Línea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos

dc.contributor.advisorSarmiento Salazar, Felipespa
dc.contributor.authorVillamil Bolaños, Fabianspa
dc.contributor.researchgroupIngeniería Genética de Plantasspa
dc.date.accessioned2021-06-17T18:45:45Z
dc.date.available2021-06-17T18:45:45Z
dc.date.issued2021-07-11
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractLos polihidroxialcanoatos (PHAs) son poliésteres producidos y degradados naturalmente por bacterias, cuyas propiedades los hacen similares a los plásticos derivados del petróleo. La producción en masa de PHAs es costosa, por ello la transferencia genética de genes clave y su producción en plantas se ha considerado como alternativa, dado que estos organismos tienen un bajo costo de mantenimiento y por qué pueden generar mayor biomasa. Sin embargo, uno de los problemas principales que han limitado su obtención, es que generalmente las plantas presentan problemas de desarrollo y crecimiento asociados al secuestro de sustancias claves para el metabolismo y dirigidas hacia la síntesis de PHAs. Hallazgos recientes han identificado que su biosíntesis en peroxisomas reduce los efectos negativos debido a la presencia y abundancia de compuestos intermediarios en la ruta de biosíntesis de estos biopolímeros. Por esta razón, nuestros objetivos se centraron en obtener líneas genéticamente modificadas de Nicotiana tabacum var. Samsun 10, transformadas mediante la infección con Agrobacterium tumefaciens cepa LBA4404 y en evaluar la expresión del casete que dirige la síntesis del gen phaCAC de Aeromonas caviae hacia peroxisomas. Los resultados de la extracción del ADN indicaron una eficiencia de transformación del 2,6%, la síntesis de ADNc y la evaluación de la actividad de la β-glucuronidasa, detectaron dos líneas transgénicas que expresaron el gen phaCAC sin efectos negativos aparentes. (Texto tomado de la fuente)spa
dc.description.abstractPolyhydroxyalcanoates (PHAs) are polyesters naturally produced and degraded by bacteria, whose properties make them like plastics derived from petroleum. Mass production of PHAs by bacteria is expensive, so genetic transfer of key genes and production in plants has been considered as an alternative given the low maintenance cost and larger biomass than plants can generate. However, one of the main problems that have limited plant production is that plants generally present developmental and growth problems associated with capture of key substances for metabolism and directed towards PHA synthesis. Recent findings have identified that PHAs biosynthesis in peroxisomes reduces negative effects due to the presence and abundance of intermediate compounds in the biosynthesis path of these biopolymers. For this reason, our objectives focused on obtaining genetically modified lines of Nicotiana tabacum var. Samsun 10, transformed by infection with Agrobacterium tumefaciens strain LBA4404, and in to evaluate the expression of the construct that directs the synthesis of the phaCAC gene from Aeromonas caviae towards plant peroxisomes. DNA extraction results indicated 2.6% transformation efficiency and DNAc synthesis and evaluation of β-glucuronidase activity, detected two transgenic lines expressing the gene without apparent negative effects.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.researchareaGenética y fitomejoramientospa
dc.description.sponsorshipJóvenes Investigadores e Innovadores 812-2018spa
dc.format.extentxvii, 74 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79642
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAlmasi, M. A., Aghapour-ojaghkandi, M., Bagheri, K., Ghazvini, M., & Hosseyny-dehabadi, S. M. (2015). Comparison and Evaluation of Two Diagnostic Methods for Detection of npt II and GUS Genes in Nicotiana tabacum. Applied Biochemistry and Biotechnology, 175, 3599–3616. https://doi.org/10.1007/s12010-015-1529-yspa
dc.relation.referencesArai, Y., Nakashita, H., Yoshiharu, D., & Yamaguchi, I. (2001). Plastid targeting of polyhydroxybutyrate biosynthetic pathway in tobacco. In Plant Biotechnology (Vol. 18, Issue 4, pp. 289–293). https://doi.org/10.5511/plantbiotechnology.18.289spa
dc.relation.referencesArai, Y., Shikanai, T., Doi, Y., Yoshida, S., Yamaguchi, I., & Nakashita, H. (2004). Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. Plant and Cell Physiology, 45(9), 1176–1184. https://doi.org/10.1093/pcp/pch139spa
dc.relation.referencesBaeg, K., Iwakawa, H. O., & Tomari, Y. (2017). The poly(A) tail blocks RDR6 from converting self mRNAs into substrates for gene silencing. Nature Plants, 3(March). https://doi.org/10.1038/nplants.2017.36spa
dc.relation.referencesBakaher, N. (2020). Genetic Markers in Tobacco, Usage 3 for Map Development, Diversity Studies, and Quantitative Trait Loci Analysis. In N. Ivanov, N. Sierro, & M. Peitsch (Eds.), The Tobacco Plant Genome (pp. 43–49). https://doi.org/10.1007/978-3-030-29493-9_2spa
dc.relation.referencesBakhsh, A., Anayol, E., & Ozcan, S. F. (2014). Comparison of transformation efficiency of five agrobacterium tumefaciens strains in nicotiana tabacum L. Emirates Journal of Food and Agriculture, 26(3), 259–264. https://doi.org/10.9755/ejfa.v26i3.16437spa
dc.relation.referencesBANREP. (2021). Banco de la República. Características Del Cultivo Del Tabaco En Santander. https://www.banrep.gov.co/es/caracteristicas-del-cultivo-del-tabaco-santander#:~:text=El cultivo de este producto,la producción de tabaco negro.spa
dc.relation.referencesBarrientos, J. C., Plaza, G. A., & Rojas, J. (2012). Comparative analysis of flue-cured tobacco production costs in Santander and Huila (Colombia). Agronomia Colombiana, 30(2), 289–296.spa
dc.relation.referencesBasso, M. F., Arraes, F. B. M., Grossi-de-Sa, M., Moreira, V. J. V., Alves-Ferreira, M., & Grossi-de-Sa, M. F. (2020). Insights Into Genetic and Molecular Elements for Transgenic Crop Development. Frontiers in Plant Science, 11(May), 1–24. https://doi.org/10.3389/fpls.2020.00509spa
dc.relation.referencesBohmert-Tatarev, K., McAvoy, S., Daughtry, S., Peoples, O. P., & Snell, K. D. (2011). High Levels of Bioplastic Are Produced in Fertile Transplastomic Tobacco Plants Engineered with a Synthetic Operon for the Production of Polyhydroxybutyrate. Plant Physiology, 155(4), 1690–1708. https://doi.org/10.1104/pp.110.169581spa
dc.relation.referencesBohmert, K., Balbo, I., Kopka, J., Mittendorf, V., Nawrath, C., Poirier, Y., Tischendorf, G., Trethewey, R. N., & Willmitzer, L. (2000). Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4% of their fresh weight. Planta, 211(6), 841–845. https://doi.org/10.1007/s004250000350spa
dc.relation.referencesBohmert, K., Balbo, I., Steinbüchel, A., Tischendorf, G., & Willmitzer, L. (2002). Constitutive Expression of the β-Ketothiolase Gene in Transgenic Plants. A Major Obstacle for Obtaining Polyhydroxybutyrate-Producing Plants. Plant Physiology, 128(4), 1282–1290. https://doi.org/10.1104/pp.010615.confirmingspa
dc.relation.referencesBudar, F., Thia-Toong, L., Van Montagu, M., & Hernalsteens, J. P. (1986). Agrobacterium-mediated gene transfer results mainly in transgenic plants transmitting T-DNA as a single Mendelian factor. Genetics, 114, 303–313.spa
dc.relation.referencesCarlini, D. B., & Stephan, W. (2003). In vivo introduction of unpreferred synonymous codons into the drosophila Adh gene results in reduced levels of ADH protein. Genetics, 163(1), 239–243. https://doi.org/10.1093/genetics/163.1.239 Cascales, E., & Christie, P. J. (2004). Definition of a Bacterial Type IV Secretion Pathway for a DNA Substrate. Science, 136(1986), 1–5.spa
dc.relation.referencesCastellanos-Domínguez, Ó. F., Torres-Piñeros, L. M., & Rodríguez-Zárate, D. M. (2009). Desarrollo tecnológico e innovación de la cadena productiva del Tabaco (1st ed.).spa
dc.relation.referencesChandra, S., Bandopadhyay, R., Kumar, V., & Chandra, R. (2010). Acclimatization of tissue cultured plantlets: From laboratory to land. Biotechnology Letters, 32(9), 1199–1205. https://doi.org/10.1007/s10529-010-0290-0spa
dc.relation.referencesChandrika-Sabapathy, P., Devaraj, S., Meixner, K., Anburajan, P., Kathirvel, P., Ravikumar, Y., Zabed, H. M., & Qi, X. (2020). Recent developments in Polyhydroxyalkanoates (PHAs) production in the past decade – A Review. Bioresource Technology, 123132. https://doi.org/10.1016/j.biortech.2020.123132spa
dc.relation.referencesChaverri, R. (1995). Origen e Historia del Tabaco. In El Cultivo del Tabaco (EUNED, pp. 1–163). Editorial Universidad Estatal a Distancia.spa
dc.relation.referencesChen, G. Q. (2009). A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chemical Society Reviews, 38(8), 2434–2446. https://doi.org/10.1039/b812677cspa
dc.relation.referencesChen, G. Q., & Jiang, X. R. (2018). Next generation industrial biotechnology based on extremophilic bacteria. Current Opinion in Biotechnology, 50, 94–100. https://doi.org/10.1016/j.copbio.2017.11.016spa
dc.relation.referencesDadami, E., Moser, M., Zwiebel, M., Krczal, G., Wassenegger, M., & Dalakouras, A. (2013). An endogene-resembling transgene delays the onset of silencing and limits siRNA accumulation. FEBS Letters, 587(6), 706–710. https://doi.org/10.1016/j.febslet.2013.01.045spa
dc.relation.referencesDeeba, F., Hyder, M. Z., Shah, S. H., & Naqvi, S. M. S. (2014). Multiplex PCR assay for identification of commonly used disarmed Agrobacterium tumefaciens strains. SpringerPlus, 3(1), 1–7. https://doi.org/10.1186/2193-1801-3-358spa
dc.relation.referencesDobrogojski, J., Spychalski, M., Luciński, R., & Borek, S. (2018). Transgenic plants as a source of polyhydroxyalkanoates. Acta Physiologiae Plantarum, 40(9), 1–17. https://doi.org/10.1007/s11738-018-2742-4spa
dc.relation.referencesDodsworth, S., Kovarik, A., Marie-Angèle, G., Leitch, I. J., & Leitch, A. R. (2020). Repetitive DNA Dynamics 7 and Polyploidization in the Genus Nicotiana (Solanaceae). In N. Ivanov, N. Sierro, & M. Peitsch (Eds.), The Tobacco Plant Genome (pp. 85–100). https://doi.org/10.1007/978-3-030-29493-9_2spa
dc.relation.referencesDomínguez, A., Fagoaga, C., Navarro, L., Moreno, P., & Peña, L. (2002). Regeneration of transgenic citrus plants under non selective conditions results in high-frequency recovery of plants with silenced transgenes. Molecular Genetics and Genomics, 267(4), 544–556. https://doi.org/10.1007/s00438-002-0688-zspa
dc.relation.referencesDomínguez, Antonio, Cervera, M., Pérez, R. M., Romero, J., Fagoaga, C., Cubero, J., López, M. M., Juárez, J. A., Navarro, L., &spa
dc.relation.referencesPeña, L. (2004). Characterisation of regenerants obtained under selective conditions after Agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequencies. Molecular Breeding, 14(2), 171–183. https://doi.org/10.1023/B:MOLB.0000038005.73265.61spa
dc.relation.referencesEscobar, M. A., & Dandekar, A. M. (2003). Agrobacterium tumefaciens as an agent of disease. Trends in Plant Science, 8(8), 380–386. https://doi.org/10.1016/S1360-1385(03)00162-6spa
dc.relation.referencesF. de Felippes, F., McHale, M., Doran, R. L., Roden, S., Eamens, A. L., Finnegan, E. J., & Waterhouse, P. M. (2020). The key role of terminators on the expression and post-transcriptional gene silencing of transgenes. Plant Journal, 104(1), 96–112. https://doi.org/10.1111/tpj.14907spa
dc.relation.referencesFagard, M., & Vaucheret, H. (2000). (Trans)Gene Silencing in Plants: How Many Mechanisms? Annual Review of Plant Physiology and Plant Molecular Biology, 51, 167–194.spa
dc.relation.referencesFinagro. (2018). Ficha de inteligencia-Tabaco. In Finagro. http://www.aguadas-caldas.gov.co/spa
dc.relation.referencesFrancis, K. E., & Spiker, S. (2005). Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. Plant Journal, 41(3), 464–477. https://doi.org/10.1111/j.1365-313X.2004.02312.xspa
dc.relation.referencesGanapathi, T. R., Suprasanna, P., Rao, P. S., & Bapat, V. A. (2004). Tobacco (Nicotiana tabacum L.) - A model system for tissue culture interventions and genetic engineering. Indian Journal of Biotechnology, 3(2), 171–184.spa
dc.relation.referencesGelvin, S. B. (2017). Integration of Agrobacterium T-DNA into the Plant Genome. Annual Review of Genetics, 51(August), 195–217. https://doi.org/10.1146/annurev-genet-120215-035320spa
dc.relation.referencesGumel, A. M., Annuar, M. S. M., & Chisti, Y. (2012). Recent Advances in the Production, Recovery and Applications of Polyhydroxyalkanoates. Journal of Polymers and the Environment, 21(2), 580–605. https://doi.org/10.1007/s10924-012-0527-1spa
dc.relation.referencesHahn, J. J., Eschenlauer, A. C., Narrol, M. H., Somers, D. A., & Srienc, F. (1997). Growth kinetics, nutrient uptake, and expression of the Alcaligenes eutrophus poly(β-hydroxybutyrate) synthesis pathway in transgenic maize cell suspension cultures. Biotechnology Progress, 13(4), 347–354. https://doi.org/10.1021/bp970033rspa
dc.relation.referencesHunt, A. G. (2008). Messenger RNA 3′ end formation in plants. Current Topics in Microbiology and Immunology, 326, 151–177. https://doi.org/10.1007/978-3-540-76776-3_9spa
dc.relation.referencesJapelaghi, R. H., Haddad, R., Valizadeh, M., Uliaie, E. D., & Javaran, M. J. (2019). High-Efficiency Agrobacterium -Mediated Transformation of Tobacco ( Nicotiana tabacum ). Plant Molecular Breeding, 6(August 2018), 38–50. https://doi.org/10.22058/JPMB.2019.92266.1170spa
dc.relation.referencesKamo, K., & Blowers, A. (1999). Tissue specificity and expression level of gusA under rolD , mannopine synthase and translation elongation factor 1 subunit α promoters in transgenic Gladiolus plants. Plant Cell Reports, 18, 809–815.spa
dc.relation.referencesKim, S. I., Veena, & Gelvin, S. B. (2007). Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant Journal, 51(5), 779–791. https://doi.org/10.1111/j.1365-313X.2007.03183.xspa
dc.relation.referencesKonwar, B. K. (1994). Agrobacterium tumefaciens-Mediated Genetic Transformation of Sugar Beet (Beta vulgaris L.). Journal of Plant Biochemistry and Biotechnology, 3(1), 37–41. https://doi.org/10.1007/BF03321946spa
dc.relation.referencesKumar, R., Mamrutha, H. M., Kaur, A., & Grewal, A. (2017). Synergistic effect of cefotaxime and timentin to suppress the Agrobacterium over growth in wheat (Triticum aestivum L.) transformation. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 19(4), 961–967.spa
dc.relation.referencesKutty, P. C., Parveez, G. K. A., & Huyop, F. (2011). Agrobacterium tumefaciens-infection Strategies for Greater Transgenic Recovery in Nicotiana tabacum cv. TAPM26. International Journal of Agricultural Research, 6(2), 119–133. https://doi.org/10.1097/mrm.0b013e3283642449spa
dc.relation.referencesLacorte, C. (1998). β-Glucuronidase (GUS). In A. Brasileiro & V. Carneiro (Eds.), Manual de Transformação Genética de Plantas. (pp. 128–129). EMBRAPASPI/EMBRAPA-Cenagen.spa
dc.relation.referencesLacroix, B., & Citovsky, V. (2019). Pathways of DNA transfer to plants from agrobacterium tumefaciens and related bacterial species. Annual Review of Phytopathology, 57, 231–251. https://doi.org/10.1146/annurev-phyto-082718-100101spa
dc.relation.referencesLi, B., Xie, C., & Qiu, H. (2009). Production of selectable marker-free transgenic tobacco plants using a non-selection approach: Chimerism or escape, transgene inheritance, and efficiency. Plant Cell Reports, 28(3), 373–386. https://doi.org/10.1007/s00299-008-0640-8spa
dc.relation.referencesLi, M., & Wilkins, M. R. (2020). Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. International Journal of Biological Macromolecules, 156, 691–703. https://doi.org/10.1016/j.ijbiomac.2020.04.082spa
dc.relation.referencesLi, S., Cong, Y., Liu, Y., Wang, T., Shuai, Q., Chen, N., Gai, J., & Li, Y. (2017). Optimization of agrobacterium-mediated transformation in soybean. Frontiers in Plant Science, 8(February), 1–15. https://doi.org/10.3389/fpls.2017.00246spa
dc.relation.referencesLi, X., & Pan, S. Q. (2017). Agrobacterium delivers VirE2 protein into host cells via clathrin-mediated endocytosis. Science Advances, 3, 1–12.spa
dc.relation.referencesLin, J. J., Assad-Garcia, N., & Kuo, J. (1995). Plant hormone effect of antibiotics on the transformation efficiency of plant tissues by Agrobacterium tumefaciens cells. Plant Science, 109(2), 171–177. https://doi.org/10.1016/0168-9452(95)04168-Tspa
dc.relation.referencesLu, H., Yuan, G., Strauss, S. H., Tschaplinski, T. J., Tuskan, G. A., Chen, J.-G., & Yang, X. (2020). Reconfiguring Plant Metabolism for Biodegradable Plastic Production. BioDesign Research, 2020, 1–13. https://doi.org/10.34133/2020/9078303spa
dc.relation.referencesMADR. (2020). Cadena de Tabaco-Ministerio de Agricultura y Desarrollo Rural. https://sioc.minagricultura.gov.co/Tabaco/Documentos/2019-12-30 Cifras Sectoriales.pdfspa
dc.relation.referencesManickavasagam, M., Ganapathi, A., Anbazhagan, V. R., Sudhakar, B., Selvaraj, N., Vasudevan, A., & Kasthurirengan, S. (2004). Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids ) using axillary buds. Genetic Transformation and Hybridization, 23, 134–143. https://doi.org/10.1007/s00299-004-0794-yspa
dc.relation.referencesMatsumoto, K., Morimoto, K., Gohda, A., Shimada, H., & Taguchi, S. (2011). Improved polyhydroxybutyrate (PHB) production in transgenic tobacco by enhancing translation efficiency of bacterial PHB biosynthetic genes. Journal of Bioscience and Bioengineering, 111(4), 485–488. https://doi.org/10.1016/j.jbiosc.2010.11.020spa
dc.relation.referencesMatzke, M., Matzke, A. J. M., & Kooter, J. M. (2001). RNA: Guiding gene silencing. Science, 293(5532), 1080–1083. https://doi.org/10.1126/science.1063051spa
dc.relation.referencesMatzke, Marjori, & Matzke, A. J. M. (1993). Genomic imprinting in plants: Parental effects and trans-inactivation phenomena. Annual Review of Plant Physiology and Plant Molecular Biology, 44(1), 53–76. https://doi.org/10.1146/annurev.pp.44.060193.000413spa
dc.relation.referencesMcqualter, R. B., Petrasovits, L. A., Gebbie, L. K., Schweitzer, D., Blackman, D. M., Chrysanthopoulos, P., Hodson, M. P., Plan, M. R., Riches, J. D., Snell, K. D., Brumbley, S. M., & Nielsen, L. K. (2015). The use of an acetoacetyl-CoA synthase in place of a β-ketothiolase enhances poly-3-hydroxybutyrate production in sugarcane mesophyll cells. Plant Biotechnology Journal, 13(5), 700–707. https://doi.org/10.1111/pbi.12298spa
dc.relation.referencesMette, M. F., Aufsatz, W., Van der Winden, J., Matzke, M. A., & Matzke, A. J. M. (2000). Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO Journal, 19(19), 5194–5201. https://doi.org/10.1093/emboj/19.19.5194spa
dc.relation.referencesMinAgricultura. (2015). Bullets Cadena de Tabaco-Marzo de 2015.spa
dc.relation.referencesMittendorf, V., Bongcam, V., Allenbach, L., Coullerez, G., Martini, N., & Poirier, Y. (1999). Polyhydroxyalkanoate synthesis in transgenic plants as a new tool to study carbon flow through β-oxidation. Plant Journal, 20(1), 45–55. https://doi.org/10.1046/j.1365-313X.1999.00572.xspa
dc.relation.referencesMittendorf, V., Robertson, E. J., Leech, R. M., Kruger, N., Steinbuchel, A., & Poirier, Y. (1998). Synthesis of medium-chain-length polyhydroxyalkanoates in Arabidopsis thaliana using intermediates of peroxisomal fatty acid β-oxidation. Proceedings of the National Academy of Sciences, 95(23), 13397–13402. https://doi.org/10.1073/pnas.95.23.13397spa
dc.relation.referencesMoazed, D., & Noller, H. F. (1987). Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature, 327(6121), 389–394. https://doi.org/10.1038/327389a0spa
dc.relation.referencesMoire, L., Rezzonico, E., & Poirier, Y. (2003b). Synthesis of novel biomaterials in plants. Journal of Plant Physiology, 160(7), 831–839. https://doi.org/10.1078/0176-1617-01030spa
dc.relation.referencesMooney, B. P. (2009). The second green revolution? Production of plant-based biodegradable plastics. Biochemical Journal, 418(2), 219–232. https://doi.org/10.1042/bj20081769spa
dc.relation.referencesMurashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 474–497.spa
dc.relation.referencesNagaya, S., Kawamura, K., Shinmyo, A., & Kato, K. (2010). The HSP terminator of arabidopsis thaliana increases gene expression in plant cells. In Plant and Cell Physiology (Vol. 51, Issue 2, pp. 328–332). https://doi.org/10.1093/pcp/pcp188spa
dc.relation.referencesNakashita, H., Arai, Y., Shikanai, T., Doi, Y., & Yamaguchi, I. (2001). Introduction of Bacterial Metabolism into Higher Plants by Polycistronic Transgene Expression. Bioscience, Biotechnology, and Biochemistry, 65(7), 1688–1691. https://doi.org/10.1271/bbb.65.1688spa
dc.relation.referencesNakashita, H., Arai, Y., Yoshioka, K., Fukui, T., Doi, Y., Usami, R., Horikoshi, K., & Yamaguchi, I. (1999). Production of Biodegradable Polyester By Tobbaco. Bioscience, Biotechnology, and Biochemistry, 63(5), 870–874. https://doi.org/10.1271/bbb.63.870spa
dc.relation.referencesNauerby, B., Billing, K., & Wyndaele, R. (1997). Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacteriurn tumefaciens. Plant Science, 123(1–2), 169–177. https://doi.org/10.1016/S0168-9452(96)04569-4spa
dc.relation.referencesNawrath, C., Poirier, Y., & Somerville, C. (1994). Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proceedings of the National Academy of Sciences, 91(26), 12760–12764. https://doi.org/10.1073/pnas.91.26.12760spa
dc.relation.referencesNawrath, Christiane, Poirier, Y., & Somerville, C. (1995). Plant polymers for biodegradable plastics: Cellulose, starch and polyhydroxyalkanoates. In Molecular Breeding. https://doi.org/10.1007/BF01249696spa
dc.relation.referencesOkamura, E., Tomita, T., Sawa, R., Nishiyama, M., & Kuzuyama, T. (2010). Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11265–11270. https://doi.org/10.1073/pnas.1000532107spa
dc.relation.referencesPachchigar, K., Khunt, A., & Hetal, B. (2016). Dna quantification. In ICAR Sponsored summer school on Allele mining in crops: Methods and Utility (pp. 5–9).spa
dc.relation.referencesPatton, D. A., & Meinke, D. W. (1988). High-frequency plant regeneration from cultured cotyledons of Arabidopsis thaliana. Plant Cell Reports, 7(4), 233–237. https://doi.org/10.1007/BF00272531spa
dc.relation.referencesPaz, M. M., Martinez, J. C., Kalvig, A. B., Fonger, T. M., & Wang, K. (2006). Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Reports, 25(3), 206–213. https://doi.org/10.1007/s00299-005-0048-7spa
dc.relation.referencesPaz, M. M., Shou, H., Guo, Z., Zhang, Z., Banerjee, A. K., & Wang, K. (2004). Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Transformation, 136, 167–179.spa
dc.relation.referencesPérez-González, A., & Caro, E. (2018). Effect of transcription terminator usage on the establishment of transgene transcriptional gene silencing. BMC Research Notes, 11(1), 1–8. https://doi.org/10.1186/s13104-018-3649-2spa
dc.relation.referencesPetrasovits, L. A., Purnell, M. P., Nielsen, L. K., & Brumbley, S. M. (2007). Production of polyhydroxybutyrate in sugarcane. Plant Biotechnology Journal, 5(1), 162–172. https://doi.org/10.1111/j.1467-7652.2006.00229.xspa
dc.relation.referencesPetrasovits, L. A., Zhao, L., McQualter, R. B., Snell, K. D., Somleva, M. N., Patterson, N. A., Nielsen, L. K., & Brumbley, S. M. (2012). Enhanced polyhydroxybutyrate production in transgenic sugarcane. Plant Biotechnology Journal, 10(5), 569–578. https://doi.org/10.1111/j.1467-7652.2012.00686.xspa
dc.relation.referencesPoirier, Y., E. Dennis, D., Klomparens, K., & Somerville, C. (1992). PHB, a biodegradable thermoplastic, produced in transgenic plants. Science, 256(April).spa
dc.relation.referencesPoltronieri, P., & Kumar, P. (2019). Polyhydroxyalkanoates (PHAs) in industrial applications. Handbook of Ecomaterials, 4, 2843–2872. https://doi.org/10.1007/978-3-319-68255-6_70spa
dc.relation.referencesRaza, Z. A., Abid, S., & Banat, I. M. (2018). Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. International Biodeterioration and Biodegradation, 126(January 2017), 45–56. https://doi.org/10.1016/j.ibiod.2017.10.001spa
dc.relation.referencesRoberts, R. J. (1985). Restriction and modification enzymes and their recognition sequences. Nucleic Acids Research, 5, 1–49.spa
dc.relation.referencesRodríguez-García, C., Vilaine, F., & Robaglia, C. (2002). Transfer of the yeast gene SKI2 to Tobacco. Agrociencia, 36(6), 675–681.spa
dc.relation.referencesRomano, A. (2002). Production of Polyhydroxyalkanoates (PHAs) in Transgenic Potato [Wageningen Universiteit]. In Biopolymers Online. https://doi.org/10.1002/3527600035.bpol3a15spa
dc.relation.referencesRossi, L., Hohn, B., & Tinland, B. (1996). Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc Natl Acad Sci, 93(January), 126–130.spa
dc.relation.referencesSaruul, P., Srienc, F., Somers, D. A., & Samac, D. A. (2002). Production of a Biodegradable Plastic Polymer, Poly-β-Hydroxybutyrate, in Transgenic Alfalfa. Crop Science, 42(3), 919–927.spa
dc.relation.referencesSchmidt, G. W., & Delaney, S. K. (2010). Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Molecular Genetics and Genomics, 283(3), 233–241. https://doi.org/10.1007/s00438-010-0511-1spa
dc.relation.referencesSharma, V., Sehgal, R., & Gupta, R. (2021). Polyhydroxyalkanoate (PHA): Properties and Modifications. Polymer, 212, 123161. https://doi.org/10.1016/j.polymer.2020.123161spa
dc.relation.referencesSierro, N., Battey, J. N. D., Ouadi, S., Bakaher, N., Bovet, L., Willig, A., Goepfert, S., Peitsch, M. C., & Ivanov, N. V. (2014). The tobacco genome sequence and its comparison with those of tomato and potato. Nature Communications, 5(May), 1–9. https://doi.org/10.1038/ncomms4833spa
dc.relation.referencesSierro, N., & Ivanov, N. (2020). Background and History of Tobacco Genome Resources. In N. Ivanov, N. Sierro, & M. Peitsch (Eds.), The Tobacco Plant Genome (pp. 21–41). https://doi.org/10.1007/978-3-030-29493-9_2spa
dc.relation.referencesSijen, T., Vijn, I., Rebocho, A., Van Blokland, R., Roelofs, D., Mol, J. N. M., & Kooter, J. M. (2001). Transcriptional and posttranscriptional gene silencing are mechanistically related. Current Biology, 11(6), 436–440. https://doi.org/10.1016/S0960-9822(01)00116-6 SIOC. (2021). Tabaco-Sistema de Información de Gestión y Desempeño de Organizaciones de Cadenas. Boletín de Precios de Insumos Agropecuarios No. 1 de 2021. https://sioc.minagricultura.gov.co/Tabaco/Pages/default.aspxspa
dc.relation.referencesSnell, K. D., Singh, V., & Brumbley, S. M. (2015). Production of novel biopolymers in plants: Recent technological advances and future prospects. Current Opinion in Biotechnology, 32, 68–75. https://doi.org/10.1016/j.copbio.2014.11.005spa
dc.relation.referencesSomleva, M. N., Peoples, O. P., & Snell, K. D. (2013). PHA Bioplastics, Biochemicals, and Energy from Crops. Plant Biotechnology Journal, 11, 233–252. https://doi.org/10.1111/pbi.12039spa
dc.relation.referencesSong, Z. yue, Tian, J. luan, Fu, W. zhe, Li, L., Lu, L. hong, Zhou, L., Shan, Z. hui, Tang, G. xiang, & Shou, H. xia. (2013). Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability. Journal of Zhejiang University. Science. B, 14(4), 289–298. https://doi.org/10.1631/jzus.B1200278spa
dc.relation.referencesStefanov, I., Fekete, S., Bögre, L., Pauk, J., Fehér, A., & Dudits, D. (1994). Differential activity of the mannopine synthase and the CaMV 35S promoters during development of transgenic rapeseed plants. Plant Science, 95, 175–186. Suriyamongkol, P., Weselake, R., Narine, S., Moloney, M., & Shah, S. (2007). Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - A review. Biotechnology Advances, 25(2), 148–175. https://doi.org/10.1016/j.biotechadv.2006.11.007spa
dc.relation.referencesTan, D., Wang, Y., Tong, Y., & Chen, G. Q. (2021). Grand Challenges for Industrializing Polyhydroxyalkanoates (PHAs). Trends in Biotechnology, 1–11. https://doi.org/10.1016/j.tibtech.2020.11.010spa
dc.relation.referencesTeixeira, J. A. (2005). Simple multiplication and effective genetic transformation ( four methods ) of in vitro-grown tobacco by stem thin cell layers. Plant Science, 169, 1046–1058. https://doi.org/10.1016/j.plantsci.2005.07.012spa
dc.relation.referencesTilbrook, K., Gebbie, L., Schenk, P. M., Poirier, Y., & Brumbley, S. M. (2011). Peroxisomal polyhydroxyalkanoate biosynthesis is a promising strategy for bioplastic production in high biomass crops. Plant Biotechnology Journal, 9, 958–969. https://doi.org/10.1111/j.1467-7652.2011.00600.xspa
dc.relation.referencesTrick, H., & Finer, J. (1997). SAAT : sonication-assisted Agrobacterium -mediated transformation. Transgenic Research, 6, 329–336.spa
dc.relation.referencesValderrama-Fonseca, A. M., Arango-Isaza, R., & Afanador-Kafuri, L. (2005). Transformación de plantas mediada por Agrobacterium: “Ingeniería Genética natural aplicada.” Rev.Fac.Nal.Agr.Medellín, 58(1), 2569–2585. http://www.scielo.org.co/pdf/rfnam/v58n1/a01v58n1.pdfspa
dc.relation.referencesValentin, H. E., Broyles, D. L., Casagrande, L. A., Colburn, S. M., Creely, W. L., Delaquil, P. A., Felton, H. M., Gonzalez, K. A., Houmiel, K. L., Lutke, K., Mahadeo, D. A., Mitsky, T. A., Padgette, S. R., Reiser, S. E., Slater, S., Stark, D. M., Stock, R. T., Stone, D. A., Taylor, N. B., … Gruys, K. J. (1999). PHA production, from bacteria to plants. International Journal of Biological Macromolecules, 25(1–3), 303–306. https://doi.org/10.1016/S0141-8130(99)00045-8spa
dc.relation.referencesWeselake, R. J. (2005). Storage lipids. In D. J. Murphy (Ed.), Plant lipids — biology, utilization and manipulation (pp. 162–225). Blackwell Publishing.spa
dc.relation.referencesYu, L. P., Wu, F. Q., & Chen, G. Q. (2019). Next-Generation Industrial Biotechnology-Transforming the Current Industrial Biotechnology into Competitive Processes. Biotechnology Journal, 14(9). https://doi.org/10.1002/biot.201800437spa
dc.relation.referencesZambryski, P., Joos, H., Genetello, C., Leemans, J., Van Montagu, M., & Schell, J. (1983). Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. The EMBO Journal, 2(12), 2143–2150. https://doi.org/10.1002/j.1460-2075.1983.tb01715.xspa
dc.relation.referencesZhang, B., Carlson, R., & Srienc, F. (2006). Engineering the Monomer Composition of Polyhydroxyalkanoates Synthesized in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 72(1), 536–543. https://doi.org/10.1128/AEM.72.1.536spa
dc.relation.referencesZhao, H., Jia, Y., Cao, Y., & Wang, Y. (2020). Improving T-DNA Transfer to Tamarix hispida by Adding Chemical Compounds During Agrobacterium tumefaciens Culture. Frontiers in Plant Science, 11(September), 1–8. https://doi.org/10.3389/fpls.2020.501358spa
dc.relation.referencesZhu, L., Zhang, J., Yang, J., Jiang, Y., & Yang, S. (2021). Strategies for optimizing acetyl-CoA formation from glucose in bacteria. Trends in Biotechnology, 1–17. https://doi.org/10.1016/j.tibtech.2021.04.004spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocTransgenic plantseng
dc.subject.agrovocPlantas transgénicasspa
dc.subject.agrovocBiopolímerosspa
dc.subject.agrovocBiopolymerseng
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.proposalBiopolímerospa
dc.subject.proposalTransgénicospa
dc.subject.proposalβ-glucuronidasaspa
dc.subject.proposalPeroxisomaspa
dc.subject.proposalPéptido señalspa
dc.subject.proposalBiopolymereng
dc.subject.proposalTransgeniceng
dc.subject.proposalβ-glucuronidaseeng
dc.subject.proposalPeroxisomeeng
dc.subject.proposalSignal peptideeng
dc.titleLínea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatosspa
dc.title.translatedTransgenic line of Nicotiana tabacum expressing the phaC gene of Aeromonas caviae for the production of polyhydroxyalkanoateseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinicienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Línea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos.pdf
Tamaño:
1.46 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: