Res. Int., vol. 14, núm. 5 SUPPL. 1, pp. 335–338, sep. 2007.spa
dc.relation.referencesM. O. Speidel, “Properties and applications of high nitrogen steels”, en HNS 88 – High Nitrogen Steels, 1989, pp. 92–96.spa
dc.relation.referencesV. G. Gavriliuk y H. Berns, High Nitrogen Steels: Structure, Properties, Manufacture, Applications. Springer-Verlag Berlin Heidelberg, 1999.spa
dc.relation.referencesH. K. Feichtinger y X. Zheng, “Powder metallurgy of high nitrogen steels”, Powder Metall. Int., vol. 22, núm. 6, pp. 7–10, 12, 1990.spa
dc.relation.referencesB. E. Paton, B. I. Medovar, y V. Y. Saenko, “The Place of Electroslag Technology in Production of Super-High-Nitrogen Steels”, Probl. Spetsialvoy Elektrometallurgii, vol. 3, núm. 3, pp. 4–13, 1990.spa
dc.relation.referencesK. U. Mudali y B. Raj, “Historical evolution of HNS alloys”, en High Nitrogen Steels and Stainless Steels: Manufacturing, Properties and Applications, K. U. Mudali y B. Raj, Eds. ASM International, 2004, pp. 1–9.spa
dc.relation.referencesASTM International, “A240/A240M-18 Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications”. ASTM International, West Conshohocken, PA, p. 12, 2018.spa
dc.relation.referencesJ. W. Simmons, “Overview: High-nitrogen alloying of stainless steels”, Mater. Sci. Eng. A, vol. 207, núm. 2, pp. 159–169, mar. 1996.spa
dc.relation.referencesH. Li, Z. Jiang, M. Shen, y X. You, “High Nitrogen Austenitic Stainless Steels Manufactured by Nitrogen Gas Alloying and Adding Nitrided Ferroalloys”, J. Iron Steel Res. Int., vol. 14, núm. 3, pp. 64–69, may 2007.spa
dc.relation.referencesG. Balachandran, “Developments in the Manufacture of High Nitrogen Stainless Steels”, en High Nitrogen Steels and Stainless Steels: Manufacturing, Properties and Applications, K. U. Mudali y B. Raj, Eds. ASM International, 2004, pp. 40–93.spa
dc.relation.referencesD. L. Williamson, J. A. Davis, y P. J. Wilbur, “Effect of austenitic stainless steel composition on low-energy, high-flux, nitrogen ion beam processing”, Surf. Coatings Technol., vol. 103–104, pp. 178–184, 1998.spa
dc.relation.referencesM. R. Ridolfi y O. Tassa, “Formation of nitrogen bubbles during the solidification of 16-18% Cr high nitrogen austenitic stainless steels”, Intermetallics, vol. 11, núm. 11-12 SPEC. ISS, pp. 1335–1338, 2003.spa
dc.relation.referencesA. Toro y A. P. Tschiptschin, “Chemical characterization of a high nitrogen stainless steel by optimized electron probe microanalysis”, Scr. Mater., vol. 63, núm. 8, pp. 803–806, oct. 2010.spa
dc.relation.referencesZ. Yuan, Q. Dai, X. Cheng, K. Chen, y W. Xu, “Impact properties of high-nitrogen austenitic stainless steels”, Mater. Sci. Eng. A, vol. 475, núm. 1–2, pp. 202–206, feb. 2008.spa
dc.relation.referencesF. Shi, L. J. Wang, W. F. Cui, y C. M. Liu, “Precipitation behavior of M2N in a high-nitrogen austenitic stainless steel during isothermal aging”, Acta Metall. Sin. (English Lett., vol. 20, núm. 2, pp. 95–101, abr. 2007.spa
dc.relation.referencesZ. Z. Yuan, Q. X. Dai, X. N. Cheng, y K. M. Chen, “Microstructural thermostability of high nitrogen austenitic stainless steel”, Mater. Charact., vol. 58, núm. 1, pp. 87–91, ene. 2007.spa
dc.relation.referencesF. Shi, L. Wang, W. Cui, y C. Liu, “Precipitation Kinetics of Cr2N in High Nitrogen Austenitic Stainless Steel”, J. Iron Steel Res. Int., vol. 15, núm. 6, pp. 72–77, nov. 2008.spa
dc.relation.referencesV. G. Gavriljuk y H. Berns, “Structure”, en High Nitrogen Steels: Structure, Properties, Manufacture, Applications, Springer, Berlin, Heidelberg, 1999, pp. 1–75.spa
dc.relation.referencesB. D. Shanina, V. G. Gavriljuk, H. Berns, y F. Schmalt, “Concept of a new high-strength austenitic stainless steel”, Steel Res., vol. 73, núm. 3, pp. 105–113, 2002.spa
dc.relation.referencesT. H. Lee, C. S. Oh, S. J. Kim, y S. Takaki, “Deformation twinning in high-nitrogen austenitic stainless steel”, Acta Mater., vol. 55, núm. 11, pp. 3649–3662, jun. 2007.spa
dc.relation.referencesZ. Z. Yuan, Q. X. Dai, X. N. Cheng, K. M. Chen, L. Pan, y a. D. Wang, “In situ SEM tensile test of high-nitrogen austenitic stainless steels”, Mater. Charact., vol. 56, núm. 1, pp. 79–83, ene. 2006.spa
dc.relation.referencesV. G. Gavriljuk y H. Berns, “Key properties”, en High Nitrogen Steels: Structure, Properties, Manufacture, Applications, Springer, Berlin, Heidelberg, 1999, pp. 135–201.spa
dc.relation.referencesH. J. C. Speidel y M. O. Speidel, “Nickel and Chromium High Nitrogen Alloys”, en HNS 2003 - High nitrogen steels, M. Speidel, C. Kowanda, y M. Diener, Eds. Zürich: Vdf Hochschulverlag an der ETH Zürich, 2003, pp. 101–112.spa
dc.relation.referencesH. Li, Z. Jiang, Z. Zhang, B. Xu, y F. Liu, “Mechanical Properties of Nickel Free High Nitrogen Austenitic Stainless Steels”, J. Iron Steel Res. Int., vol. 14, núm. 5 SUPPL. 1, pp. 330–334, sep. 2007.spa
dc.relation.referencesW. Wang, S. Wang, K. Yang, y Y. Shan, “Temperature dependence of tensile behavior of a high nitrogen Fe-Cr-Mn-Mo stainless steel”, Mater. Des., vol. 30, núm. 5, pp. 1822–1824, may 2009.spa
dc.relation.referencesW. Hume-Rothery, “The Interstitial Elements and Boron”, en The Structures of Alloys of Iron: an Elementary Introduction, 1st Editio., H. M. Finniston, D. W. Hopkins, y W. S. Owen, Eds. Pergamon, 1966, pp. 135–166.spa
dc.relation.referencesJ. Feugeas et al., “Estabilidad y microdureza de la austenita expandida en acero DIN WNr 1.4882 nitrurado iónicamente”, en Libro de resúmenes, Jornadas S., Bariloche: Centro Atómico, 2003, pp. 589–591.spa
dc.relation.referencesC. Blawert et al., “Nitrogen and carbon expanded austenite produced by PI3”, Surf. Coatings Technol., vol. 136, núm. 1–3, pp. 181–187, 2001.spa
dc.relation.referencesH. O. Pierson, “Interstitial Carbides, Structure and Composition”, en Handbook of Refractory Carbides and Nitrides, William Andrew Publishing, 1996, pp. 17–54.spa
dc.relation.referencesH. O. Pierson, “Interstitial Nitrides: Structure and Composition”, en Handbook of Refractory Carbides and Nitrides, William Andrew Publishing, 1996, pp. 163–180.spa
dc.relation.referencesJ. G. Kim et al., “Superior Strength and Multiple Strengthening Mechanisms in Nanocrystalline TWIP Steel”, Sci. Rep., vol. 8, núm. 1, p. 11200, dic. 2018.spa
dc.relation.referencesH. O. Pierson, “Processing of Refractory Carbides and Nitrides (Powder, Bulk, and Fibers)”, en Handbook of Refractory Carbides and Nitrides, William Andrew Publishing, 1996, pp. 248–275.spa
dc.relation.referencesR. R. Caetano, A. R. F. Jr, y C. E. Pinedo, “Formation of Expanded Austenite on Plasma Nitriding a Austenitic Stainless Steel Aisi 316 Grade Astm F138”, vol. 63, núm. 1, pp. 143–146, 2010.spa
dc.relation.referencesY. Ueda, N. Kanayama, K. Ichii, T. Oishi, y H. Miyake, “Effect of nitrogen on the plasma (ion)-carburized layer of high nitrogen austenitic stainless steel”, Surf. Coatings Technol., vol. 200, núm. 1–4, pp. 521–524, oct. 2005.spa
dc.relation.referencesK. Ichii, K. Fujimura, y T. Takase, “Structure of the Ion-Nitrided Layer of 18–8 Stainless Steel”, Technol. Reports Kansai Univ., vol. 27, pp. 135–144, 1986.spa
dc.relation.referencesM. . Fewell, D. R. . Mitchell, J. . Priest, K. . Short, y G. . Collins, “The nature of expanded austenite”, Surf. Coatings Technol., vol. 131, núm. 1–3, pp. 300–306, sep. 2000.spa
dc.relation.referencesS. Inoue, T. Saeki, H. Uchida, K. Koterazawa, y M. Iwasa, “Effects of ion flux on the properties of dc magnetron-sputtered stainless steel films”, Vacuum, vol. 66, núm. 3–4, pp. 257–261, ago. 2002.spa
dc.relation.referencesX. Zhang, A. Misra, R. K. Schulze, C. J. Wetteland, H. Wang, y M. Nastasi, “Critical factors that determine face-centered cubic to body-centered cubic phase transformation in sputter-deposited austenitic stainless steel films”, J. Mater. Res., vol. 19, núm. 6, pp. 1696–1702, jun. 2004.spa
dc.relation.referencesG. Terwagne, H. Hody, y J. Colaux, “Structural and quantitative analysis of stainless steel coatings deposited by DC-magnetron sputtering in a reactive atmosphere”, Surf. Coatings Technol., vol. 174–175, núm. 03, pp. 383–388, sep. 2003.spa
dc.relation.referencesS. R. Kappaganthu y Y. Sun, “Influence of sputter deposition conditions on phase evolution in nitrogen-doped stainless steel films”, Surf. Coatings Technol., vol. 198, núm. 1-3 SPEC. ISS., pp. 59–63, ago. 2005.spa
dc.relation.referencesA. Bourjot, M. Foos, y C. Frantz, “Basic properties of sputtered 310 stainless steel-nitrogen coatings”, Surf. Coatings Technol., vol. 43–44, núm. PART 1, pp. 533–542, dic. 1990.spa
dc.relation.referencesJ. von Stebut, A. Darbeïda, A. Saker, A. Billard, y R. Rezakhanlou, “Optimization of the contact mechanical strength of magnetron-sputtered nitrogen-doped AISI 316L physically vapour deposited coatings”, Surf. Coatings Technol., vol. 57, núm. 1, pp. 31–42, abr. 1993.spa
dc.relation.referencesK. L. Dahm, A. J. Betts, y P. A. Dearnley, “Chemical structure and corrosion behaviour of S phase coatings”, Surf. Eng., vol. 26, núm. 4, pp. 271–276, may 2010.spa
dc.relation.referencesY. Sun y S. R. Kappaganthu, “Effect of nitrogen doping on sliding wear behaviour of stainless steel coatings”, Tribol. Lett., vol. 17, núm. 4, pp. 845–850, nov. 2004.spa
dc.relation.referencesS. R. Kappaganthu y Y. Sun, “Formation of an MN-type cubic nitride phase in reactively sputtered stainless steel-nitrogen films”, J. Cryst. Growth, vol. 267, núm. 1–2, pp. 385–393, 2004.spa
dc.relation.referencesR. Rezakhanlou, A. Billard, M. Foos, C. Frantz, y J. Von Stebut, “Influence of the intrinsic coating properties on the contact mechanical strength of perfectly adhering carbon-doped AISI 310 PVD films”, Surf. Coatings Technol., vol. 43–44, núm. PART 2, pp. 907–919, dic. 1990.spa
dc.relation.referencesX. Zhang et al., “Nanoscale-twirming-induced strengthening in austenitic stainless steel thin films”, Appl. Phys. Lett., vol. 84, núm. 7, pp. 1096–1098, feb. 2004.spa
dc.relation.referencesM. Talea, B. Boubeker, F. Cleymand, C. Coupeau, J. Grilhe, y P. Goudeau, “Atomic force microscopy observations of debonding in 304 L stainless steel thin films”, Mater. Lett., vol. 41, núm. 4, pp. 181–185, nov. 1999.spa
dc.relation.referencesJ. Colin, F. Cleymand, C. Coupeau, y J. Grilhe, “Worm-like delamination patterns of thin stainless steel films on polycarbonate substrates”, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop., vol. 80, núm. 11, pp. 2559–2565, nov. 2000.spa
dc.relation.referencesJ. P. Eymery y B. Boubeker, “Adhesion and debonding of bcc 304 L steel films”, Mater. Lett., vol. 19, núm. 3–4, pp. 137–142, abr. 1994.spa
dc.relation.referencesM. Ohring, “Thin-Film Evaporation Processes”, en Materials Science of Thin Films: deposition and structure, Academic Press, 2002, pp. 95–144.spa
dc.relation.referencesJ. M. Albella Martín, “Depósito mediante pulverización catódica ('Sputtering’)”, en Láminas delgadas y recubrimientos. Preparación, propiedades y aplicaciones, J. M. Albella Martín, Ed. Madrid: Consejo Superior de Investigaciones Científicas, 2003, pp. 147–168.spa
dc.relation.referencesM. Ohring, “Discharges, Plasmas, and Ion–Surface Interactions”, en Materials Science of Thin Films: deposition and structure, Academic Press, 2002, pp. 145–202.spa
dc.relation.referencesD. M. Mattox, “Physical Sputtering and Sputter Deposition (Sputtering)”, en Handbook of Physical Vapor Deposition (PVD) Processing, William Andrew Publishing, 2010, pp. 237–286.spa
dc.relation.referencesM. Ohring, “Plasma and Ion Beam Processing of Thin Films”, en Materials Science of Thin Films: deposition and structure, Academic Press, 2002, pp. 203–275.spa
dc.relation.referencesJ. A. Thornton, “High Rate Thick Film Growth”, Annu. Rev. Mater. Sci., vol. 7, núm. 1, pp. 239–260, ago. 1977.spa
dc.relation.referencesM. Ohring, “Film Structure”, en Materials Science of Thin Films: deposition and structure, Academic Press, 2002, pp. 495–558.spa
dc.relation.referencesJ. M. Albella Martín, “Mecanismos de nucleación y crecimiento de capas delgadas”, en Láminas delgadas y recubrimientos. Preparación, propiedades y aplicaciones, J. M. Albella Martín, Ed. Madrid: Consejo Superior de Investigaciones Científicas, 2003, pp. 101–124.spa
dc.relation.referencesJ. S. Scholtz, J. Stryhalski, J. C. Sagás, A. A. C. Recco, M. Mezaroba, y L. C. Fontana, “Pulsed bias effect on roughness of TiO2:Nb films deposited by grid assisted magnetron sputtering”, Appl. Adhes. Sci., vol. 3, núm. 1, pp. 1–6, 2015.spa
dc.relation.referencesM. Ohring, The Materials Science of Thin Films: deposition and structure, Second. San Diego, CA: Academic Press, 2002.spa
dc.relation.referencesJ. M. Albella Martín, Ed., Láminas delgadas y recubrimientos. Preparación, propiedades y aplicaciones. Madrid: Consejo Superior de Investigaciones Científicas, 2003.spa
dc.relation.referencesJ. Goldstein et al., Scanning electron microscopy and x-ray microanalysis, 3rd ed. New York: Kluwer Academic/Plenum Publishers, 2003.spa
dc.relation.referencesA. C. Fischer-Cripps, “Contact Mechanics”, en Nanoindentation, Springer, New York, NY, 2011, pp. 1–19.spa
dc.relation.referencesY. Kim, E. D. Case, y S. Gaynor, “The effect of surface-limited microcracks on the effective Young’s modulus of ceramics - Part III Experiments”, J. Mater. Sci., vol. 28, núm. 7, pp. 1910–1918, 1993.spa
dc.relation.referencesF. Yang y J. C. M. Li, Micro and nano mechanical testing of materials and devices. New York: Springer, 2008.spa
dc.relation.referencesN. Vidakis, A. Antoniadis, y N. Bilalis, “The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds”, J. Mater. Process. Technol., vol. 143–144, núm. 1, pp. 481–485, dic. 2003.spa
dc.relation.referencesVDI - Fachbereich Produktionstechnik und Fertigungsverfahren, “VDI 3198 Coating (CVD, PVD) of cold forging tools”. Berlin, p. 8, 1992.spa
dc.relation.referencesASTM International, “C1624-05(2015) Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing”. ASTM International, West Conshohocken, PA, p. 29, 2015.spa
dc.relation.referencesS. R. Kappaganthu y Y. Sun, “Studies of structure and morphology of sputter-deposited stainless steel-nitrogen films”, Appl. Phys. A Mater. Sci. Process., vol. 81, núm. 4, pp. 737–744, feb. 2005.spa
dc.relation.referencesK. L. Dahm y P. A. Dearnley, “S-phase coatings produced by unbalanced magnetron sputtering”, Proc. 1995 9th Int. Conf. Surf. Modif. Technol., vol. 12, núm. 1, pp. 437–454, 1996.spa
dc.relation.referencesJ. I. Langford y A. J. C. Wilson, “Scherrer after sixty years: A survey and some new results in the determination of crystallite size”, J. Appl. Crystallogr., vol. 11, núm. 2, pp. 102–113, 1978.spa
dc.relation.referencesR. Matsubara, M. Sakai, K. Kudo, N. Yoshimoto, I. Hirosawa, y M. Nakamura, “Crystal order in pentacene thin films grown on SiO 2 and its influence on electronic band structure”, Org. Electron. physics, Mater. Appl., vol. 12, núm. 1, pp. 195–201, ene. 2011.spa
dc.relation.referencesS. Y. Chun, “Bias voltage effect on the properties of TiN films by reactive magnetron sputtering”, J. Korean Phys. Soc., vol. 56, núm. 4, pp. 1134–1139, 2010.spa
dc.relation.referencesA. Bandopadhyay, A. Banerjee, y T. Debroy, “Nitrogen activity determination in plasmas”, Metall. Trans. B, vol. 23, núm. 2, pp. 207–214, 1992.spa
dc.relation.referencesK. L. Chopra, Thin Film Phenomena. New York: McGraw-Hill, 1969.spa
dc.relation.referencesD. Cavaleiro, S. Carvalho, A. Cavaleiro, y F. Fernandes, “TiSiN(Ag) films deposited by HiPIMS working in DOMS mode: Effect of Ag content on structure, mechanical properties and thermal stability”, Appl. Surf. Sci., vol. 478, núm. October 2018, pp. 426–434, 2019.spa
dc.relation.referencesG. P. Zhigal’skii y B. K. Jones, The physical properties of thin metal films. CRC Press/Taylor & Francis Group, 2003.spa
dc.relation.referencesC. Borri, S. Caporali, F. Borgioli, y E. Galvanetto, “Nitrogen Rich Stainless Steel Coatings Obtained by RF Sputtering Process”, 2019, núm. Ciwc, p. 6157.spa
dc.relation.referencesJ. M. Schneider, C. Rebholz, A. A. Voevodin, A. Leyland, y A. Matthews, “Deposition and characterization of nitrogen containing stainless steel coatings prepared by reactive magnetron sputtering”, Vacuum, vol. 47, núm. 9, pp. 1077–1080, sep. 1996.spa
dc.relation.referencesM. J. Godbole, A. J. Pedraza, J. W. Park, y G. Geesey, “The crystal structures of stainless steel films sputter-deposited on austenitic stainless steel substrates”, Scr. Metall. Mater., vol. 28, núm. 10, pp. 1201–1206, may 1993.spa
dc.relation.referencesC. M. Garzón y A. A. C. Recco, “Numerical simulation on phase stability between austenite and ferrite in steel films sputter-deposited from austenitic stainless steel targets”, Surf. Coatings Technol., vol. 353, núm. August, pp. 84–92, 2018.spa
dc.relation.referencesASM Handbook Committee, Properties and Selection: Irons, Steels, and High-Performance Alloys. ASM International, 1990.spa
dc.relation.referencesM. J. Godbole, A. J. Pedraza, L. F. Allard, y G. Geesey, “Characterization of sputter-deposited 316L stainless steel films”, J. Mater. Sci., vol. 27, núm. 20, pp. 5585–5590, oct. 1992.spa
dc.relation.referencesO. H. Kwon, S. H. Ahn, J. G. Kim, y J. G. Han, “An optimized condition for corrosion protection of type 316L films prepared by unbalanced magnetron sputtering in 3.5% NaCl solution”, J. Mater. Sci. Lett., vol. 21, núm. 1, pp. 41–44, 2002.spa
dc.relation.referencesM. P. Fewell y J. M. Priest, “High-order diffractometry of expanded austenite using synchrotron radiation”, Surf. Coatings Technol., vol. 202, núm. 9, pp. 1802–1815, 2008.spa
dc.relation.referencesB. Brink, K. Ståhl, T. L. Christiansen, y M. A. J. Somers, “Thermal expansion and phase transformations of nitrogen-expanded austenite studied with in situ synchrotron X-ray diffraction”, J. Appl. Crystallogr., vol. 47, núm. 3, pp. 819–826, 2014.spa
dc.relation.referencesD. D. Kumar, N. Kumar, S. Kalaiselvam, R. Thangappan, y R. Jayavel, “Film thickness effect and substrate dependent tribo-mechanical characteristics of titanium nitride films”, Surfaces and Interfaces, vol. 12, núm. May, pp. 78–85, 2018.spa
dc.relation.referencesA. Ruden-Muñoz, E. Restrepo-Parra, y F. Sequeda, “Recubrimientos de CrN depositados por pulverización catódica con magnetrón: Propiedades mecánicas y tribológicas”, DYNA, vol. 82, núm. 191, pp. 147–155, 2015.spa
dc.relation.referencesD. G. Morris, “Strengthening mechanisms in nanocrystalline metals”, en Nanostructured Metals and Alloys: Processing, Microstructure, Mechanical Properties and Applications, Woodhead Publishing, 2011, pp. 299–328.spa
dc.relation.referencesJ. M. Albella Martín, “Aplicaciones mecánicas de los recubrimientos”, en Láminas delgadas y recubrimientos. Preparación, propiedades y aplicaciones, J. M. Albella Martín, Ed. Madrid: Consejo Superior de Investigaciones Científicas, 2003, pp. 543–569.spa
dc.relation.referencesM. Magnuson et al., “Bonding mechanism in the nitrides Ti2 AlN and TiN: An experimental and theoretical investigation”, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 76, núm. 19, p. 195127, nov. 2007.spa
dc.relation.referencesS. Yu, Q. Zeng, A. R. Oganov, G. Frapper, y L. Zhang, “Phase stability, chemical bonding and mechanical properties of titanium nitrides: A first-principles study”, Phys. Chem. Chem. Phys., vol. 17, núm. 17, pp. 11763–11769, 2015.spa
dc.relation.referencesH. Y. Chen, C. J. Tsai, y F. H. Lu, “The Young’s modulus of chromium nitride films”, Surf. Coatings Technol., vol. 184, núm. 1, pp. 69–73, jun. 2004.spa
dc.relation.referencesJ. M. Lackner, W. Waldhauser, L. Major, y M. Kot, “Tribology and micromechanics of chromium nitride based multilayer coatings on soft and hard substrates”, Coatings, vol. 4, núm. 1, pp. 121–138, feb. 2014.spa
dc.relation.referencesX. Chen, Y. Xi, J. Meng, X. Pang, y H. Yang, “Effects of substrate bias voltage on mechanical properties and tribological behaviors of RF sputtered multilayer TiN/CrAlN films”, J. Alloys Compd., vol. 665, pp. 210–217, 2016.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería química::669 - Metalurgiaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposaladherenceeng
dc.subject.proposaladherenciaspa
dc.subject.proposalMN nitrideeng
dc.subject.proposalensayo de rayadospa
dc.subject.proposalnitrógeno en acerosspa
dc.subject.proposalNano hardnesseng
dc.subject.proposalnitruro MNspa
dc.subject.proposalnitrogen in steelseng
dc.subject.proposalscratch testeng
dc.subject.proposalpelícula de acero inoxidablespa
dc.subject.proposalpulverización catódica reactivaspa
dc.subject.proposalstainless steel filmeng
dc.subject.proposalreactive sputteringeng
dc.subject.proposalnanodurezaspa
dc.titleObtención y caracterización de películas nanoestructuradas de austenita expandida depositadas sobre acero inoxidable empleando la técnica de pulverización catódica magnetrón cc en fase reactivaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013584612.2020.pdf
Tamaño:
3.97 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: