Reliability assessment of rock slopes by evidence theory

dc.contributor.advisorBeltrán, Gloria Inésspa
dc.contributor.authorHernández-Carrillo, Rodrigospa
dc.contributor.researchgroupGRUPO DE INVESTIGACIÓN EN GEOTECNIA - GIGUNspa
dc.date.accessioned2020-08-22T06:41:03Zspa
dc.date.available2020-08-22T06:41:03Zspa
dc.date.issued2020-08-20spa
dc.description.abstractEl objetivo de este proyecto de investigación es desarrollar una metodología para efectuar análisis de confiabilidad de la estabilidad de taludes rocosos, teniendo en cuenta la incertidumbre cuando la información sobre los parámetros geomecánicos de entrada es limitada. En mecánica de rocas, los métodos determinísticos y probabilísticos son ampliamente utilizados en el proceso de toma decisiones. No obstante, el primero no considera la incertidumbre y el segundo tiene limitaciones para representar la incertidumbre epistémica y tiene que asumir la distribución de probabilidad de las variables de entrada. Por lo tanto, se recurre a la Teoría de la Evidencia como una herramienta para describir la incertidumbre aleatoria y epistémica de los parámetros geomecánicos y propagarla a través de modelos de equilibrio límite, en los que la geometría es controlada por la orientación de las discontinuidades. Para llevar a cabo una mejor descripción de la variabilidad en el macizo, el proyecto utilizó fotogrametría de corto alcance, lo que permitió obtener series de datos robustas y confiables de la geometría de las discontinuidades, que fue modelada como una variable aleatoria con distribución Kent. Además, se desarrolló un procedimiento para actualizar los análisis de confiabilidad teniendo en cuenta la distribución de probabilidad de la orientación de las discontinuidades. La aplicación de la metodología en un talud rocoso de una mina de arenisca mostró su aplicabilidad a proyectos reales. Consecuentemente, la principal contribución de este trabajo es la generación de un marco de referencia para efectuar la evolución de confiabilidad de taludes rocoso basado en la teoría de la evidencia que permite combinar las series robustas de la orientación de los planos de discontinuidad, con información limitada de sus parámetros de resistencia, que puede ser actualizada a medida que se genera nueva información.spa
dc.description.abstractThis research project aims to develop a methodology to perform rock slope stability analysis considering the aleatory and epistemic uncertainty when the information on geomechanical parameters is limited. In rock mechanics, deterministic and probabilistic approaches are widely used in the decision-making process. However, the earlier does not consider the uncertainty, and the latter has limitations to account for the epistemic uncertainty and requires assumptions on probability distributions when robust data sets are not available. Therefore, we resorted to the Evidence Theory as a tool to describe the epistemic and aleatory uncertainty of input geomechanical variables and propagate them trough limit equilibrium models, in which the geometry is controlled by the joints orientation. To perform a better description of the variability of the rock mas properties, the project utilized a short-range photogrammetry system, which allowed us to have robust and reliable data sets on joints geometry to be modeled as Kent distributed variables. Besides, we suggested a procedure to update the reliability analysis acknowledging that orientations follow a Kent distribution. The application of the methodology to a rock slope in a sandstone mine showed its suitability to be applied in actual engineering projects. Consequently, the main contribution of this project is an rock slope evidence theory reliability-based framework for combining robust data sets on joints orientation, with limited information on geomechanical parameters, that can be updated as new information is available.spa
dc.description.additionalLínea de Investigación: Geotecnia y Riesgos Geo ambientalesspa
dc.description.degreelevelDoctoradospa
dc.description.projectAnalisis Cuantitativo de Riesgo en Taludes Minerosspa
dc.description.sponsorshipColcienciasspa
dc.format.extent288spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationHernandez-Carrillo, R. (2020). Reliability Assessment of Rock Slopes by Evidence Theory (Tesis de doctorado). Universidad Nacional de Colombia, Bogotá, Colombia.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78171
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Civilspa
dc.relation.referencesOberkampf, W. L., Tucker, W. T., Zhang, J., Ginzburg, L., Berleant, D. J., Ferson, S., Hajagos, J., and Nelsen, R. B. (2004b). Dependence in probabi- listic modeling, Dempster-Shafer theory, and probability bounds analysis.spa
dc.relation.referencesHuadong Wu, Siegel, M., Stiefelhagen, R., and Jie Yang (2003). Sensor fusion using Dempster-Shafer theory [for context-aware HCI]. In Proceedings ofspa
dc.relation.references3GSM GmbH (2011). ShapeMetrix3D. Measurement and assessment of rock and terrain surfaces by metric 3D images. Technical report, Graz, Austria.spa
dc.relation.referencesDempster-Shafer Theory. In Classic Works of the Dempster-Shafer Theoryspa
dc.relation.referencesTechnical report, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA.spa
dc.relation.referencesof Belief Functions, pages 737–760. Springer Berlin Heidelberg, Berlin, Heidelberg.spa
dc.relation.referencesAgencia Nacional de Mineria (2019). Estadisticas de accidentalidad 2005- 2019. Technical report, Agencia Nacional de Mineria, Bogota.spa
dc.relation.referencesthe 19th IEEE Instrumentation and Measurement Technology Conference, pages 7–12.spa
dc.relation.referencesAhmadabadi, M. and Poisel, R. (2016). Probabilistic Analysis of Rock Slopes Involving Correlated Non-normal Variables Using Point Estimate Methods. Rock Mechanics and Rock Engineering, 49(3):909–925.spa
dc.relation.referencesAhmed, R., Edwards, M., Lamite, S., and Mayur, P. (2014). Control- volume distributed multi-point flux approximation coupled with a lower- dimensional fracture model. Journal of Computational Physics.spa
dc.relation.referencesAl Machot, F., Mayr, H. C., and Ranasinghe, S. (2018). A Hybrid Reasoning Approach for Activity Recognition Based on Answer Set Programming and Dempster–Shafer Theory. pages 303–318. Springer, Cham.spa
dc.relation.referencesAltieri, M. G., Dell’Orco, M., Marinelli, M., and Sinesi, S. (2017). Evidence (Dempster – Shafer) Theory-Based evaluation of different Transport Modes under Uncertainty.: Theoretical basis and first findings. Transportation Research Procedia, 27:508–515.spa
dc.relation.referencesAndersson, J., Shapiro, A. M., and Bear, J. (1984). A Stochastic Model of a Fractured Rock Conditioned by Measured Information. Water Resources Research, 20(1):79–88.spa
dc.relation.referencesArango Velez, I. F. (2014). Desprendimiento de rocas en laderas: una gu´ıa para la evaluaci´on del riesgo en v´ıas. PhD thesis, EAFIT.spa
dc.relation.referencesAven, T. (2010). On the need for restricting the probabilistic analysis in risk assessments to variability. Risk analysis : an official publication of the Society for Risk Analysis, 30(3):354–60; author reply 381–4.spa
dc.relation.referencesBaecher, G. B. (1983). Statistical analysis of rock mass fracturing. Journal of the International Association for Mathematical Geology, 15(2):329–348.spa
dc.relation.referencesBaecher, G. B. and Christian, J. T. (2003). Reliability and Statistics in Geotechnical Engineering. John Wiley & Sons, Chichester, England.spa
dc.relation.referencesBaecher, G. B., Lanney, N. A., and Einstein, H. H. (1977). Statistical des- cription of rock properties and sampling. In The 18th US Symposium on Rock Mechanics (USRMS), volume 1, Golden, Colorado. American Rock Mechanics Association.spa
dc.relation.referencesBaghbanan, A. and Jing, L. (2007). Hydraulic properties of fractured rock masses with correlated fracture length and aperture. International Journal of Rock Mechanics and Mining Sciences, 44(5):704–719.spa
dc.relation.referencesBaghbanan, A. and Jing, L. (2008). Stress effects on permeability in a fractu- red rock mass with correlated fracture length and aperture. International Journal of Rock Mechanics and Mining Sciences, 45(8):1320–1334.spa
dc.relation.referencesBalberg, I. and Binenbaum, N. (1983). Computer study of the percolation threshold in a two-dimensional anisotropic system of conducting sticks. Physical Review B, 28(7):3799–3812.spa
dc.relation.referencesBallent, W., Corotis, R. B., and Torres-Machi, C. (2019a). Dempster–Shafer Theory applications in post-seismic structural damage and social vulnera- bility assessment. Sustainable and Resilient Infrastructure, pages 1–13.spa
dc.relation.referencesBanfield, J. and Raftery, A. (1993). Model-based Gaussian and non-Gaussian clustering. Biometrics, 49(3):803–821.spa
dc.relation.referencesBangert, M., Hennig, P., and Oelfke, U. (2010). Using an infinite von Mises- Fisher Mixture Model to Cluster Treatment Beam Directions in External Radiation Therapy. In Ninth International Conference on Machine Lear- ning and Applications.spa
dc.relation.referencesBelayneh, M. W., Matthai, S. K., Blunt, M. J., and Rogers, S. F. (2009). Com- parison of deterministic with stochastic fracture models in water-flooding numerical simulations. AAPG Bulletin, 93(11):1633–1648.spa
dc.relation.referencesBen-Haim, Y. (1994). A non-probabilistic concept of reliability. Structural Safety, 14(4):227–245.spa
dc.relation.referencesBerkowitz, B. and Adler, P. M. (1998). Stereological analysis of fracture net- work structure in geological formations. Journal of Geophysical Research: Solid Earth, 103(B7):15339–15360.spa
dc.relation.referencesBernardini, A. and Tonon, F. (2010). Bounding Uncertainty in Civil Engi- neering - Theoretical Background. Springer Science & Business Media.spa
dc.relation.referencesBerrone, S., Canuto, C., Pieraccini, S., and Scial`o, S. (2018). Uncertainty Quantification in Discrete Fracture Network Models: Stochastic Geometry. Water Resources Research, 54(2):1338–1352.spa
dc.relation.referencesBeynon, M., Curry, B., and Morgan, P. (2000a). The Dempster–Shafer theory of evidence: an alternative approach to multicriteria decision modelling. Omega, 28(1):37–50.spa
dc.relation.referencesBeynon, M., Curry, B., and Morgan, P. (2000b). The Dempster–Shafer theory of evidence: an alternative approach to multicriteria decision modelling. Omega, 28(1):37–50.spa
dc.relation.referencesBhreasail, A´. N., Pritchard, O., Carluccio, S., Manning, J., Daly, T., Merritt, A., and Codd, J. (2018). Remote Sensing for Proactive Geotechnical Asset Management on England’s Strategic Road Network. Infrastructure Asset Management, pages 1–40.spa
dc.relation.referencesBillaux, D., Chiles, J., Hestir, K., and Long, J. (1989). Three-dimensional statistical modelling of a fractured rock mass—an example from the Fanay- Aug`eres mine. International Journal of Rock Mechanics and Mining Scien- ces & Geomechanics Abstracts, 26(3-4):281–299.spa
dc.relation.referencesBirch, J. (2006). Using 3DM analyst mine mapping suite for rock face cha- racterization. In Tonon, F. and Kottenstette, J., editors, Laser and Photo- grammetric Methods for Rock Face Characterization. Proc. 41 st U.S. Rock Mechanics Symp, Golden, USA.spa
dc.relation.referencesBonilla-Sierra, V., Scholt`es, L., Donz´e, F. V., and Elmouttie, M. K. (2015). Rock slope stability analysis using photogrammetric data and DFN–DEM modelling. Acta Geotechnica, 10(4):497–511.spa
dc.relation.referencesBoomsma, W., Kent, J. T., Mardia, K. V., Taylor, C. C., and Hamelryck, T. (2006). Graphical models and directional statistics capture protein struc- ture. Interdisciplinary models and Satistics and Bioinformatics, 25:91–94.spa
dc.relation.referencesBooth, P. and Meyer, G. (2013). Quarry wall stability and design optimi- sation using photogrammetric mapping and analysis techniques. In 2013 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering, pages 935–948, Brisbane. Australian Centre for Geomecha- nics.spa
dc.relation.referencesBour, O. and Davy, P. (1997). Connectivity of random fault networks fo- llowing a power law fault length distribution. Water Resources Research, 33(7):1567–1583.spa
dc.relation.referencesBour, O. and Davy, P. (1998). On the connectivity of three-dimensional fault networks. Water Resources Research, 34(10):2611–2622.spa
dc.relation.referencesCampbell, J. B. and Wynne, R. H. (2011). Introduction to remote sensing. Guilford Press.spa
dc.relation.referencesCasagrande, A. (1965). Role of the Calculated Risk in Earthwork and Founda- tion Engineering. Journal of the Soil Mechanics and Foundations Division, 91(4):1–40.spa
dc.relation.referencesChen, J., Li, K., Chang, K.-J., Sofia, G., and Tarolli, P. (2015). Open-pit mi- ning geomorphic feature characterisation. International Journal of Applied Earth Observation and Geoinformation, 42:76–86.spa
dc.relation.referencesChen, X.-Y., Fan, J.-P., and Bian, X.-Y. (2017). Theoretical analysis of non- probabilistic reliability based on interval model. Acta Mechanica Solida Sinica, 30(6):638–646.spa
dc.relation.referencesCigna, F., Bianchini, S., and Casagli, N. (2013). How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): the PSI-based matrix approach. Landslides, 10(3):267–283.spa
dc.relation.referencesCouso, I., Dubois, D., and S´anchez, L. (2014). Random Sets as Ill-Perceived Random Variables. Springer International Publishing.spa
dc.relation.referencesde Dreuzy, J.-R., Davy, P., and Bour, O. (2001a). Hydraulic properties of two- dimensional random fracture networks following a power law length distri- bution: 1. Effective connectivity. Water Resources Research, 37(8):2065– 2078.spa
dc.relation.referencesde Dreuzy, J.-R., Davy, P., and Bour, O. (2001b). Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 2. Permeability of networks based on lognormal distribution of apertures. Water Resources Research, 37(8):2079–2095.spa
dc.relation.referencesDempster, A. P. (1967). Upper and Lower Probabilities Induced by a Multi- valued Mapping. The Annals of Mathematical Statistics, 38(2):325–339.spa
dc.relation.referencesDempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum Likelihood from Incomplete Data Via the <i>EM</i> Algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):1–22.spa
dc.relation.referencesDenoeux, T. (1995). A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE transactions on systems, man, and cy- bernetics, 25(5):804–813.spa
dc.relation.referencesDershowitz, W. S. and Einstein, H. H. (1988). Characterizing rock joint geometry with joint system models. Rock Mechanics and Rock Engineering, 21(1):21–51.spa
dc.relation.referencesDershowitz, W. S. and Fidelibus, C. (1999). Derivation of equivalent pipe network analogues for three-dimensional discrete fracture networks by the boundary element method. Water Resources Research, 35(9):2685–2691.spa
dc.relation.referencesDing, Y., Yao, X., Wang, S., and Zhao, X. (2019). Structural damage assess- ment using improved Dempster-Shafer data fusion algorithm. Earthquake Engineering and Engineering Vibration, 18(2):395–408.spa
dc.relation.referencesDong, L., Sun, D., Li, X., and Zhou, Z. (2017). Interval Non-Probabilistic Re- liability of a Surrounding Jointed Rockmass in Underground Engineering: A Case Study. IEEE Access, 5:18804–18817.spa
dc.relation.referencesDPN, D. N. d. P. (2013). Proyectos Viales bajo el esquema de Asociasiones Publico - Privadas: Cuarta Generacion de Concesiones Viales. Technical report, Bogota, Colombia.spa
dc.relation.referencesDubois, D. and Prade, H. (1992). On the Combination of Evidence in Various Mathematical Frameworks. pages 213–241. Springer, Dordrecht.spa
dc.relation.referencesDutta, P. (2018). An uncertainty measure and fusion rule for conflict evi- dences of big data via Dempster–Shafer theory. International Journal of Image and Data Fusion, 9(2):152–169.spa
dc.relation.referencesEbigbo, A., Lang, P. S., Paluszny, A., and Zimmerman, R. W. (2016). Inclusion-Based Effective Medium Models for the Permeability of a 3D Fractured Rock Mass. Transport in Porous Media, 113(1):137–158.spa
dc.relation.referencesEinstein, H., Baecher, G., and Veneziano, D. (1978). Risk Analysisof Rock Slopes in Open Pit Mines. Technical report, U.S. Bureau of Mines.spa
dc.relation.referencesEinstein, H. H. and Baecher, G. B. (1982). Probabilistic and Statistical Methods in Engineering Geology I. Problem Statement and Introduction to Solution. In Ingenieurgeologie und Geomechanik als Grundlagen des Felsbaues / Engineering Geology and Geomechanics as Fundamentals of Rock Engineering, pages 47–61. Springer Vienna, Vienna.spa
dc.relation.referencesElmo, D., Rogers, S., Stead, D., and Eberhardt, E. (2014). Discrete Fracture Network approach to characterise rock mass fragmentation and implica- tions for geomechanical upscaling. Mining Technology, 123(3):149–161.spa
dc.relation.referencesElmouttie, M., Kr¨ahenbu¨hl, G., and Poropat, G. (2013). Robust algorithms for polyhedral modelling of fractured rock mass structure. Computers and Geotechnics, 53:83–94.spa
dc.relation.referencesElmouttie, M., Poropat, G., and Kra¨henbu¨hl, G. (2010). Polyhedral mode- lling of rock mass structure. International Journal of Rock Mechanics and Mining Sciences, 47(4):544–552.spa
dc.relation.referencesEndo, H. (1984). Mechanical transport in two-dimensional networks of frac- tures. PhD thesis, University of California, Berkley.spa
dc.relation.referencesEPA, U. E. P. A. (2002). Total Risk Integrated Methodology (TRIM) TRIM.FaTE. Technical report, EPA-453/R-02-011a September 2002 TRIM Total Risk Integrated Methodology TRIM.FaTE Technical Support Document Volume I: Description of Module U.S. Environmental Protection Agency, Research Triangle Park, Nort Carolina, US.spa
dc.relation.referencesFadakar, Y. (2014). Stochastic Modelling of Fractures in Rock Masses. PhD thesis, The University of Adelaide.spa
dc.relation.referencesFaille, I., Fumagalli, A., Jaffr´e, J., and Roberts, J. E. (2016). Model reduction and discretization using hybrid finite volumes for flow in porous media containing faults. Computational Geosciences, 20(2):317–339.spa
dc.relation.referencesFerson, S., Kreinovich, V., Ginzburg, L., Myers, D. S., and Sentz, K. (2002). Constructing probability boxes and Dempster-Shafer structures, volume 835. Sandia National Laboratories.spa
dc.relation.referencesFisher, R. (1953). Dispersion on a Sphere. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 217(1130).spa
dc.relation.referencesFrancioni, M., Salvini, R., Stead, D., and Litrico, S. (2014). A case study integrating remote sensing and distinct element analysis to quarry slope stability assessment in the Monte Altissimo area, Italy. Eng. Geology, 183:290–302.spa
dc.relation.referencesFranke, J., Redenbach, C., and Zhang, N. (2016). On a Mixture Model for Directional Data on the Sphere. Scandinavian Journal of Statistics, 43(1):139–155.spa
dc.relation.referencesFreudenthal, A. M. (1956). Safety and the probability of structural failure. Technical report.spa
dc.relation.referencesGaich, A., Fasching, A., and Schubert, W. (2003). Improved site investigation Acquisition of geotechnical rock mass parameters based on 3D computer vision. In Numerical Simulation in Tunnelling, pages 13–46. Springer Vien- na, Vienna.spa
dc.relation.referencesGaich, A., Po¨tsch, M., Fasching, A., and Schubert, W. (2004). Contact-free measurement of rock mass structures using the JointMetriX3D system. International Journal of Rock Mechanics and Mining Sciences, 41:304–309.spa
dc.relation.referencesGaneiber, A. M. (2012). Estimation and simulation in directional and statis- tical shape models. University of Leeds.spa
dc.relation.referencesGeologia y Geotecnia (2011). Informe GYG-INF-095. Informe de Actuali- zacio´n de Modelo Geol´ogico-Geot´ecnico y Ajuste del Disen˜o Minero de Holcim S.A. Technical report, Holcim Colombia S.A., Bogot´a, Colombia.spa
dc.relation.referencesGheibie, S., Duzgun, S., and Akgun, A. (2013). Probabilistic-Numerical Mo- deling of Stability of a Rock Slope in Amasya-Turkey. In 47th U.S. Rock Mechanics/Geomechanics Symposium, volume 1, pages 341–346. American Rock Mechanics Association.spa
dc.relation.referencesGlynn, E. F. (1979). A probabilistic approach to the stability of rock slopes.spa
dc.relation.referencesGmbH, G. (2010). ShapeMetrix3D Manual. Technical report, Graz, Austria.spa
dc.relation.referencesGoodman, R. E. and Shi, G. (1985). Block Theory and its Application to Rock Engineering. Prentice Hall, New Jersey, 1 edition.spa
dc.relation.referencesGoodman, R. E. and Taylor, R. L. (1966). Methods Of Analysis For Rock Slopes And Abutments: A Review Of Recent Developments.spa
dc.relation.referencesHagan, T. (1980). A case for terrestrial photogrammetry in deep-mine rock structure studies. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 17(4):191–198.spa
dc.relation.referencesHamelryck, T. (2009). Probabilistic models and machine learning in structu- ral bioinformatics. Statistical Methods in Medical Research, 18(5):505–526.spa
dc.relation.referencesHamelryck, T., Kent, J. T., and Krogh, A. (2006). Sampling Realistic Protein Conformations Using Local Structural Bias. PLoS Computational Biology, 2(9):e131.spa
dc.relation.referencesHammah, R. (2009). Numerical modelling of slope uncertainty due to rock mass jointing. In Proceedings of the international conference on rock joints and jointed rock masses.spa
dc.relation.referencesHaztor, Y. (1992). Validation of block theory using field case histories. PhD thesis, University of Berkeley.spa
dc.relation.referencesHoek, E., Bray, J. W., and Boyd, J. M. (1973). The stability of a rock slope containing a wedge resting on two intersecting discontinuities. Quarterly Journal of Engineering Geology and Hydrogeology, 6(1):1–55.spa
dc.relation.referencesHuadong Wu, Siegel, M., and Ablay, S. (2007). Sensor fusion using Dempster- Shafer theory II: static weighting and Kalman filter-like dynamic weighting. In Proceedings of the 20th IEEE Instrumentation Technology Conference (Cat. No.03CH37412), volume 2, pages 907–912. IEEE.spa
dc.relation.referencesJimenez-Rodriguez, R. and Sitar, N. (2006). A spectral method for clustering of rock discontinuity sets. International Journal of Rock Mechanics and Mining Sciences, 43(7):1052–1061.spa
dc.relation.referencesJimenez-Rodriguez, R., Sitar, N., and Chac´on, J. (2006). System reliability approach to rock slope stability. International Journal of Rock Mechanics and Mining Sciences, 43(6):847–859.spa
dc.relation.referencesJing, L. (2003). A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences, 40(3):283–353.spa
dc.relation.referencesJing, L. and Stephansson, O. (1994). Topological identification of block as- semblages for jointed rock masses. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31(2):163–172.spa
dc.relation.referencesJing, L. and Stephansson, O. (2007). Case Studies of Discrete Element Met- hod Applications in Geology, Geophysics and Rock Engineering. In Engi- neering, L. J. and in Geotechnical, O. S. B. T. D., editors, Fundamentals of Discrete Element Methods for Rock Engineering Theory and Applications, volume Volume 85, pages 447–538. Elsevier.spa
dc.relation.referencesJohnson, J. D., Helton, J. C., Oberkampf, W. L., Sallaberry, C. J., Johnson, J. D., Oberkampf, W. L., Sallaberry, C. J., Helton, J. C., Johnson, J. D., Oberkampf, W. L., and Sallaberry, C. J. (2008). Representation of analy- sis results involving aleatory and epistemic uncertainty. Technical report, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA.spa
dc.relation.referencesKari, T., Gao, W., Zhao, D., Zhang, Z., Mo, W., Wang, Y., and Luan, L. (2018). An integrated method of ANFIS and Dempster-Shafer theory for fault diagnosis of power transformer. IEEE Transactions on Dielectrics and Electrical Insulation, 25(1):360–371.spa
dc.relation.referencesKarimi-Fard, M., Durlofsky, L., and Aziz, K. (2004). An Efficient Discrete- Fracture Model Applicable for General-Purpose Reservoir Simulators. SPE Journal, 9(02):227–236.spa
dc.relation.referencesKasarapu, P. (2015). Modelling of directional data using Kent distributions. arXiv preprint arXiv:1506.08105.spa
dc.relation.referencesKasarapu, P. and Allison, L. (2015). Minimum message length estimation of mixtures of multivariate Gaussian and von Mises-Fisher distributions. Machine Learning, 100(2-3):333–378.spa
dc.relation.referencesKent, J. T. (1980). The Fisher-Bingham Distribution on the Sphere. Tech- nical report, Department of Statistics, Princeton University, New Jersey.spa
dc.relation.referencesKent, J. T. (1982). The Fisher-Bingham Distribution on the Sphere.spa
dc.relation.referencesKent, J. T. (2012). Statistical Modelling and Simulation Using the Fisher- Bingham Distribution. pages 179–188. Springer, Berlin, Heidelberg.spa
dc.relation.referencesKent, J. T., Constable, P. D., and Er, F. (2004). Simulation for the complex Bingham distribution. Statistics and Computing, 14(1):53–57.spa
dc.relation.referencesKent, J. T., Ganeiber, A. M., and Mardia, K. V. (2017). A new unified approach for the simulation of a wide class of directional distributions. Journal of Computational and Graphical Statisticsspa
dc.relation.referencesKent, J. T. and Hamelryck, T. (2005). Using the Fisher-Bingham distribution in stochastic models for protein structure. Quantitative Biology, Shape Analysis, and Wavelets, 24(1):57–60.spa
dc.relation.referencesKhairina, D. M., Hatta, H. R., Rustam, R., and Maharani, S. (2018). Automa- tion Diagnosis of Skin Disease in Humans using Dempster-Shafer Method. E3S Web of Conferences, 31:11006.spa
dc.relation.referencesKhan, M. S. (2010). Investigation of Discontinuous Deformation Analysis for Application in Jointed Rock Masses. PhD thesis, University of Toronto.spa
dc.relation.referencesKim, D. H., Gratchev, I., and Balasubramaniam, A. (2015). Back analysis of a natural jointed rock slope based on the photogrammetry method. Landslides, 12(1):147–154.spa
dc.relation.referencesKim, J. K., Choi, M. J., Lee, J. S., Hong, J. H., Kim, C.-S., Seo, S. I., Jeong, C. W., Byun, S.-S., Koo, K. C., Chung, B. H., Park, Y. H., Lee, J. Y., and Choi, I. Y. (2018). A Deep Belief Network and Dempster-Shafer-Based Multiclassifier for the Pathology Stage of Prostate Cancer. Journal of Healthcare Engineering, 2018:1–8.spa
dc.relation.referencesKlapperich, H., Rafig, A., and Wu, W. (2012). Non-Deterministic Analysis of Slope Stability based on Numerical Simulation.spa
dc.relation.referencesLai, X.-P., Shan, P.-F., Cai, M.-F., Ren, F.-H., and Tan, W.-H. (2015). Com- prehensive evaluation of high-steep slope stability and optimal high-steep slope design by 3D physical modeling. International Journal of Minerals, Metallurgy, and Materials, 22(1):1–11.spa
dc.relation.referencesLei, Q., Latham, J.-P., and Tsang, C.-F. (2017). The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics, 85:151–176.spa
dc.relation.referencesLei, Q., Latham, J.-P., Xiang, J., Tsang, C.-F., Lang, P., and Guo, L. (2014). Effects of geomechanical changes on the validity of a discrete fracture net- work representation of a realistic two-dimensional fractured rock. Interna- tional Journal of Rock Mechanics and Mining Sciences, 70:507–523.spa
dc.relation.referencesLin, D., Fairhurst, C., and Starfield, A. (1987). Geometrical identification of three-dimensional rock block systems using topological techniques. Inter- national Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 24(3):331–338.spa
dc.relation.referencesLin, J., Tao, H., Wang, Y., and Huang, Z. (2010). Practical application of unmanned aerial vehicles for mountain hazards survey. In IEEE 18 th Geoinformatics Int. Conf.spa
dc.relation.referencesLiu, F., Zhao, Q., and Yang, Y. (2018). An approach to assess the value of industrial heritage based on Dempster–Shafer theory. Journal of Cultural Heritage.spa
dc.relation.referencesLong, J. C. S. and Billaux, D. M. (1987). From field data to fracture network modeling: An example incorporating spatial structure. Water Resources Research, 23(7):1201–1216.spa
dc.relation.referencesLong, J. C. S., Remer, J. S., Wilson, C. R., and Witherspoon, P. A. (1982). Porous media equivalents for networks of discontinuous fractures. Water Resources Research, 18(3):645–658.spa
dc.relation.referencesLow, B. (2007). Reliability analysis of rock slopes involving correlated non- normals. International Journal of Rock Mechanics and Mining Sciences, 44(6):922–935.spa
dc.relation.referencesLow, B. and Einstein, H. (1991). Simplified Reliability Analysis for Wedge Mechanisms in Rodk Slopes. In Sixth International Symposium on Lands- lides, pages 199–507, Christchurch, New Zealnd. A. A. Balkema.spa
dc.relation.referencesLow, B. K. (1979). Reliability of rock slopes with wedge mechanisms. PhD thesis, Massachusetts Institute of Technology.spa
dc.relation.referencesLow, B. K. (1997). Reliability Analysis of Rock Wedges. Journal of Geotech- nical and Geoenvironmental Engineering, 123(6):498–505.spa
dc.relation.referencesLow, B. K. and Einstein, H. H. (1992). Simplified reliability analysis for wedge mechanisms in rock slopes. In Proc., 6th Int. Symp. on Landslides, pages 499–507. Balkema, Rotterdam The Netherlands.spa
dc.relation.referencesLucieer, A., de Jong, S. M., and Turner, D. (2014). Mapping landslide displa- cements using Structure from Motion (SfM) and image correlation of multi- temporal UAV photography. Progress in Physical Geography, 38(1):97–116.spa
dc.relation.referencesLunga, D. and Ersoy, O. (2011). Kent Mixture Model for Hyperspectral Clustering via Cosine Pixel Coordinates on Spherical Manifolds. Technical report, Purdue University, West Lafayette, IN.spa
dc.relation.referencesMa, G. and Fu, G. (2014). A rational and realistic rock mass modelling strategy for the stability analysis of blocky rock mass. Geomechanics and Geoengineering, 9(2):113–123.spa
dc.relation.referencesMa, G. W. and Fu, G. Y. (2013). Stochastic key block analysis of under- ground excavations. In Frontiers of Discontinuous Numerical Methods and Practical Simulations in Engineering and Disaster Prevention - Proceedings of the 11th Int. Conf. on Analysis of Discontinuous Deformation, ICADD 2013, pages 51–60.spa
dc.relation.referencesMardia, K. V. (1975). Statistics of Directional Data, volume 37. Academic Press.spa
dc.relation.referencesMarek, L., Miˇrijovsky´, J., and Tuˇcek, P. (2015). Monitoring of the Shallow Landslide Using UAV Photogrammetry and Geodetic Measurements. In Engineering Geology for Society and Territory - Volume 2, pages 113–116. Springer International Publishing, Cham.spa
dc.relation.referencesMartinez, J., Buill, F., and Bartoll, J. (2005). Utilizacio´n de t´ecnicas l´aser esca´ner y de fotogrametr´ıa terrestre para el estudio de desprendimientos de rocas: el caso de la zona de m´as riesgo del tren cremallera. Mapping, 103:26–33.spa
dc.relation.referencesMcLachlan, G. J. and Peel, D. (1999). The EMMIX Algorithm for the Fitting of Normal and t -Components. Journal of Statistical Software, 4(2):1–14.spa
dc.relation.referencesMcMahon, B. (1971). Statistical methods for the design of rock slopes. In First, Australian-New Zealand Conference on Geomechanics, pages 314– 321.spa
dc.relation.referencesMin, K.-B. and Jing, L. (2004). Stress dependent mechanical properties and bounds of poisson’s ratio for fractured rock masses investigated by a DFN- DEM technique. International Journal of Rock Mechanics and Mining Sciences, 41:390–395.spa
dc.relation.referencesMintransporte (2011). Transporte en cifras. Version 2011. Technical report, Ministerio del Transporte, Bogotaspa
dc.relation.referencesMoradi, M., Chaibakhsh, A., and Ramezani, A. (2018). An intelligent hybrid technique for fault detection and condition monitoring of a thermal power plant. Applied Mathematical Modelling, 60:34–47.spa
dc.relation.referencesMosaad Allam, M. (1978). The estimation of fractures and slope stability of rock faces using analytical photogrammetry. Photogrammetria, 34(3):89– 99.spa
dc.relation.referencesNasekhian, A. and Schweiger, H. F. (2010). Random Set Finite Element Method Application to Tunnelling.spa
dc.relation.referencesNasekhian, A. and Schweiger, H. F. (2011). Random set finite element method application to tunnelling. International Journal of Reliability and Safety, 5(3/4):299.spa
dc.relation.referencesNguyen, H. T. (2006). An Introduction to Random Sets. Taylor & Francis Group, Las Crices, NM.spa
dc.relation.referencesNorrish, N. and Willey, D. (1996). Rock Slope Stability Analysis. In Trans- portation Research Board, editor, Lanslides: Investigation and Mitigation Special Report 247, chapter 15, pages 391–424. National Academy Press.spa
dc.relation.referencesOberguggenberger, M. (2012). Combined methods in nondeterministic me- chanics. In Isaac Elishakoff, C. S., editor, Nondeterministic Mechanics, pages 263–356. Springer, Vienna.spa
dc.relation.referencesOberkampf, W. L., Helton, J. C., Joslyn, C. A., Wojtkiewicz, S. F., and Fer- son, S. (2004a). Challenge problems: uncertainty in system response given uncertain parameters. Reliability Engineering & System Safety, 85(1):11– 19.spa
dc.relation.referencesOrtega, I., Booth, P., and Darras, J. (2013). Stability analysis and remedial design of two road cuttings in North Queensland based on remote geo- technical mapping using digital photogrammetry. In Proc. Slope Stability, Perth, Australia.spa
dc.relation.referencesPahl, P. (1981). Estimating the mean length of discontinuity traces. Inter- national Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18(3):221–228.spa
dc.relation.referencesPaine, P. J., Preston, S. P., Tsagris, M., and Wood, A. T. A. (2017). An ellip- tically symmetric angular Gaussian distribution. Statistics and Computing, pages 1–9.spa
dc.relation.referencesPark, H. (1999). Risk analysis of rock slope stability and stochastic proper- ties of discontinuity parameters in western North Carolina. Theses and Dissertations Available from ProQuest.spa
dc.relation.referencesPark, H. (2000). Probabilistic Approach of Stability Analysis for Rock Wedge Failure. Economic and Environmental Geology, 33(4):295–307.spa
dc.relation.referencesPark, H. and West, T. R. (2001). Development of a probabilistic approach for rock wedge failure. Engineering Geology, 59(3-4):233–251.spa
dc.relation.referencesPark, H.-J., West, T. R., and Woo, I. (2005). Probabilistic analysis of rock slope stability and random properties of discontinuity parameters, Inters- tate Highway 40, Western North Carolina, USA. Engineering Geology, 79(3-4):230–250.spa
dc.relation.referencesPark, J., Bates, M., Jeong, Y. S., Kim, K. M., and Kemeny, J. (2016). Crea- ting a Digital Outcrop Model by Using Hyper-Spectrometry and Terrestrial LiDAR. In 50th U.S. Rock Mechanics/Geomechanics Symposium, pages 26–29. American Rock Mechanics Association.spa
dc.relation.referencesPeck, R. B. (1969). Advantages and Limitations of the Observational Method in Applied Soil Mechanics. G´eotechnique, 19(2):171–187.spa
dc.relation.referencesPeel, D. and Mclachlan, G. J. (2000). Robust mixture modelling using the t distribution. Statistics and Computing, 10:339–348.spa
dc.relation.referencesPeel, D., Whiten, W. J., and McLachlan, G. J. (2001). Fitting Mixtures of Kent Distributions to Aid in Joint Set Identification. Journal of the American Statistical Association, 96(453):56–63.spa
dc.relation.referencesPeschl, G. M. (2004). Reliability Analyses in Geotechnics with Random Set Finite Element Method. PhD thesis, Technische Universitat Graz.spa
dc.relation.referencesPriest, S. D. S. D. (1993). Discontinuity analysis for rock engineering. Chap- man & Hall.spa
dc.relation.referencesQiu, Z., Yang, D., and Elishakoff, I. (2008). Probabilistic interval reliabi- lity of structural systems. International Journal of Solids and Structures, 45(10):2850–2860.spa
dc.relation.referencesRathman, J. F., Yang, C., and Zhou, H. (2018). Dempster-Shafer theory for combining in silico evidence and estimating uncertainty in chemical risk assessment. Computational Toxicology.spa
dc.relation.referencesRiquelme, A., Cano, M., Tom´as, R., and Abell´an, A. (2017). Identification of rock slope discontinuity sets from laser scanner and photogrammetric point clouds: A comparative analysis. In Symposium of the International Society for Rock Mechanics, EUROCK 2017., pages 838–845, Ostrava- Poruba, Czech Republic.spa
dc.relation.referencesRobinson, P. C. (1983). Connectivity of fracture systems-a percolation theory approach. Journal of Physics A: Mathematical and General, 16(3):605–614.spa
dc.relation.referencesRuan, Z., Li, C., Wu, A., and Wang, Y. (2019). A New Risk Assessment Model for Underground Mine Water Inrush Based on AHP and D–S Evidence Theory. Mine Water and the Environment.spa
dc.relation.referencesRuzic, I., Marovic, I., Benac, C., and Ilic, S. (2014). Coastal cliff geometry derived from structure-from-motion photogrammetry at Stara Baˇska, Krk Island, Croatia. Geo-Marine Letters, 34(6):555–565.spa
dc.relation.referencesSalvini, R., Francioni, M., Riccucci, S., Bonciani, F., and Callegari, I. (2013). Photogrammetry and laser scanning for analyzing slope stability and rock fall runout along the Domodossola–Iselle railway, the Italian Alps. Geo- morphology, 185:110–122.spa
dc.relation.referencesSandve, T., Berre, I., Physics, J. N. J. o. C., and 2012, U. (2012). An effi- cient multi-point flux approximation method for discrete fracture–matrix simulations. Journal of Computational Physics, 231(9).spa
dc.relation.referencesSchweiger, H. F. and Peschl, G. M. (2004). Numerical analysis of deep excava- tions utilizing random set theory. Proc. Geotechnical Innovations, Essen: VGE, pages 277–294.spa
dc.relation.referencesSchweiger, H. F. and Peschl, G. M. (2005a). Application of the random set finite element method (RS-FEM) in geotechnics. Plaxis Bulletin (17).spa
dc.relation.referencesSchweiger, H. F. and Peschl, G. M. (2005b). Reliability analysis in geotechnics with the random set finite element method. Computers and Geotechnics, 32(6):422–435.spa
dc.relation.referencesSCIRO (2015). Siromodel OPS. Technical report, Commonwealth Scientific and Research Organisation, Australia.spa
dc.relation.referencesSeidel, W., Mosler, K., and Alker, M. (2000). A Cautionary Note on Like- lihood Ratio Tests in Mixture Models. Annals of the Institute of Statistical Mathematics, 52(3):481–487.spa
dc.relation.referencesSentz, K. and Ferson, S. (2002). Combination of Evidence in Dempster- Shafer Theory. Technical Report April, Sandia National Laboratories, Al- buquerque, NM.spa
dc.relation.referencesSeraj, S., Delavar, M., and R, R. (2019). A hybrid GIS-assisted framework to integrate Dempster-Shafer theory of evidence and fuzzy sets in risk analyis: An application in hydrocarbon exploration. Geocarto International, pages 1–19.spa
dc.relation.referencesSGC, S. G. C. (2015). Gu´ıa metodolog´ogica para estudios de amenaza, vul- netabilidad y riesgo por movimientos en masa. Technical report, SGC y Minminas, Bogot´a, Colombia.spa
dc.relation.referencesShafer, G. (1976). A Mathematical Thoery of Evidence. Princeton Uiversity Press, New Jersey, NJ, US.spa
dc.relation.referencesShen, H. and Abbas, S. M. (2013). Rock slope reliability analysis based on distinct element method and random set theory. International Journal of Rock Mechanics and Mining Sciences, 61:15–22.spa
dc.relation.referencesShi, G. (1988). Discontinuous deformation analysis: A new numerical model for the statics and dynamics of block systems. PhD thesis, University of California, Berkeley.spa
dc.relation.referencesShi, G.-H., Goodman, R. E., and Tinucci, J. P. (1985). The Kinematics Of Block Inter-Penetrations. In The 26th U.S. Symposium on Rock Mechanics (USRMS), volume 1, pages 121–130. American Rock Mechanics Association.spa
dc.relation.referencesSra, S. and Karp, D. (2013). The multivariate Watson distribution: Maximum-likelihood estimation and other aspects. Journal of Multivariate Analysis, 114:256–269.spa
dc.relation.referencesStumpf, A., Malet, J., Allemand, P., Pierrot, M., Deseilligny, and Skupinnski, G. (2015). Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion. Geomorphology, 231:130–145.spa
dc.relation.referencesSturzenegger, M. and Stead, D. (2009). Close-range terrestrial digital photo- grammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology, 106(3-4):163–182.spa
dc.relation.referencesTalavera, A., Aguasca, R., Galva´n, B., and Caceren˜o, A. (2013). Applica- tion of Dempster–Shafer theory for the quantification and propagation of the uncertainty caused by the use of AIS data. Reliability Engineering & System Safety, 111:95–105.spa
dc.relation.referencesTannant, D. (2015). Review of Photogrammetry-Based Techniques for Cha- racterization and Hazard Assessment of Rock Faces. International journal of geohazards and environment, 1(2):76–87.spa
dc.relation.referencesTonon, F. and Bernardini, A. (1999). Multiobjective Optimization of Uncer- tain Structures Through Fuzzy Set and Random Set Theory. Computer- Aided Civil and Infrastructure Engineering, 14(2):119–140.spa
dc.relation.referencesTonon, F., Bernardini, A., and Mammino, A. (2000a). Determination of parameters range in rock engineering by means of Random Set Theory. Reliability Engineering & System Safety, 70(3):241–261.spa
dc.relation.referencesTonon, F., Bernardini, A., and Mammino, A. (2000b). Reliability analysis of rock mass response by means of Random Set Theory. Reliability Enginee- ring & System Safety, 70(3):263–282.spa
dc.relation.referencesTonon, F., Mammino, A., and Bernardini, A. (1996). A Random Set Ap- proach to the Uncertainties In Rock Engineering And Tunnel Lining Design. In ISRM International Symposium - EUROCK 96, Turin, Italy. In ternational Society for Rock Mechanics.spa
dc.relation.referencesTaheri, K. (2018). Expert finding by the Dempster-Shafer theory for evidence combination. Expert Systems, 35(1):13.spa
dc.relation.referencesTorrero, L., Seoli, L., Molino, A., Giordan, D., Manconi, A., Allasia, P., and Baldo, M. (2015). The Use of Micro-UAV to Monitor Active Landslide Scenarios. In Engineering Geology for Society and Territory - Volume 5, pages 701–704. Springer International Publishing, Cham.spa
dc.relation.referencesTucker, W. T. and Ferson, S. (2006). Sensitivity in risk analyses with un- certain numbers. Technical report, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA.spa
dc.relation.referencesUPME (2015). Sistema de informacion minero Colombiano.spa
dc.relation.referencesVasuki, Y., Holden, E., Kovesi, P., and Micklethwaite, S. (2014). Semi- automatic mapping of geological Structures using UAV-based photogram- metric data: An image analysis approach. Computers & Geosciences, 69:22–32.spa
dc.relation.referencesVollmer, F. W. (2015). Orient 3: a new integrated software program for orientation data analysis, kinematic analysis, spherical projections, and Schmidt plots. In Geological Society of America, Abstracts with Programs, volume 47, pages 185–187.spa
dc.relation.referencesWang, C., Zhang, H., and Beer, M. (2019). Tightening the bound estimate of structural reliability under imprecise probability information. In 13th International Conference on Applications of Statistics and Probability in Civil Engineering(ICASP13), Seoul, South Korea, pages 1–8.spa
dc.relation.referencesWang, P., Puterman, M., Cockburn, I., and Le, N. (1996). Mixed Poisson regression models with covariate dependent rates. Biometrics, pages 381– 400.spa
dc.relation.referencesWang, Y. (2010). Imprecise probabilities based on generalised intervals for system reliability assessment. International Journal of Reliability and Sa- fety, 4(4):319.spa
dc.relation.referencesWang, Y.-m. and Jing, L. T. (2012). Application of Dempster-Shafer theory for network selection in heterogeneous wireless networks. The Journal of China Universities of Posts and Telecommunications, 19:86–91.spa
dc.relation.referencesWarburton, P. (1980). Stereological interpretation of joint trace data: In- fluence of joint shape and implications for geological surveys. Interna- tional Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 17(6):305–316.spa
dc.relation.referencesWarburton, P. (1983). Application of a new computer model for reconstruc- ting blocky block geometry analysis single block stability and identifying keystones. In Proceedings of the 5th International Congress on Rock Me- chanics, pages 225–230, Melbopurne, Australia. Balkema.spa
dc.relation.referencesWhitman, R. V. (1984). Evaluating Calculated Risk in Geotechnical Engi- neering. Journal of Geotechnical Engineering, 110(2):143–188.spa
dc.relation.referencesWickens, E. H. and Barton, N. (1971). The application of photogrammetry to the stability of excavated rock slopes. The Photogrammetric Record, 7(37):16–54.spa
dc.relation.referencesWood, A. T. A. (1987). The simulation of spherical distributions in the Fisher-Bingham family. Communications in Statistics - Simulation and Computation, 16(3):885–898.spa
dc.relation.referencesXu, C. and Dowd, P. (2010). A new computer code for discrete fracture network modelling. Computers & Geosciences, 36(3):292–301.spa
dc.relation.referencesYager, R. R. (1987). On the dempster-shafer framework and new combination rules. Information Sciences, 41(2):93–137.spa
dc.relation.referencesYamaji, A. (2016). Genetic algorithm for fitting a mixed Bingham distribu- tion to 3D orientations: a tool for the statistical and paleostress analyses of fracture orientations. Island Arc, 25:72–83.spa
dc.relation.referencesYamaji, A. and Sato, K. (2011). Clustering of fracture orientations using a mixed Bingham distribution and its application to paleostress analysis from dike or vein orientations. Journal of Structural Geology, 33(7):1148–1157.spa
dc.relation.referencesYang, Q., Lu, P., Cui, T., Ma, M., Liu, Y., Zhou, C., and Zhao, L. (2012). Application of low-altitude remote sensing image by unmanned airship in geological hazards investigation. In Proc. Image and Signal Processing 5 th Int. Cong, Chongqing, China.spa
dc.relation.referencesZadeh, L. (1986). A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination. AI Magazine, 7(2):85–90.spa
dc.relation.referencesZargar, A., Sadiq, R., Naser, G., Khan, F. I., and Neumann, N. N. (2012). Dempster-Shafer Theory for Handling Conflict in Hydrological Data: Case of Snow Water Equivalent. Journal of Computing in Civil Engineering, 26(3):434–447.spa
dc.relation.referencesZhang, Y., Xiao, M., and Chen, J. (2010). A new methodology for block iden- tification and its application in a large scale underground cavern complex. Tunnelling and Underground Space Technology, 25(2):168–180.spa
dc.relation.referencesZhang, Y., Xiao, M., Ding, X., and Wu, A. (2012). Improvement of metho- dology for block identification using mesh gridding technique. Tunnelling and Underground Space Technology, 30:217–229.spa
dc.relation.referencesZhang, Z. X. and Lei, Q. H. (2013). Object-oriented modeling for three- dimensional multi-block systems. Computers and Geotechnics, 48:208–227.spa
dc.relation.referencesZhang, Z. X. and Lei, Q. H. (2014). A Morphological Visualization Method for Removability Analysis of Blocks in Discontinuous Rock Masses. Rock Mechanics and Rock Engineering, 47(4):1237–1254.spa
dc.relation.referencesZhao, Z., Rutqvist, J., Leung, C., Hokr, M., Liu, Q., Neretnieks, I., Hoch, A., Havl´ıˇcek, J., Wang, Y., Wang, Z., Wu, Y., and Zimmerman, R. (2013). Impact of stress on solute transport in a fracture network: A comparison study. Journal of Rock Mechanics and Geotechnical Engineering, 5(2):110– 123.spa
dc.relation.referencesZheng, Y., Xia, L., Yu, Q., Yinhe, Z., Lu, X., Qingchun, Y., Zheng, Y., Xia, L., Yu, Q., Yinhe, Z., Lu, X., and Qingchun, Y. (2015). A method for identifying three-dimensional rock blocks formed by curved fractures. Computers and Geotechnics, 65:1–11.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposaltheory of evidenceeng
dc.subject.proposalteoría de la evidenciaspa
dc.subject.proposaldempster shafer structureeng
dc.subject.proposalestructuras Dempster Shaferspa
dc.subject.proposalconfiabilidadspa
dc.subject.proposalreliabilityeng
dc.subject.proposalepistemic uncertaintyeng
dc.subject.proposalincertidumbre aleatoriaspa
dc.subject.proposalaleatory uncertaintyeng
dc.subject.proposalincertidumbre epistémicaspa
dc.subject.proposalslope stabilityeng
dc.subject.proposalestabilidad de taludesspa
dc.subject.proposallimit equilibriumeng
dc.subject.proposaleEquilibrio límitespa
dc.subject.proposalcuñas de rocaspa
dc.subject.proposalrock wedgeeng
dc.subject.proposaldiscrete fracture networeng
dc.subject.proposalredes discretas de fracturamientospa
dc.subject.proposalfotogrametría de corto alcancespa
dc.subject.proposalshort-range photogrammetryeng
dc.titleReliability assessment of rock slopes by evidence theoryspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80170991.2020.pdf
Tamaño:
20.24 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: