Análisis de la rotura de gravas usando la técnica de análisis de imágenes DPIV teniendo en cuenta los efectos de forma

dc.contributor.advisorTapias Camacho, Mauricio Albertospa
dc.contributor.authorGuerrero Mendoza, Wrangel Eduardospa
dc.contributor.researchgroupGeotechnical Engineering Knowledge and Innovation Genkispa
dc.date.accessioned2024-05-14T20:36:16Z
dc.date.available2024-05-14T20:36:16Z
dc.date.issued2024-05-14
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractSe desarrolló un ensamble granular experimental para emplear la técnica de Velocimetría de Partículas con imágenes Digitales DPIV, por sus siglas en inglés, en las instalaciones del Laboratorio de Geotecnia de la Universidad Nacional de Colombia, con el objetivo de analizar los diferentes mecanismos de rotura presentes en un proceso de carga edométrica a diferentes testigos de prueba fabricados empleando adhesivo para cerámicas, comúnmente conocido como pegante cerámico, dispuestos en diferentes conjuntos de ensambles granulares, de un tamaño clasificado como grava, según USCS, teniendo en cuenta la variación de su ubicación con respecto al arreglo, en términos del número de coordinación, la forma del sujeto de prueba y el tipo de contacto presente. Para cada prueba se determinaron los esfuerzos de compresión a los que estaban sometidos los ensambles y se establecieron los modos de rotura prevalecientes. Los modos de rotura corresponden con división o splitting, y conminución o conminution. El tipo de rotura está condicionado por la forma de la partícula y por el tipo de contacto existente con los demás miembros del ensamble granular. Se encontró que el plano de falla y la dirección de movimiento de los fragmentos generados en el proceso de rotura se establecen previamente a la aparición de la grieta, así como que, una vez establecida una velocidad de inicio de rotura en la partícula, dicha velocidad se mantiene a lo largo de la generación de la grieta. Se encontró que la primera grieta del material generalmente inicia en los contactos, aunque se hallaron velocidades de desplazamiento dentro de las partículas cercanas a la velocidad de rotura. (Texto tomado de la fuente).spa
dc.description.abstractAn experimental granular assembly was developed to use the technique of Particle Velocimetry with Digital Imaging DPIV, at the facilities of the Geotechnical Laboratory of the National University of Colombia, with the objective of analyzing the different breakage mechanisms present in a process of oedometric loading to different test cores manufactured using ceramic adhesive, commonly known as ceramic adhesive, arranged in different sets of granular assemblies, of a size classified as gravel, according to USCS, taking into account the variation of their location with respect to the arrangement, in terms of the number of coordination, the shape of the test subject and the type of contact present. For each test, the compressive stresses to which the assemblies were subjected were determined and the prevailing failure modes were established. The failure modes correspond to splitting and comminution. The type of breakage is conditioned by the shape of the particle and by the type of contact with the other members of the granular assembly. It was found that the failure plane and the direction of movement of the fragments generated in the rupture process are established prior to the appearance of the crack, as well as that, once a rupture initiation velocity is established in the particle, this velocity is maintained throughout the generation of the crack. It was found that the first crack in the material generally initiates at the contacts, although displacement velocities within the particles were found to be close to the rupture velocity.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Geotecniaspa
dc.description.researchareaModelación y análisis en geotecniaspa
dc.format.extentxvii, 217 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86084
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Geotecniaspa
dc.relation.referencesAdrian, R. J. (1988). Statistical properties of particle image velocimetry measurements in turbulent flow. 4th International Symposia on Laser Techniques to Fluid Mechanics, 11-14.spa
dc.relation.referencesAdrian, R. J. (2005). Twenty years of Particle Image Velocimetry. Experiments in Fluids, 159-169. https://doi.org/10.1007/s00348-005-0991-7spa
dc.relation.referencesAgüí, J., & Jiménez, J. (1987). On the performance of Particle Tracking. J Fluid Mech, 447- 468. https://doi.org/10.1017/S0022112087003252spa
dc.relation.referencesAlonso, E., & Oldecop, L. (2007). Theoretical investigation of the time-dependent behaviour of rockfill. Géotechnique, 289-301.spa
dc.relation.referencesAndré, M. A., & Bardet, P. M. (2015). Interfacial shear stress measurement using high spatial resolution mmultphase PIV. Exp Fluids. https://doi.org/10.1007/s00348-015- 2006-7spa
dc.relation.referencesAnsys® Academic Research Mechanical. (2023). Ansys. https://www.ansys.com/spa
dc.relation.referencesASTM. (2020). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). En ASTM.spa
dc.relation.referencesBaastiaans, R. (1993). Cross-correlation PIV: Theory, implementation and accuracy. Technische Universiteit Einfhoven Reports.spa
dc.relation.referencesBagi, K. (1996a). Geometrical modelling of granular assemblies. Acta Technica Academiae Scientiarum Hungaricae, 1-16.spa
dc.relation.referencesBagi, K. (1996b). Stress and strain in granular assemblies. Mechanics of Materials, 165- 177.spa
dc.relation.referencesBagi, K. (1999). Microstructural Stress Tensor of Granular Assemblies With Volume Forces. Journal of Applied Mechanics, 934-936.spa
dc.relation.referencesBagi, K. (2004). Granular mechanics special issue. International Journal of Solids and Structures, 5761-5762.spa
dc.relation.referencesBourke, P. (August de 1996). Cross Correlation - Autocorrelation - 2D Pattern Identification. http://paulbourke.net/miscellaneous/correlate/spa
dc.relation.referencesBracewell, R. (1999). The Fourier Transform and Its Applications, 3rd edition. New York: McGraw Hill.spa
dc.relation.referencesBridgwater, J. (2007). Particle Breakage due to Bulk Shear. En Handbook of Powder Technology (págs. 87-117). Cambridge.spa
dc.relation.referencesBrossard, C., Monnier, J., Barricau, P., Vaandernoot, F., Le Sant, Y., Champagnat, F., & Le Besnerais, G. (2009). Principles and Applications of Particle Image Velocimetry. AerospaceLab, 1-11.spa
dc.relation.referencesDIGITAL WAVE LTD. (2023). Free Video to JPG Converter. DVDVideoSoft: https://www.dvdvideosoft.com/es/products/dvd/Free-Video-to-JPG-Converter.htmspa
dc.relation.referencesDuan, X.-f., Wang, Y.-z., & Yuan, X.-m. (2018). State-of-Art Review of Particle Image Velocimetry (PIV) in Geotechnical Engineering. 2018 International Conference on Applied Mechanics, Mathematics, Modeling and Simulation (AMMMS 2018).spa
dc.relation.referencesForliti, D., Strykowski, P., & Debatin, K. (2000). Bias and precision errors of digital particle image velocimetry. Experiments Of Fluids, 436-447.spa
dc.relation.referencesGollin, D., Brevis, W., Bowman, E. T., & Shepley, P. (2017). Performance of PIV and PTV for granular flow measurements. Granular Matter. https://doi.org/10.1007/s10035- 017-0730-9spa
dc.relation.referencesHecht, E., & Zajac, A. (2001). Optics. Massachusetts: Addison-Wesley Pub. Company.spa
dc.relation.referencesHiramatsu, Y., & Oka, Y. (1966). Determination of the tensile strength of rock by a compression test of an irregular test piece. International Journal of Rock Mechanics and Mining Sciences, 89-90.spa
dc.relation.referencesInstituto Nacional de Vías - INVIAS. (2012). Manual de Normas de Ensayo de Materiales para Carreteras .spa
dc.relation.referencesKim, J., Woo, S. I., & Chung, C.-K. (2018). Assessmment of Non-uniform Deformation During Consolidation with Lateral Drainage using Particle Image Velocimetry (PIV). KSCE Journnal of Civil Engineering, 520-531.spa
dc.relation.referencesKwan, J., Sun, W., Lam, C., & Koo, R. (2016). Recent advances in landslide risk management measures in Hong Kong. Landslides and Engineered Slopes. Experience, Theory and Practice: Proceedings of the 12th International Symposium on Landslides. Napoles, Italia.spa
dc.relation.referencesLiang, C., Liu, J., Wu, Y., Chen, Z., Luo, R., Zheng, J., & Meng, Y. (2022). Experimental Study on Soil Deformation during Sammpler Penetration. KSCE Journal of Civil Engineering, 1080-1088spa
dc.relation.referencesManso, J., Marcelino, J., & Caldeira, L. (2018). Crushing and oedometer compression of rockfill using DEM. Computers and Geotechnics, 11-22.spa
dc.relation.referencesNakata, Y., Hyodo, M., Hyde, A., Kato, Y., & Murata, H. (2001). Microscopic particle crushing of sand subjected to high pressure one-dimensional compression. Soils Found., 69-82.spa
dc.relation.referencesPereria, R. A., Gomes, F. C., Braga Júnior, R. A., & Rivera, F. P. (2018). Analysis of elasticity in woods submited to the static bending test using the Particle Image Velocimetry (PIV) technique. Engenharia Agrícola, Jaboticabal, v. 38, 159-165.spa
dc.relation.referencesPereria, R. A., Gomes, F. C., Braga Júnior, R. A., & Rivera, F. P. (2019). Displacement measurement in sawn wood and wood panel beams using Particle Image Velocimetry. CERNE, 110-118. https://doi.org/10.1590/010477602014925012619spa
dc.relation.referencesPrasad, A. K. (2000). Particle Image Velocimetry. Current Science, 79, 51-60.spa
dc.relation.referencesRAE. (2023). Diccionario de la lengua española. https://dle.rae.es/spa
dc.relation.referencesRaffel, M., Willert, C., Scarano, F., Kähler, C., Wereley, S., & Kompenhans, J. (2017). Particle Image Velocimetry A Practical Guide. Göttingen, Germany: Springer International Publishing AG.spa
dc.relation.referencesRuiz Morales, A. E. (2014). Evaluación del PIV como método de medida en geotecnia [Tesis de maestría, Universitat Politècnica de Catalunya]. Repositorio institucional: Màsters oficials - Màster universitari en Enginyeria del Terreny i Enginyeria Sísmica. http://hdl.handle.net/2099.1/25452spa
dc.relation.referencesRussell, A., & Wood, D. (2009). Point load tests and strength measurements for brittle spheres. International Journal of Rock Mechanics and Mining Sciences, 272-280.spa
dc.relation.referencesScharnowski, S., Hain, R., & Kähler, C. J. (2012). Reynolds stress estimation up to single- pixel resolution using PIV-measurements. Exp Fluids - Springer, 985-1002. https://doi.org/10.1007/s00348-011-1184-1spa
dc.relation.referencesSEA. (2023). Sociedad Española de Astronomía. Sociedad Española de Astronomía: https://www.sea-astronomia.es/spa
dc.relation.referencesSlominski, C., Niedostatkiewicz, M., & Tejchman, J. (2007). Application of Particle Image Velocimetry (PIV) for deformation measurement during granular silo flow. Powder Technology, 1-18.spa
dc.relation.referencesSukkarak, R., Jongpradist, P., & Pramthawee, P. (2019). A modified valley shape factor for the estimation of rockfill dam sttlement. Computers And Geotechnics, 244-256.spa
dc.relation.referencesTámara Sáez, R. A. (2022). Evaluación comparativa entre técnica PIV y Métodos convencionales en la obtención de parámetros elásticos de materiales [Trabajo final de grado]. Universidad Nacional de Colombia.spa
dc.relation.referencesTapias Camacho, M. A. (2016). Particle model for crushable aggregates which includes size, time and relative humidity effects [Tesis doctoral, Universitat Politècnica de Catalunya]. Repositorio institucional: TDX (Tesis Doctorals en Xarxa). https://doi.org/10.5821/dissertation-2117-106495spa
dc.relation.referencesTavares, L. M. (2007). Breakage of Single Particles: Quasi-static. En Handbook of Powder Technology (págs. 3-68). Rio de Janeiro.spa
dc.relation.referencesThe MathWorks Inc. (1994-2023). MATLAB. Natick, Massachussets, EEUU.spa
dc.relation.referencesThielicke, W. (2014). The Flapping Flights of Birds. Phd Thesis. Rijksunversiiteit Groningen.spa
dc.relation.referencesThielicke, W. (01 de 06 de 2022). Blog: PIVlab - Digital Particle Image Velocimetry Tool for MATLAB. PIVlab is becoming popular: https://pivlab.blogspot.com/2022/06/pivlab- is-becoming-super-popular.htmlspa
dc.relation.referencesThielicke, W., & Sonntag, R. (2021). Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab. Journal of Open Research Software, Vol 9, 9. https://doi.org/10.5334/jors.334spa
dc.relation.referencesToxement. (2022). Toxement - Pegante Ceramico estándar. https://www.toxement.com.co/media/6319/pegante-ceramico-estandar-1.pdfspa
dc.relation.referencesWhite, D., Take, W., & Bolton, M. (2001). Measuring soil deformation in geotechnical models using digital images and PIV analysis. 10th International Conference on Computer Methods and Advances in Geomechanics, 997-1002spa
dc.relation.referencesXiao, Y., Mmeng, M., Daoudaji, A., Chen, Q., Zhijun, W., & Jiang, X. (2018). Effects of particle size on crushing and deformation behaviors of rockfill materials. Geoscience Frontiers.spa
dc.relation.referencesXu, L., Chen, H.-b., Chen, F.-q., Lin, Y.-j., & Lin, C. (2022). An experimental study of the active failure mechanism of narrow backfills installed behind rigid retaining walls conducted using Geo-PIV. Acta Geotechnica. https://doi.org/10.1007/s11440-021- 01438-9spa
dc.relation.referencesZhang, B., Zhang, J., & Sun, G. (2015). Deformation and shear strength of rockfill materials composed of soft siltstones subjected to stress, cyclical drying/wetting and temperature variations. Engineering Geology, 87-97.spa
dc.relation.referencesZhou, W., Hua, J., Chang, X., & Zhou, C. (2010). Settlement anlysis of the Shuibuya concrete-face rockfill dam. Computers And Geotechnics, 269-280.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.proposalDPIVspa
dc.subject.proposalRoturaspa
dc.subject.proposalEsfuerzospa
dc.subject.proposalEnsamble granularspa
dc.subject.proposalDPIVeng
dc.subject.proposalBreakageeng
dc.subject.proposalStresseng
dc.subject.proposalGranular assemblyeng
dc.subject.unescoTecnología de materialesspa
dc.subject.unescoMaterials engineeringeng
dc.subject.wikidataGeotecniaspa
dc.subject.wikidatageotechnical engineeringeng
dc.subject.wikidataVelocimetría de imágenes de partículasspa
dc.subject.wikidataparticle image velocimetryeng
dc.titleAnálisis de la rotura de gravas usando la técnica de análisis de imágenes DPIV teniendo en cuenta los efectos de formaspa
dc.title.translatedAnalysis of gravel breakage using the DPIV image analysis technique taking into account shape effectseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030625159-2024.pdf
Tamaño:
22 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Geotecnia

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: