Biomechanical behavior of the postsurgical deformed lumbo-pelvic spine

dc.contributor.advisorRamírez Patiño, Juan Fernando
dc.contributor.advisorRuiz Wills, Carlos Eduardo
dc.contributor.authorVallejo Pareja, Samuel
dc.contributor.cvlacVallejo Pareja, Samuelspa
dc.contributor.googlescholarVallejo Pareja, Samuelspa
dc.contributor.orcidVallejo Pareja, Samuel [0000-0002-5324-9251]spa
dc.contributor.researchgroupGrupo de Investigación en Biomecánica e Ingeniería de Rehabilitación (Gibir)spa
dc.date.accessioned2024-01-11T20:10:28Z
dc.date.available2024-01-11T20:10:28Z
dc.date.issued2023
dc.descriptionilustraciones
dc.description.abstractBased on literature, one of the common lumbar spine disorders reported is the isthmic high-grade spondylolisthesis (HGS), and there is no consensus on its surgical treatment selection. Thus, the present thesis aims to evaluate from an engineering point of view the influence of the fixation configuration for deformed or fractured spine surgery on the stabilization, biomechanical behavior, and stress state of the post-surgical lumbo-pelvic spine, providing a useful source of information for surgical planning and decision making. To evaluate the pathology as HGS (as literature-based selected case of study of deformed spine), a patient specific lumbosacral spine model was obtained with Scalismo and CAD modeling and used as a base to recreate a HGS condition. The diagnosis was made based on clinical literature and consisted of a lumbosacral spine with grade 3 isthmic spondylolisthesis, low dysplasia (L5 rectangular), an unbalanced spine (C7PL in front of FH), and a retroverted pelvis (low SS/high PT, vertical sacrum). Fusion In situ (FIS) with laminotomy and Lumbar interbody fusion (LIF) with reduction and laminotomy techniques were identified as suggested treatments, based on the Mac-Thiong classification scheme and clinical reports. Six variations of each fixation technique, involving adding or removing screws by spine level, were defined as possible instrument configurations, and compared. Based on the case of study and geometrical model, biomechanical Finite element models were developed to evaluate the mechanical response of HGS lumbosacral spine treated with FIS and LIF techniques, along with the proposed configurations. Thirteen models, divided into two groups (FIS and LIF models), were developed as variations of FIS and LIF base models. The spine mesh was built up in Abaqus from the vertebrae, supported by BCPD morphing process. To simulate the mechanical conditions of the surgical procedure in the two groups of FIS and LIF models, Swelling, Reduction/ Displacement, and Fixation standing steps were defined. A comparison between variations by level in the FIS and LIF instrumentation configurations for HGS was developed using FEM. The results obtained can be used to establish which levels are required to fix the system while ensuring the safety of both the biological systems and the instrumental. For model validation, a comparison of FIS and LIF models with experimental, numerical, and clinical outcomes reported in the literature is suggested as an alternative.eng
dc.description.abstractCon base en la literatura, uno de los trastornos comunes de la columna lumbar reportados es la espondilolistesis ístmica de alto grado (HGS), y no existe un consenso sobre su selección de tratamiento quirúrgico. Por lo tanto, la presente tesis tiene como objetivo evaluar, desde una visión ingenieril, la incidencia de la configuración de fijación para cirugía de columna vertebral deformada o fracturada sobre la estabilización, comportamiento biomecánico y estado de esfuerzos de la columna vertebral lumbo-pélvica postquirúrgica, proporcionando una fuente útil de información en la planificación y toma de decisiones quirúrgicas. Para evaluar una patología como HGS (como un caso de estudio de columna deformada seleccionado basado en la literatura), se obtuvo un modelo de columna lumbosacra de paciente específico utilizando el software Scalismo y modelado CAD, y se utilizó como base para recrear una condición de HGS. El diagnóstico se basó en la literatura clínica y consistió en una columna lumbosacra con espondilolistesis ístmica de grado 3, displasia baja (L5 rectangular), una columna desbalanceada (Línea de gravedad delante de la cabeza del fémur) y una pelvis retroversa (Inclinación sacra baja, inclinación pélvica alta, sacro vertical). Las técnicas de fusión in situ (FIS) con laminotomía y fusión intervertebral lumbar (LIF) con reducción y laminotomía se identificaron como los tratamientos sugeridos, basados en el esquema de clasificación de Mac-Thiong y reportes clínicos. Se definieron seis variaciones de cada técnica de fijación, que implicaban agregar o quitar los tornillos de columna por nivel, como posibles configuraciones de instrumentación y se compararon entre sí. Basándose en el caso de estudio y el modelo geométrico, se desarrollaron modelos biomecánicos de elementos finitos para evaluar la respuesta mecánica de la columna lumbosacra HGS tratada con las técnicas FIS y LIF, junto con las configuraciones propuestas. Se desarrollaron trece modelos divididos en dos grupos (modelos FIS y LIF) como variaciones de los modelos FIS y LIF base. La malla de la columna se construyó en Abaqus a partir de las vértebras, apoyado por el proceso de transformación de malla BCPD. Para simular las condiciones mecánicas del procedimiento quirúrgico en los dos grupos de modelos FIS y LIF, se definieron las etapas de estabilización (estado de hinchamiento de discos intervertebrales), reducción/ desplazamiento y fijación. Se desarrolló un comparativo entre las variaciones por nivel en las configuraciones de instrumentación FIS y LIF para HGS mediante el uso del método de elementos finitos (MEF). Los resultados obtenidos pueden ser utilizados para establecer qué niveles son necesarios para fijar el sistema y, al mismo tiempo, asegurar la seguridad tanto de los sistemas biológicos como de la instrumentación. Como alternativa para la validación del modelo, se propone una comparación de los modelos FIS y LIF con resultados experimentales, numéricos y clínicos reportados en la literatura. (texto tomado de la fuente)spa
dc.description.curricularareaÁrea Curricular de Ingeniería Mecánicaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Mecánicaspa
dc.description.researchareaBiomecánicaspa
dc.format.extent263 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.repoRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85234
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería Mecánicaspa
dc.relation.referencesAkpolat, Y. T., Inceoglu, S., Kinne, N., Hunt, D., & Cheng, W. K. (2016). Fatigue performance of cortical bone trajectory screw compared with standard trajectory pedicle screw. Spine, 41(6), E335–E341. https://doi.org/10.1097/BRS.0000000000001233spa
dc.relation.referencesAmbati, D. V., Wright, E. K., Lehman, R. A., Kang, D. G., Wagner, S. C., & Dmitriev, A. E. (2015). Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: A finite element study. Spine Journal, 15(8), 1812–1822. https://doi.org/10.1016/j.spinee.2014.06.015spa
dc.relation.referencesAmbellan, F., Lamecker, H., von Tycowicz, C., & Zachow, S. (2019). Statistical Shape Models: Understanding and Mastering Variation in Anatomy. Advances in Experimental Medicine and Biology, 1156, 67–84. https://doi.org/10.1007/978-3-030-19385-0_5spa
dc.relation.referencesAndersson, B. J. G., Ortengren, R., Nachemson, A., & Elfstrom, G. (1974). Lumbar disc pressure and myoelectric back muscle activity during sitting. I. Studies on an experimental chair. Scandinavian Journal of Rehabilitation Medicine, 6(3), 104–114. https://europepmc.org/article/MED/4417801spa
dc.relation.referencesAnitha, D. P., Baum, T., Kirschke, J. S., & Subburaj, K. (2020). Effect of the intervertebral disc on vertebral bone strength prediction: a finite-element study. Spine Journal, 20(4), 665–671. https://doi.org/10.1016/j.spinee.2019.11.015spa
dc.relation.referencesArgoubi, M., & Shirazi-Adl, A. (1996). Poroelastic creep response analysis of a lumbar motion segment in compression. Journal of Biomechanics, 29(10), 1331–1339. https://doi.org/10.1016/0021-9290(96)00035-8spa
dc.relation.referencesAubin, C. É., Petit, Y., Stokes, I. A. F., Poulin, F., Gardner-Morse, M., & Labelle, H. (2003). Biomechanical modeling of posterior instrumentation of the scoliotic spine. Computer Methods in Biomechanics and Biomedical Engineering, 6(1), 27–32. https://doi.org/10.1080/1025584031000072237spa
dc.relation.referencesBarrey, C., & Darnis, A. (2015). Current strategies for the restoration of adequate lordosis during lumbar fusion. World Journal of Orthopedics, 6(1), 117–126. https://doi.org/10.5312/wjo.v6.i1.117spa
dc.relation.referencesBarroso Monteiro, N. M. (2009). Analysis of the intervertebral discs adjacent to interbody fusion using a multibody and finite element co-simulation [Universidade Técnica de Lisboa]. https://fenix.ist.utl.pt/dissertacoes/177425spa
dc.relation.referencesBeck, A. W., & Simpson, A. K. (2019). High-Grade Lumbar Spondylolisthesis. In Neurosurgery Clinics of North America (Vol. 30, Issue 3, pp. 291–298). W.B. Saunders. https://doi.org/10.1016/j.nec.2019.02.002spa
dc.relation.referencesBelytschko, T. B., Andriacchi, T. P., Schultz, A. B., & Galante, J. O. (1973). Analog studies of forces in the human spine: Computational techniques. Journal of Biomechanics, 6(4), 361–371. https://doi.org/10.1016/0021-9290(73)90096-1spa
dc.relation.referencesBereczki, F., Turbucz, M., Kiss, R., Eltes, P. E., & Lazary, A. (2021). Stability Evaluation of Different Oblique Lumbar Interbody Fusion Constructs in Normal and Osteoporotic Condition – A Finite Element Based Study. Frontiers in Bioengineering and Biotechnology, 9, 1. https://doi.org/10.3389/FBIOE.2021.749914/FULLspa
dc.relation.referencesBianco, R.-J., Aubin, C.-E., Mac-Thiong, J.-M., Wagnac, E., & Arnoux, P.-J. (2016). Pedicle Screw Fixation Under Nonaxial Loads. SPINE, 41(3), E124–E130. https://doi.org/10.1097/BRS.0000000000001200spa
dc.relation.referencesBiot, M. A. (2004). General Theory of Three‐Dimensional Consolidation. Journal of Applied Physics, 12(2). https://doi.org/10.1063/1.1712886spa
dc.relation.referencesBiswas, J. K., Rana, M., Majumder, S., Karmakar, S. K., & Roychowdhury, A. (2018). Effect of two-level pedicle-screw fixation with different rod materials on lumbar spine: A finite element study. Journal of Orthopaedic Science, 23(2), 258–265. https://doi.org/10.1016/j.jos.2017.10.009spa
dc.relation.referencesBrodke, D., Kalfas, I., Dezsö Jeszenszky, M., & Shufflebarger, H. (2019). Surgical Technique EXPEDIUM 5.5 TITANIUM. http://synthes.vo.llnwd.net/o16/LLNWMB8/INT Mobile/Synthes International/Product Support Material/legacy_Synthes_PDF/105717.pdfspa
dc.relation.referencesBruno, A. G., Bouxsein, M. L., & Anderson, D. E. (2015). Development and Validation of a Musculoskeletal Model of the Fully Articulated Thoracolumbar Spine and Rib Cage. Journal of Biomechanical Engineering, 137(8). https://doi.org/10.1115/1.4030408spa
dc.relation.referencesCailliet, R. (2006). Anatomía funcional, Biomecánica. Marbán.spa
dc.relation.referencesCalvert, G. C., III, G. V. H., Jr, W. M. R., Smith, M. W., McEntire, B. J., & Bal, B. S. (2020). Clinical outcomes for lumbar fusion using silicon nitride versus other biomaterials. Journal of Spine Surgery, 6(1), 33–48. https://doi.org/10.21037/jss.2019.12.11spa
dc.relation.referencesCenter for Devices and Radiological Health - FDA. (2020). Spinal Plating Systems – Performance Criteria for Safety and Performance Based Pathway (FDA-2019-D-1647). Center for Devices and Radiological Health - FDA. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/spinal-plating-systems-performance-criteria-safety-and-performance-based-pathwayspa
dc.relation.referencesChen, C. S., Chen, W. J., Cheng, C. K., Jao, S. H. E., Chueh, S. C., & Wang, C. C. (2005). Failure analysis of broken pedicle screws on spinal instrumentation. Medical Engineering & Physics, 27(6), 487–496. https://doi.org/10.1016/J.MEDENGPHY.2004.12.007spa
dc.relation.referencesChen, C. S., Cheng, C. K., Liu, C. L., & Lo, W. H. (2001). Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Medical Engineering and Physics, 23(7), 485–493. https://doi.org/10.1016/s1350-4533(01)00076-5spa
dc.relation.referencesChen, L., Feng, Y. Y., Che, C.-Q. Q., Gu, Y., Wang, L.-J. J., & Yang, H.-L. L. (2016). Influence of Sacral Slope on the Loading of Pedicle Screws in Postoperative L5/S1 Isthmic Spondylolisthesis Patient A Finite Element Analysis. Spine, 41(23), E1388–E1393. https://doi.org/10.1097/BRS.0000000000001632spa
dc.relation.referencesChen, M. R., Moore, T. A., Cooperman, D. R., & Lee, M. J. (2013). Anatomic Variability of 120 L5 Spondylolytic Defects. Global Spine Journal, 3(4), 243–247. https://doi.org/10.1055/s-0033-1356765spa
dc.relation.referencesCheng, W. K., & Inceoglu, S. (2015). Cortical and standard trajectory pedicle screw fixation techniques in stabilizing multisegment lumbar spine with low grade spondylolisthesis. International Journal of Spine Surgery, 9. https://doi.org/10.14444/2046spa
dc.relation.referencesChosa, E., Totoribe, K., & Tajima, N. (2004). A biomechanical study of lumbar spondylolysis based on a three-dimensional finite element method. Journal of Orthopaedic Research, 22(1), 158–163. https://doi.org/10.1016/S0736-0266(03)00160-8spa
dc.relation.referencesChristophy, M., Adila, N., Senan, F., Lotz, J. C., O ’reilly, O. M., Christophy, M., Senan, N. A. F., O ’reilly, O. M., & Lotz, J. C. (2012). A Musculoskeletal model for the lumbar spine. Biomech Model Mechanobiol, 11, 19–34. https://doi.org/10.1007/s10237-011-0290-6spa
dc.relation.referencesClin, J., Aubin, C. É., Lalonde, N., Parent, S., & Labelle, H. (2011). A new method to include the gravitational forces in a finite element model of the scoliotic spine. Medical & Biological Engineering & Computing, 49(8), 967–977. https://doi.org/10.1007/S11517-011-0793-4spa
dc.relation.referencesCoreLink Surgical. (2023). Tiger Iliac Pedicle Screw System. https://corelinksurgical.com/product/tiger-iliac/spa
dc.relation.referencesDe Kunder, S. L., Rijkers, K., Caelers, I. J. M. H., De Bie, R. A., Koehler, P. J., & Van Santbrink, H. (2018). Lumbar interbody fusion. In Spine (Vol. 43, Issue 16, pp. 1161–1168). Lippincott Williams and Wilkins. https://doi.org/10.1097/BRS.0000000000002534spa
dc.relation.referencesDo Vale Mendonça, L., Kusabara, R., Mastromauro De Oliveira, F., Nagasse, Y., Ribeiro, I., Yamazato, C., & Soares De Souza, E. (2019). SACROPELVIC FIXATION USING ILIAC SCREWS: EVALUATION OF TECHNIQUE AND COMPLICATIONS. Coluna/Columna, 18(1), 70–73. https://doi.org/10.1590/S1808-185120191801163218spa
dc.relation.referencesDong, E., Shi, L., Kang, J., Li, D., Liu, B., Guo, Z., Wang, L., & Li, X. (2020). Biomechanical characterization of vertebral body replacement in situ: Effects of different fixation strategies. Computer Methods and Programs in Biomedicine, 197. https://doi.org/10.1016/J.CMPB.2020.105741spa
dc.relation.referencesDumas, R., Lafage, V., Lafon, Y., Steib, J.-P., Mitton, D., & Skalli, W. (2005). Finite element simulation of spinal deformities correction by in situ contouring technique. Computer Methods in Biomechanics and Biomedical Engineering, 8(5), 331–337. https://doi.org/10.1080/10255840500309653spa
dc.relation.referencesEberlein, R., Holzapfel, G. A., & Schulze-Bauer, C. A. J. (2001). An Anisotropic Model for Annulus Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies. Computer Methods in Biomechanics and Biomedical Engineering, 4(3), 209–229. https://doi.org/10.1080/10255840108908005spa
dc.relation.referencesEbraheim, N., Elgafy, H., Gagnet, P., Andrews, K., & Kern, K. (2018). Spondylolysis and spondylolisthesis: A review of the literature. In Journal of Orthopaedics (Vol. 15, Issue 2, pp. 404–407). Reed Elsevier India Pvt. Ltd. https://doi.org/10.1016/j.jor.2018.03.008spa
dc.relation.referencesEl-Rich, M., Villemure, I., Labelle, H., & Aubin, C. E. (2009). Mechanical loading effects on isthmic spondylolytic lumbar segment: Finite element modelling using a personalised geometry. Computer Methods in Biomechanics and Biomedical Engineering, 12(1), 13–23. https://doi.org/10.1080/10255840802069823spa
dc.relation.referencesEl-Rich, Marwan, Aubin, C.-E., Villemure, I., & Labelle, H. (2006). A Biomechanical Study of L5-S1 Low-Grade Isthmic Spondylolisthesis Using a Personalized Finite Element Model.spa
dc.relation.referencesFerguson, S. J., Ito, K., & Nolte, L. P. (2004). Fluid flow and convective transport of solutes within the intervertebral disc. Journal of Biomechanics, 37(2), 213–221. https://doi.org/10.1016/S0021-9290(03)00250-1spa
dc.relation.referencesFoley, M. J., Calenoff, L., Hendnix, R. W., & Schafer, M. F. (1983). Thoracic and Lumbar Spine Fusion: Postoperative Radiologic Evaluation.spa
dc.relation.referencesFriis, E. A., Arnold, P. M., & Goel, V. K. (2017). Mechanical testing of cervical, thoracolumbar, and lumbar spine implants. Mechanical Testing of Orthopaedic Implants, 161–180. https://doi.org/10.1016/B978-0-08-100286-5.00009-3spa
dc.relation.referencesGangwar, A., & Pheroz, M. (2016). Correlation between intraoperative insertional torque of pedicle screws and bone mineral density in thoracic and lumbar spine injuries. ~ 154 ~ International Journal of Orthopaedics Sciences, 2(3), 154–157. www.orthopaper.comspa
dc.relation.referencesGhista, D. N., Viviani, G. R., Subbaraj, K., Lozada, P. J., Srinivasan, T. M., & Barnes, G. (1988). Biomechanical basis of optimal scoliosis surgical correction. Journal of Biomechanics, 21(2), 77–88. https://doi.org/10.1016/0021-9290(88)90001-2spa
dc.relation.referencesGonzález Gutiérrez, R. A. (2013). Biomecánica Del Disco Intervertebral a Compresion. MEMORIAS DEL XIX CONGRESO INTERNACIONAL ANUAL DE LA SOMIM 25 Al 27 DE SEPTIEMBRE, 2013 PACHUCA, HIDALGO, MÉXICO, 86–96.spa
dc.relation.referencesGreen, T. P., Allvey, J. C., & Adams, M. A. (1994). Spondylolysis. Bending of the inferior articular processes of lumbar vertebrae during simulated spinal movements. Spine, 19(23), 2683–2691. https://doi.org/10.1097/00007632-199412000-00016spa
dc.relation.referencesHan, K. S., Zander, T., Taylor, W. R., & Rohlmann, A. (2012). An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces. Medical Engineering and Physics, 34(6), 709–716. https://doi.org/10.1016/j.medengphy.2011.09.014spa
dc.relation.referencesHirose, O. (2022). Geodesic-Based Bayesian Coherent Point Drift. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2022.3214191spa
dc.relation.referencesHolzapfel, G. A., Schulze-Bauer, C. A. J., Feigl, G., & Regitnig, P. (2005). Single lamellar mechanics of the human lumbar anulus fibrosus. Biomechanics and Modeling in Mechanobiology, 3(3), 125–140. https://doi.org/10.1007/S10237-004-0053-8spa
dc.relation.referencesHuber, G., Nagel, K., Skrzypiec, D. M., Klein, A., Püschel, K., & Morlock, M. M. (2016). A description of spinal fatigue strength. Journal of Biomechanics, 49(6), 875–880. https://doi.org/10.1016/J.JBIOMECH.2016.01.041spa
dc.relation.referencesIchikawa, N., Ohara, Y., Morishita, T., Taniguichi, Y., Koshikawa, A., & Matsukura, N. (1982). AN AETIOLOGICAL STUDY ON SPONDYLOLYSIS FROM A BIOMECHANICAL ASPECT. J. Sports Med, 16(3), 135–141. https://doi.org/10.1136/bjsm.16.3.135spa
dc.relation.referencesISO 5832-3:2021 Implants for surgery — Metallic materials — Part 3: Wrought titanium 6-aluminium 4-vanadium alloy, (2021).spa
dc.relation.referencesIvancic, P. C., Panjabi, M. M., & Ito, S. (2006). Cervical spine loads and intervertebral motions during whiplash. Traffic Injury Prevention, 7(4), 389–399. https://doi.org/10.1080/15389580600789127spa
dc.relation.referencesJamshidnejad, S., & Arjmand, N. (2015). Variations in trunk muscle activities and spinal loads following posterior lumbar surgery: A combined in vivo and modeling investigation. Clinical Biomechanics (Bristol, Avon), 30(10), 1036–1042. https://doi.org/10.1016/J.CLINBIOMECH.2015.09.010spa
dc.relation.referencesJazini, E., Klocke, N., Tannous, O., Johal, H. S., Hao, J., Salloum, K., Gelb, D. E., Nascone, J. W., Belin, E., Hoshino, C. M., Hussain, M., OʼToole, R. V., Bucklen, B., & Ludwig, S. C. (2017). Does Lumbopelvic Fixation Add Stability? A Cadaveric Biomechanical Analysis of an Unstable Pelvic Fracture Model. Journal of Orthopaedic Trauma, 31(1), 37–46. https://doi.org/10.1097/BOT.0000000000000703spa
dc.relation.referencesKajiura, K., Katoh, S., Sairyo, K., Ikata, T., Goel, V. K., & Murakami, R. I. (2001). Slippage mechanism of pediatric spondylolysis: biomechanical study using immature calf spines. Spine, 26(20), 2208–2212. https://doi.org/10.1097/00007632-200110150-00010spa
dc.relation.referencesKarsy, M., Jensen, M. R., Cole, K., Guan, J., Brock, A., Cole, C., Karsy, M., Jensen, M. R., Cole, K., Guan, J., Brock, A., & Cole, C. (2017). Thoracolumbar Cortical Screw Placement with Interbody Fusion: Technique and Considerations. Cureus, 9(7). https://doi.org/10.7759/CUREUS.1419spa
dc.relation.referencesKasliwal, M. K., Smith, J. S., Kanter, A., Chen, C. J., Mummaneni, P. V., Hart, R. A., & Shaffrey, C. I. (2013). Management of High-Grade Spondylolisthesis. In Neurosurgery Clinics of North America (Vol. 24, Issue 2, pp. 275–291). Elsevier. https://doi.org/10.1016/j.nec.2012.12.002spa
dc.relation.referencesKim, Y. E., & Choi, H. W. (2017). Does stabilization of the degenerative lumbar spine itself produce multifidus atrophy? Medical Engineering and Physics, 49, 63–70. https://doi.org/10.1016/j.medengphy.2017.07.008spa
dc.relation.referencesKurutz, M. (2010). Finite Element Modeling of the Human Lumbar Spine 209 x Finite Element Modeling of the Human Lumbar Spine. IntechOpen. https://doi.org/10.5772/INTECHOPEN.83983spa
dc.relation.referencesLa Barbera, L., Galbusera, F., Villa, T., Costa, F., & Wilke, H. J. (2014). ASTM F1717 standard for the preclinical evaluation of posterior spinal fixators: can we improve it? Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 228(10), 1014–1026. https://doi.org/10.1177/0954411914554244spa
dc.relation.referencesLa Barbera, L., Galbusera, F., Wilke, H. J., & Villa, T. (2016). Preclinical evaluation of posterior spine stabilization devices: can the current standards represent basic everyday life activities? European Spine Journal, 25(9), 2909–2918. https://doi.org/10.1007/s00586-016-4622-1spa
dc.relation.referencesLa Barbera, L., & Villa, T. (2016). ISO 12189 standard for the preclinical evaluation of posterior spinal stabilization devices--I: Assembly procedure and validation. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 230(2), 122–133. https://doi.org/10.1177/0954411915621587spa
dc.relation.referencesLafage, V., Dubousset, J., Lavaste, F., & Skalli, W. (2004). 3D finite element simulation of Cotrel–Dubousset correction. Computer Aided Surgery, 9(42006), 17–25. https://doi.org/10.3109/10929080400006390spa
dc.relation.referencesLaubach, M., Kobbe, P., & Hutmacher, D. W. (2022). Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials, 288, 121699. https://doi.org/10.1016/J.BIOMATERIALS.2022.121699spa
dc.relation.referencesLe Borgne, P., Skalli, W., Lecire, C., Dubousset, J., Zeller, R., & Lavaste, F. (1999). Simulation of CD Surgery on a Personalized Finite Element Model: Preliminary results. Studies in Health Technology and Informatics, 59, 126–129. https://doi.org/10.3233/978-1-60750-903-5-126spa
dc.relation.referencesLemus Cruz, L. M., Almagro Urrutia, Z. E., Sáez Carriera, R., Justo Díaz, M., & Sánchez Silot, C. (2012). Fallas mecánicas y biológicas en las prótesis sobre implantes. Revista Habanera de Ciencias Médicas, 11(4), 563–577. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519X2012000400017&lng=es&tlng=esspa
dc.relation.referencesLindsey, D. P., Kiapour, A., Yerby, S. A., & Goel, V. K. (2015). Sacroiliac joint fusion minimally affects adjacent lumbar segment motion: A finite element study. International Journal of Spine Surgery, 9. https://doi.org/10.14444/2064spa
dc.relation.referencesLittle, J. P. (2019). The spine: Biomechanics and subject-specific finite element models. In DHM and Posturography (pp. 287–293). Elsevier. https://doi.org/10.1016/B978-0-12-816713-7.00022-2spa
dc.relation.referencesLiu, H. L., Sun, M. T., Lin, C. L., Cheng, H. Y., Wei, K. C., & Su, W. K. (2008). Biomechanical analysis of interbody and posterolateral fusion with transpedicular screw fixation for spondylolisthesis: A finite element study. Biomedical Engineering - Applications, Basis and Communications, 20(3), 145–151. https://doi.org/10.4015/S1016237208000702spa
dc.relation.referencesLiu, X., Huang, Z., Zhou, R., Zhu, Q., Ji, W., Long, Y., & Wang, J. (2018). The Effects of Orientation of Lumbar Facet Joints on the Facet Joint Contact Forces. SPINE, 43(4), E216–E220. https://doi.org/10.1097/BRS.0000000000002290spa
dc.relation.referencesWu, C., Deng, J., Li, T., Tan, L., & Yuan, D. (2020). Percutaneous Pedicle Screw Placement Aided by a New Drill Guide Template Combined with Fluoroscopy: An Accuracy Study. Orthopaedic Surgery, 12(2). https://doi.org/10.1111/os.12642spa
dc.relation.referencesXiao, Z., Wang, L., Gong, H., & Zhu, D. (2012). Biomechanical evaluation of three surgical scenarios of posterior lumbar interbody fusion by finite element analysis. Biomedical Engineering Online, 11. https://doi.org/10.1186/1475-925X-11-31spa
dc.relation.referencesXiao, Z., Wang, L., Gong, H., Zhu, D., & Zhang, X. (2011). A non-linear finite element model of human L4-L5 lumbar spinal segment with three-dimensional solid element ligaments. Theoretical and Applied Mechanics Letters, 1(6), 064001. https://doi.org/10.1063/2.1106401spa
dc.relation.referencesYan, D. L., Pei, F. X., Li, J., & Soo, C. L. (2008). Comparative study of PILF and TLIF treatment in adult degenerative spondylolisthesis. European Spine Journal, 17(10), 1311–1316. https://doi.org/10.1007/s00586-008-0739-1spa
dc.relation.referencesYang, S., Sun, T., Zhang, L., Cong, M., Guo, A., Liu, D., & Song, M. (2023). Stress Distribution of Different Pedicle Screw Insertion Techniques Following Single-Segment TLIF: A Finite Element Analysis Study. Orthopaedic Surgery, 15(4). https://doi.org/10.1111/OS.13671spa
dc.relation.referencesYe, Y., Jin, S., Zou, Y., Fang, Y., Xu, P., Zhang, Z., Wu, N., & Zhang, C. (2022). Biomechanical evaluation of lumbar spondylolysis repair with various fixation options: A finite element analysis. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/FBIOE.2022.1024159spa
dc.relation.referencesYoussef, E. M. (2023). Sacropelvic fixation. Egyptian Journal of Neurosurgery 2023 38:1, 38(1), 1–14. https://doi.org/10.1186/S41984-022-00182-Wspa
dc.relation.referencesZahaf, S., Kebdani, S., Ghalem, M., Mestar, A., Zina, N., & Aour, B. (2018). Biomechanical Evaluation of Two Posterior Lumbar Intervertebral Fusion Surgical Scenarios Reinforced by a Rigid Posterior Fixation System in the Vertebral Column Analyzed by the Finite Element Method. Nano Biomed. Eng, 10(3), 258–278. https://doi.org/10.5101/nbe.v10i3.p258-278spa
dc.relation.referencesZhang, T., Ren, X., Feng, X., Diwan, A., Luk, K. D. K., Lu, W. W., Wong, T. M., Li, C., & Cheung, J. P. Y. (2020). Failure mechanisms of pedicle screws and cortical screws fixation under large displacement: A biomechanical and microstructural study based on a clinical case scenario. Journal of the Mechanical Behavior of Biomedical Materials, 104. https://doi.org/10.1016/J.JMBBM.2020.103646spa
dc.relation.referencesZhang, X., He, J., Feng, W., & Chen, X. (2019). Estimation Requiring Torque of Prosthetic Screw by Finite Element Analysis and Experiment. IOP Conference Series: Materials Science and Engineering, 631(3), 032030. https://doi.org/10.1088/1757-899X/631/3/032030spa
dc.relation.referencesZhu, R., Niu, W. xin, Zeng, Z. li, Tong, J. hua, Zhen, Z. wei, Zhou, S., Yu, Y., & Cheng, L. ming. (2017). The effects of muscle weakness on degenerative spondylolisthesis: A finite element study. Clinical Biomechanics (Bristol, Avon), 41, 34–38. https://doi.org/10.1016/J.CLINBIOMECH.2016.11.007spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.lembMétodo de elementos finitos
dc.subject.lembBiomecánica
dc.subject.proposalFinite Elements Methodeng
dc.subject.proposalSpondylolisthesiseng
dc.subject.proposalFusion In Situeng
dc.subject.proposalReductioneng
dc.subject.proposalLumbar interbody fusioneng
dc.subject.proposalSpinal fusioneng
dc.subject.proposalMétodo de elementos finitosspa
dc.subject.proposalEspondilolistesisspa
dc.subject.proposalFusión in situspa
dc.subject.proposalReducciónspa
dc.subject.proposalFusión lumbarspa
dc.titleBiomechanical behavior of the postsurgical deformed lumbo-pelvic spineeng
dc.title.translatedComportamiento biomecánico de la columna vertebral lumbopélvica deformada postquirúrgicaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152456017.2023.pdf
Tamaño:
19.62 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: