Operational planning of smart microgrids considering intraday markets

dc.contributor.advisorRivera Rodríguez, Sergio Raúl
dc.contributor.advisorÁlvarez Álvarez, David Leonardo
dc.contributor.authorGarcia Guarín, Pedro Julian
dc.contributor.researchgroupGrupo de Investigación Emc-Unspa
dc.date.accessioned2022-03-25T18:03:04Z
dc.date.available2022-03-25T18:03:04Z
dc.date.issued2022-03-04
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEnvironmental concerns and sustainable development promote the adoption of smart microgrids (SMGs). However, economic interests promote an increase in income, which can result in non-optimal situations, such as non-supply of demand, the formation of monopolies and the formation of essential agents to supply demand at peak times. In this context, this research analyses a SMG that negotiates energy commitments with intraday markets and binding dispatch. In the same way, this model quantifies penalties for uncertainty of renewables with intraday markets. Besides, the profits are estimated associated with managing the distributed generation, charging and discharging of energy storage systems, a battery swapping station and residential electric vehicles. This model introduces uncertainty in the operational planning problem of a SMG related to (1) renewable generation, (2) demand forecasting, (3) market price variations, (4) planning of electric vehicle trips and (5) battery demand forecast in an electric vehicle station. The literature shows that, due to the complexity of the problem, computational intelligence provides sub-optimal solutions efficiently, resulting in the development of the advanced metaheuristics called VNS-DEEPSO, which is a combination of the Variable Neighbourhood Search (VNS) and Differential Evolutionary Particle Swarm Optimization (DEEPSO) algorithms. The results show demand management strategies, such as reduction of maximum loads, demand supply restrictions satisfactorily met, market power indicators that prevent the emergence of monopolies and pivoting agents, and a greater number of intraday markets with equally time intervals spaced that show a reduction in costs due to the uncertainty of renewables. Finally, the results of this research will constitute a tool to make decisions in smart microgrids and will help to evaluate the implementation of intraday markets in future research.eng
dc.description.abstractEl desarrollo sostenible promueve la adopción de microrredes inteligentes. Sin embargo, intereses económicos estimulan el incremento de ingresos, que puede resultar en situaciones no óptimas, como el no abastecimiento de la demanda, la formación de monopolios y la formación de agentes esenciales para abastecer la demanda. En este contexto, está investigación analiza una microrred inteligente que negocia compromisos energéticos con mercados intradiarios y el despacho vinculante. De la misma manera, en este modelo se cuantifican penalidades por incertidumbre de renovables con mercados intradiarios. Además, se estiman las ganancias asociadas con la gestión de la generación distribuida, carga y descarga de sistemas de almacenamiento de energía, una estación de intercambio de baterías y vehículos eléctricos residenciales. Este modelo introduce la incertidumbre en el problema de planificación en una microrred inteligente relacionada con (1) generación renovable, (2) pronóstico de la demanda, (3) variaciones de precios de mercado, (4) planeación de viajes de vehículos eléctricos y (5) pronóstico de demanda de baterías en una estación de vehículos eléctricos. La literatura muestra que, debido a la complejidad del problema, la inteligencia computacional proporciona soluciones subóptimas de manera eficiente, lo que resulta en el desarrollo de la metaheurística avanzada, que es una combinación de los algoritmos Variable Neighborhood Search y Differential Evolutionary Particle Swarm Optimization. Los resultados evidencian estrategias de gestión de demanda como reducción de cargas máximas, las restricciones de abastecimiento de la demanda que se cumplen satisfactoriamente, indicadores de poder de mercado que evitan la aparición de monopolios y agentes pivotantes, y un mayor número de mercados intradiarios con intervalos de tiempo igualmente espaciados que demuestran una reducción de los costos por incertidumbre de generación solar. Finalmente, los resultados de esta investigación sirven para tomar decisiones en microrredes inteligentes y ayudar a evaluar la implementación de mercados intradiarios. (Texto tomado de la fuente)spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaPower Systems Analysis and Smart Gridsspa
dc.format.extentxx, 155 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81389
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctricaspa
dc.relation.references[1] H. Gharavi and R. Ghafurian, “Smart grid: The electric energy system of the future,” 2011, Accessed: Nov. 21, 2018. [Online]. Available: https://pdfs.semanticscholar.org/a2b1/e46ddd10e2b15691e33bf47832fad5c988cb.pdf.spa
dc.relation.references[2] M. Amin, “The case for Smart Grid,” Fortnightly, vol. 1, pp. 1–9, 2015, Accessed: Nov. 21, 2018. [Online]. Available: http://www.ourenergypolicy.org/wp-content/uploads/2015/06/20150604091846-Amin-Maaterials-PUF-1503.pdf.spa
dc.relation.references[3] P. Sarmiento, “Planificación Eficiente de Redes Inteligentes (Smart grids) Incluyendo la Gestión Activa de la Demanda: Aplicación a Ecuador.,” 2018.spa
dc.relation.references[4] J. García-Guarín, S. Rivera, and H. Rodriguez, “Revisión REI: realidad en Colombia y expectativas,” V encuentro Int. innovación tecnológica, vol. 5, pp. 1–7, 2018, [Online]. Available: https://eventos.ufpso.edu.co/evento/1383/v-encuentro-internacional-de-innovacion-tecnologica.html.spa
dc.relation.references[5] P. Siano, “Demand response and smart grids—A survey,” Renew. Sustain. Energy Rev., vol. 30, pp. 461–478, Feb. 2014, doi: 10.1016/J.RSER.2013.10.022.spa
dc.relation.references[6] S. Jadid and A. Zakariazadeh, “Energy and reserve scheduling of microgrid using multi-objective optimization,” in 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), 2013, pp. 0660–0660, doi: 10.1049/cp.2013.0865.spa
dc.relation.references[7] J. Sánchez, “Estimación del impacto de las Redes Eléctricas Inteligentes (Smart Grids) en el precio de la electricidad en Colombia,” 2016.spa
dc.relation.references[8] C. Barreto, E. Mojica-Nava, and N. Quijano, “Design of mechanisms for demand response programs,” in Proceedings of the IEEE Conference on Decision and Control, 2013, pp. 1828–1833, doi: 10.1109/CDC.2013.6760148.spa
dc.relation.references[9] J. Soares, M. A. Fotouhi Ghazvini, N. Borges, and Z. Vale, “A stochastic model for energy resources management considering demand response in smart grids,” Electr. Power Syst. Res., vol. 143, pp. 599–610, 2017, doi: 10.1016/j.epsr.2016.10.056.spa
dc.relation.references[10] J. P. Fossati, “Revisión bibliográfica sobre micro redes inteligentes,” Lit. Rev. microgrids, vol. 9, pp. 13–20, 2011, Accessed: Mar. 19, 2019. [Online]. Available: http://www.um.edu.uy/_upload/_descarga/web_descarga_239_Revisinbibliogrficamicroredesinteligentes.-Fossati.pdf.spa
dc.relation.references[11] F. A. Pavas Martinez, O. A. Gonzalez Vivas, and Y. S. Sanchez Rosas, “Cuantificación del ahorro de energía eléctrica en clientes residenciales mediante acciones de gestión de demanda,” Rev. UIS Ing., vol. 16, no. 2, pp. 217–226, 2017, doi: 10.18273/revuin.v16n2-2017020.spa
dc.relation.references[12] F. Quilumba, W. Lee, H. Huang, and R. Szabados, “Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 911–018, 2015, Accessed: Mar. 11, 2019. [Online]. Available:spa
dc.relation.references[13] M. Cortés, O. González, … E. S.-2018 I. P., and undefined 2018, “Opinion Dynamics and Social Incentives Applied to Demand Response Programs,” ieeexplore.ieee.org, Accessed: May 19, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8511794/.spa
dc.relation.references[14] M. Ghazvini, J. Soares, and O. Abrishambaf, “Demand response implementation in smart households,” Energy Build., vol. 143, pp. 129–148, 2017, Accessed: Nov. 21, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S037877881730823X.spa
dc.relation.references[15] C. Cecati, C. Citro, and P. Siano, “Combined Operations of Renewable Energy Systems and Responsive Demand in a Smart Grid,” IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 468–476, Oct. 2011, doi: 10.1109/TSTE.2011.2161624.spa
dc.relation.references[16] J. García, G. L. Álvarez, F. Marín, and J. Moncada, “Veinte años de funcionamiento del Mercado Eléctrico Mayorista en Colombia: algunas reflexiones,” 2015, Accessed: Nov. 21, 2018. [Online]. Available: http://repository.eafit.edu.co/handle/10784/7350.spa
dc.relation.references[17] F. Lezama, J. Soares, Z. Vale, J. Rueda, and M. Wagner, “CEC/GECCO 2019 Competition Evolutionary Computation in Uncertain Environments: A Smart Grid Application,” 2018, Accessed: Nov. 21, 2018. [Online]. Available: http://www.gecad.isep.ipp.pt/WCCI2018-SG-COMPETITION/files/WCCI2018_Guidelines_CISG.pdf.spa
dc.relation.references[18] J. Momoh and L. Mili, Eds., Economic Market Design and Planning for Electric Power Systems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009.spa
dc.relation.references[19] Y. Yang et al., “Review of Information Disclosure in Different Electricity Markets,” Energies, vol. 11, no. 12, p. 3424, Dec. 2018, doi: 10.3390/en11123424.spa
dc.relation.references[20] M. de la CREG, Propuesta para la implementación de un despacho vinculante-GREG-004B. 2016.spa
dc.relation.references[21] J. A. Juan, “Implementación de Mercados Intradiarios de Generación en Colombia,” 2017.spa
dc.relation.references[22] C. Bordons, F. Torres, and L. Valverde, “Gestión óptima de la energía en microrredes con generación renovable,” Rev. Iberoam. Automática e Informática Ind., vol. 12, no. 2, pp. 117–132, 2015, Accessed: Mar. 11, 2019. [Online]. Available: https://polipapers.upv.es/index.php/RIAI/article/view/9384.spa
dc.relation.references[23] J. Yue, Z. Hu, A. Anvari-Moghaddam, and J. Guerrero, “A Multi-Market-Driven Approach to Energy Scheduling of Smart Microgrids in Distribution Networks,” Sustainability, vol. 11, no. 2, pp. 1–16, 2019, Accessed: Mar. 10, 2019. [Online]. Available: https://www.mdpi.com/2071-1050/11/2/301.spa
dc.relation.references[24] J. Arévalo, F. Santos, and S. Rivera, “Application of Analytical Uncertainty Costs of Solar, Wind and Electric Vehicles in Optimal Power Dispatch,” Ingeniería, vol. 22, no. 3, pp. 324–346, 2017, doi: 10.14483/23448393.11673.spa
dc.relation.references[25] S. Manrique-Naranjo, M. Guzman, and S. Rodriguez, “Hybrid inference algorithm by combining genetic programming methods and nonlinear regression techniques,” 2018, Accessed: Nov. 21, 2018. [Online]. Available: https://www.researchgate.net/profile/Sergio_Rivera/publication/328096390_HYBRID_INFERENCE_ALGORITHM_BY_COMBINING_GENETIC_PROGRAMMING_METHODS_AND_NONLINEAR_REGRESSION_TECHNIQUES/links/5bb74a2f4585159e8d86f1d0/HYBRID-INFERENCE-ALGORITHM-BY-COMBINING-GENETIC.spa
dc.relation.references[26] I. Konstantelos, S. Giannelos, and G. Strbac, “Strategic valuation of smart grid technology options in distribution networks,” IEEE Trans. Power Syst., vol. 32(2), pp. 1293–1303, 2017, Accessed: Nov. 21, 2018. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7508459/.spa
dc.relation.references[27] J. Chen, B. Yang, and X. Guan, “Optimal demand response scheduling with Stackelberg game approach under load uncertainty for smart grid,” IEEE SmartGridComm 2012, vol. 1, pp. 546–551, 2012, doi: 10.1109/SmartGridComm.2012.6486042.spa
dc.relation.references[28] T. Sousa, H. Morais, Z. Vale, P. Faria, and J. Soares, “Intelligent Energy Resource Management Considering Vehicle-to-Grid: A Simulated Annealing Approach,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 535–542, Mar. 2012, doi: 10.1109/TSG.2011.2165303.spa
dc.relation.references[29] A. Y. Saber and G. K. Venayagamoorthy, “Resource scheduling under uncertainty in a smart grid with renewables and plug-in vehicles,” IEEE Syst. J., vol. 6, no. 1, pp. 103–109, 2012, doi: 10.1109/JSYST.2011.2163012.spa
dc.relation.references[30] B. M. Radhakrishnan, D. Srinivasan, and R. Mehta, “Fuzzy-Based Multi-Agent System for Distributed Energy Management in Smart Grids,” Int. J. Uncertainty, Fuzziness Knowlege-Based Syst., vol. 24, no. 5, pp. 781–803, Oct. 2016, doi: 10.1142/S0218488516500355.spa
dc.relation.references[31] C. Schwaegerl and L. Tao, “The Microgrids Concept,” in Microgrids, 1st ed., N. D. Hatziargyriou, Ed. Chichester, United Kingdom: John Wiley and Sons Ltd, 2013, pp. 1–24.spa
dc.relation.references[32] H. Liang and W. Zhuang, “Stochastic modeling and optimization in a microgrid: A survey,” Energies, vol. 7, pp. 2027–2050, 2014, doi: 10.3390/en7042027.spa
dc.relation.references[33] R. Brandl, P. Kotsampopoulos, G. Lauss, M. Maniatopoulos, and M. Nuschke, “Advanced Testing Chain Supporting the Validation of Smart Grid Systems and Technologies,” IEEE Work. Complex. Eng., pp. 1–6, 2018.spa
dc.relation.references[34] Y. Zhou, C. Wang, J. Wu, J. Wang, M. Cheng, and G. Li, “Optimal scheduling of aggregated thermostatically controlled loads with renewable generation in the intraday electricity market,” Appl. Energy, vol. 188, pp. 456–465, 2017, doi: 10.1016/j.apenergy.2016.12.008.spa
dc.relation.references[35] J. Felipe and J. Arenas, “Implementación de Mercados Intradiarios de Generación en Colombia,” 2017.spa
dc.relation.references[36] J. Giraldo, A. Cardenas, and N. Quijano, “Integrity Attacks on Real-Time Pricing in Smart Grids: Impact and Countermeasures,” IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2249–2257, Sep. 2017, doi: 10.1109/TSG.2016.2521339. [spa
dc.relation.references[37] T. Strasser, F. Andrén, J. Kathan, and C. Cecati, “A review of architectures and concepts for intelligence in future electric energy systems,” IEEE Trans. Ind. Electron., vol. 62(4), pp. 2424–2438, 2015, Accessed: Nov. 21, 2018. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6915899/.spa
dc.relation.references[38] J. Guacaneme, D. Velasco, and C. Trujillo, “Revisión de las características de sistemas de almacenamiento de energía para aplicaciones en micro redes,” Inf. tecnológica, vol. 25(2), pp. 175–188, 2014, Accessed: Nov. 21, 2018. [Online]. Available: https://scielo.conicyt.cl/scielo.php?pid=S0718-07642014000200020&script=sci_arttext&tlng=en.spa
dc.relation.references[39] T. Hong, P. Wang, and L. White, “Weather station selection for electric load forecasting,” Int. J. Forecast., vol. 31, no. 2, pp. 286–295, 2015, Accessed: Mar. 22, 2019. [Online]. Available: http://blog.drhongtao.com/2018/10/bigdeal-forecasting-competition-2018.html.spa
dc.relation.references[40] S. Vargas, D. Rodriguez, and S. Rivera, “Mathematical Formulation and Numerical Validation of Uncertainty Costs for Controllable Loads,” Rev. Int. Métodos Numéricos para Cálculo y Diseño en Ing., vol. 35, no. 1, Feb. 2019, Accessed: Mar. 06, 2019. [Online]. Available: https://www.scipedia.com/public/Vargas_et_al_2019a#.spa
dc.relation.references[41] F. Lezama, J. Soares, R. Faia, T. Pinto, and Z. Vale, “A New Hybrid-Adaptive Differential Evolution for a Smart Grid Application under Uncertainty,” in 2018 IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings, Jul. 2018, pp. 1–8, doi: 10.1109/CEC.2018.8477808.spa
dc.relation.references[42] B. Matthiss, A. Momenifarahaniy, K. Ohnmeissz, and M. Felderx, “Influence of Demand and Generation Uncertainty on the Operational Efficiency of Smart Grids,” in 7th International IEEE Conference on Renewable Energy Research and Applications, ICRERA 2018, 2018, pp. 751–756, doi: 10.1109/ICRERA.2018.8566733.spa
dc.relation.references[43] A. Nouri, A. Soroudi, and A. Kezne, “Strategic Scheduling in Smart Grids,” IEEE EEEIC, pp. 1–6, 2018.spa
dc.relation.references[44] W. Dickerson et al., “Smart grid measurement uncertainty: Definitional and influence quantity considerations,” in 2018 1st International Colloquium on Smart Grid Metrology, SmaGriMet 2018, Mar. 2018, pp. 1–5, doi: 10.23919/SMAGRIMET.2018.8369831.spa
dc.relation.references[45] A. R. Herrera-Orozco, J. J. Mora-Florez, and J. F. Patiño, “Simulation and Validation of Polynomial Electric Load Model Using ATP,” Sci. Tech., vol. 18, no. 01, pp. 11–18, 2013, Accessed: Aug. 27, 2020. [Online]. Available: http://revistas.utp.edu.co/index.php/revistaciencia/article/view/7571.spa
dc.relation.references[46] D. L. Alvarez, “Dynamic Line Rating State Estimation,” 2017.spa
dc.relation.references[47] B. Gu, Z. Chen, T. Jiv, L. Zhang, Q. Wu, and M. Li, “Quasi-monte Carlo simulation based economic dispatch with wind power integrated,” Innov. Smart Grid Technol., vol. 1, pp. 1–6, 2016, Accessed: Nov. 23, 2018. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7796396/. [spa
dc.relation.references[48] F. Molina, S. Perez, and S. Rivera, “Formulación de funciones de costo de incertidumbre en pequenas centrales hidroeléctricas dentro de una microgrid,” Ing. USBMed, vol. 8, p. 1, 2017, Accessed: Mar. 06, 2019. [Online]. Available: http://www.revistas.usb.edu.co/index.php/IngUSBmed/article/view/2683.spa
dc.relation.references[49] P. P. Verma, D. Srinivasan, K. S. Swarup, and R. Mehta, “A Review of Uncertainty Handling Techniques in Smart Grid,” Int. J. Uncertainty, Fuzziness Knowledge-Based Syst., vol. 26, no. 03, pp. 345–378, Jun. 2018, doi: 10.1142/S0218488518500186. [50spa
dc.relation.references[50] J. Tello-maita and A. Marulanda-guerra, “Modelos de optimización para sistemas de potencia en la evolución hacia redes inteligentes: Una revisión,” DYNA, vol. 84, no. 202, pp. 102–111, 2017, doi: 10.15446/dyna.v84n202.63354.spa
dc.relation.references[51] M. Velasquez, J. Barreiro-Gomez, N. Quijano, and A. Cadena, “Intra-hour microgrid economic dispatch based on model predictive control,” ieeexplore.ieee.org, vol. 1, p. 12, 2019, Accessed: Feb. 09, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8859230/.spa
dc.relation.references[52] M. Di Somma, G. Graditi, E. Heydarian-Forushani, M. Shafie-khah, and P. Siano, “Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects,” Renew. Energy, vol. 116, pp. 272–287, 2018, doi: 10.1016/j.renene.2017.09.074.spa
dc.relation.references[53] B. Mohammadi-Ivatloo, M. Moradi-Dalvand, and A. Rabiee, “Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients,” Electr. Power Syst. Res., vol. 95, pp. 9–18, Feb. 2013, doi: 10.1016/j.epsr.2012.08.005.spa
dc.relation.references[54] M. Basu, “Bee colony optimization for combined heat and power economic dispatch,” Expert Syst. Appl., vol. 38, no. 11, pp. 13527–13531, Mar. 2011, doi: 10.1016/j.eswa.2011.03.067.spa
dc.relation.references[55] M. Basu, “Combined Heat and Power Economic Dispatch by Using Differential Evolution,” Electr. Power Components Syst., vol. 38, no. 8, pp. 996–1004, 2010, doi: 10.1080/15325000903571574.spa
dc.relation.references[56] A. Vasebi, M. Fesanghary, and S. M. T. Bathaee, “Combined heat and power economic dispatch by harmony search algorithm,” Int. J. Electr. Power Energy Syst., vol. 29, no. 10, pp. 713–719, Dec. 2007, doi: 10.1016/j.ijepes.2007.06.006.spa
dc.relation.references[57] Tao Guo, M. I. Henwood, and M. van Ooijen, “An algorithm for combined heat and power economic dispatch,” IEEE Trans. Power Syst., vol. 11, no. 4, pp. 1778–1784, 1996, doi: 10.1109/59.544642.spa
dc.relation.references[59] W. Tushar et al., “Three-Party Energy Management with Distributed Energy Resources in Smart Grid,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2487–2498, 2015, doi: 10.1109/TIE.2014.2341556.spa
dc.relation.references[60] P. Faria, T. Soares, Z. Vale, and H. Morais, “Distributed generation and demand response dispatch for a virtual power player energy and reserve provision,” Renew. Energy, vol. 66, pp. 686–695, Jun. 2014, doi: 10.1016/J.RENENE.2014.01.019. [6spa
dc.relation.references[61] R. Deng, Z. Yang, J. Chen, and M.-Y. Chow, “Load Scheduling With Price Uncertainty and Temporally-Coupled Constraints in Smart Grids,” IEEE Trans. Power Syst., vol. 29, no. 6, pp. 2823–2834, Nov. 2014, doi: 10.1109/TPWRS.2014.2311127.spa
dc.relation.references[62] M. Quashie, C. Marnay, F. Bouffard, and G. Jóos, “Optimal planning of microgrid power and operating reserve capacity,” Appl. Energy, vol. 210, pp. 1229–1236, 2018, Accessed: Mar. 10, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261917310309.spa
dc.relation.references[63] A. Khodaei, S. Bahramirad, and S. Mohammad, “Microgrid planning under uncertainty,” IEEE Trans. 2015, vol. 5, no. 30, pp. 2417–2425, 2015, Accessed: Mar. 10, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6920097/.spa
dc.relation.references[64] A. Valibeygi, A. Habib, and R. de Callafon, “Robust Power Scheduling for Microgrids with Uncertainty in Renewable Energy Generation,” 2019 IEEE Power Energy Soc. Innov. Smart Grid Technol. Conf., vol. 1, no. 1, pp. 1–5, Feb. 2019, Accessed: Mar. 10, 2019. [Online]. Available: http://arxiv.org/abs/1902.07927.spa
dc.relation.references[65] M. Kazemi, B. Mohammadi-Ivatloo, and M. Ehsan, “Risk-constrained strategic bidding of GenCos considering demand response,” IEEE Trans. power Syst., vol. 30, no. 1, pp. 1–9, 2015, Accessed: Mar. 10, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6832632/.spa
dc.relation.references[66] M. Tushar, C. Assi, and M. Uddin, “Smart microgrids: Optimal joint scheduling for electric vehicles and home appliances,” IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 1–12, 2014, Accessed: Mar. 10, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6693776/.spa
dc.relation.references[67] F. Farzan, M. Jafari, R. Masiello, and Y. Lu, “Toward optimal day-ahead scheduling and operation control of microgrids under uncertainty,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 499–507, 2015, Accessed: Mar. 11, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6965654/.spa
dc.relation.references[68] S. Parhizi, A. Khodaei, and M. Shahidehpour, “Market-based versus price-based microgrid optimal scheduling,” IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 615–623, 2018, doi: 10.1109/TSG.2016.2558517.spa
dc.relation.references[69] A. Raab, E. Lauth, K. Strunz, and D. Göhlich, “Implementation Schemes for Electric Bus Fleets at Depots with Optimized Energy Procurements in Virtual Power Plant Operations,” World Electr. Veh., vol. 10, no. 1, pp. 1–14, 2019, Accessed: Mar. 11, 2019. [Online]. Available: https://www.mdpi.com/2032-6653/10/1/5.spa
dc.relation.references[70] I. Naharudinsyah and S. Limmer, “Optimal Charging of Electric Vehicles with Trading on the Intraday Electricity Market,” Energies, vol. 11, no. 6, pp. 1–12, 2018, Accessed: Mar. 11, 2019. [Online]. Available: https://www.mdpi.com/1996-1073/11/6/1416. [spa
dc.relation.references[71] K. Pandya and S. Joshi, “CHAOS enhanced Flower Pollination Algorithm for Optimal Scheduling of Distributed Energy Resources in Smart Grid,” 2018 IEEE Innov. Smart Technol. (ISGT Asia), pp. 705–709, 2018, Accessed: Mar. 11, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8467806/. [spa
dc.relation.references[72] P. Rabanal, “Algoritmos heurísticos y aplicaciones a métodos formales,” 2010.spa
dc.relation.references[73] J. Soares, H. Morais, T. Sousa, Z. Vale, and P. Faria, “Day-Ahead Resource Scheduling Including Demand Response for Electric Vehicles,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 596–605, Mar. 2013, doi: 10.1109/TSG.2012.2235865.spa
dc.relation.references[74] F. Lezama, J. Soares, Z. Vale, J. Rueda, S. Rivera, and I. Elrich, “2017 IEEE competition on modern heuristic optimizers for smart grid operation: Testbeds and results,” Swarm Evol. Comput., vol. 44, pp. 420–427, Feb. 2019, doi: 10.1016/J.SWEVO.2018.05.005.spa
dc.relation.references[75] J. Torres-Riveros and S. Rivera-Rodriguez, “Optimal energy dispatch in multiple periods of time considering the variability and uncertainty of generation from renewable sources,” Prospectiva, vol. 16, no. 2, pp. 75–81, 2018, doi: 10.15665/rp.v16i2.1642.spa
dc.relation.references[76] X. Z. and S. L. Y. Zhou, Z. Zhou, H. Xu, X. Zhang, “Adjustment of wave front time and overshoot in lightning impulse test for transformer insulation,” 2017 IEEE Conf. Electr. Insul. Dielectr. Phenom., pp. 270–273, 2017, doi: 10.1109/CEIDP.2017.8257526.spa
dc.relation.references[77] V. Miranda and R. Alves, “Differential Evolutionary Particle Swarm Optimization (DEEPSO): A successful hybrid,” in Proceedings - 1st BRICS Countries Congress on Computational Intelligence, BRICS-CCI 2013, 2013, pp. 368–374, doi: 10.1109/BRICS-CCI-CBIC.2013.68.spa
dc.relation.references[78] E. de V. Fortes, L. H. Macedo, P. B. de Araujo, and R. Romero, “A VNS algorithm for the design of supplementary damping controllers for small-signal stability analysis,” Int. J. Electr. Power Energy Syst., vol. 94, pp. 41–56, 2018, doi: 10.1016/j.ijepes.2017.06.017.spa
dc.relation.references[79] M. Tuballa and M. A. Reviews, “A review of the development of Smart Grid technologies,” Renew. Sustain. Energy, vol. 59, pp. 710–715, 2016, Accessed: Mar. 04, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1364032116000393.spa
dc.relation.references[80] F. Lezama, L. E. Sucar, E. M. de Cote, J. Soares, and Z. Vale, “Differential evolution strategies for large-scale energy resource management in smart grids,” Proc. Genet. Evol. Comput. Conf. Companion - GECCO ’17, pp. 1279–1286, 2017, doi: 10.1145/3067695.3082478.spa
dc.relation.references[81] A. R. Gonçalves Soares, “Integrated Management of Residential Energy Resources: Models, Algorithms and Application,” 2016.spa
dc.relation.references[82] Y.-Y. Hong et al., “Optimizing Capacities of Distributed Generation and Energy Storage in a Small Autonomous Power System Considering Uncertainty in Renewables,” Energies, vol. 8, no. 4, pp. 2473–2492, Mar. 2015, doi: 10.3390/en8042473.spa
dc.relation.references[83] J. Delgado Rivera, “Redes neuronales de propagación inversa,” Ing. e Investig., no. 27, pp. 48–51, 1992, Accessed: Aug. 28, 2020. [Online]. Available: https://revistas.unal.edu.co/index.php/ingeinv/article/view/20764.spa
dc.relation.references[84] O. Dzobo, A. M. Shehata, and C. L. Azimoh, “Optimal economic load dispatch in smart grids considering uncertainty,” in 2017 IEEE AFRICON, Sep. 2017, pp. 1277–1282, doi: 10.1109/AFRCON.2017.8095666.spa
dc.relation.references[85] P. Baratto-Callejas, “Implementación de un programa de respuesta de la demanda de energía eléctrica en un mercado de clientes no regulados en Colombia,” Rev. maest. derecho econ. Bogotá (Colombia N°, vol. 6, no. 6, pp. 259–292, 2010, [Online]. Available: https://search.proquest.com/openview/f9c6ca7d582333cfb170931ebf23db67/1?pq-origsite=gscholar&cbl=866386.spa
dc.relation.references[86] P. Rodilla and P. Mastropietro, Definición de las características de funcionamiento del despacho vinculante, los mercados intradiarios y el mecanismo de balance. 2018.spa
dc.relation.references[87] J. Garcia-Guarin, S. Rivera, and H. Rodriguez, “Smart grid review: Reality in Colombia and expectations,” J. Phys. Conf. Ser., vol. 1257, no. 1, p. 012011, Jun. 2019, doi: 10.1088/1742-6596/1257/1/012011.spa
dc.relation.references[88] J. Garcia Guarin, F. Lezama, J. Soares, and S. Rivera, “Operation scheduling of smart grids considering stochastic uncertainty modelling,” Far East J. Math. Sci., vol. 1, no. 115, pp. 77–98, 2019, doi: 10.17654/MS115010077.spa
dc.relation.references[89] J. Garcia, D. Alvarez, and S. Rivera, “Ensemble Based Optimization for Electric Demand Forecast: Genetic Programming and Heuristic Algorithms,” Rev. int. métodos numér. cálc. diseño ing., vol. 1, pp. 1–13, 2020, doi: 10.23967/j.rimni.2020.07.001.spa
dc.relation.references[90] J. Garcia-Guarin, J. Guerrero, D. Alvarez, and S. Rivera, “Multi-objective optimization of smart grids considering environments with uncertainty,” in Asia-Pacific Solar Research Conference, 2019, vol. 1409, no. 1, p. 2, Accessed: Feb. 19, 2020. [Online]. Available: http://apvi.org.au/solar-research-conference/wp-content/uploads/2019/12/122_GarciaJulian_DI_2019.pdf.spa
dc.relation.references[91] J. Garcia-Guarin, S. Rivera, and L. Trigos, “Multiobjective optimization of smart grids considering market power,” J. Phys. Conf. Ser., vol. 1409, p. 012006, Nov. 2019, doi: 10.1088/1742-6596/1409/1/012006.spa
dc.relation.references[92] J. Garcia-Guarin, W. Infante, J. Ma, D. Alvarez, and S. Rivera, “Optimal Scheduling of Smart Microgrids Considering Electric Vehicle Battery Swapping Stations,” Int. J. Electr. Comput. Eng., vol. 10, no. 5, pp. 5093–5107, 2020.spa
dc.relation.references[93] P. J. García-Guarín, J. Cantor-López, C. Cortés-Guerrero, M. A. Guzmán-Pardo, and S. Rivera, “Implementación del algoritmo VNS-DEEPSO para el despacho de energía en redes distribuidas inteligentes,” INGE CUC, vol. 15, no. 1, pp. 142–154, 2019, doi: 10.17981/ingecuc.15.1.2019.13.spa
dc.relation.references[94] J. Garcia-Guarin et al., “Smart microgrids operation considering a variable neighborhood search: The differential evolutionary particle swarm optimization algorithm,” Energies, vol. 12, no. 16, p. 3149, Aug. 2019, doi: 10.3390/en12163149.spa
dc.relation.references[95] J. Garcia-Guarin, D. Alvarez, A. Bretas, and S. Rivera, “Schedule Optimization in A Smart Microgrid Considering Demand Response Constraints,” Energies, vol. 13, no. 17, p. 4567, Sep. 2020, doi: 10.3390/en13174567.spa
dc.relation.references[96] J. Garcia-Guarin, W. Infante, D. Alvarez, and S. Rivera, “Scheduling optimization for smart microgrids considering twolevels transactions of electric vehicles and energy markets,” J. Phys. Conf. Ser., vol. 1708, no. 1, p. 012019, Dec. 2020, doi: 10.1088/1742-6596/1708/1/012019.spa
dc.relation.references[97] J. Garcia-Guarin, M. Duran-Pinzón, J. Paez-Arango, and S. Rivera, “Energy planning for aquaponics production considering intraday markets,” Arch. Electr. Eng., vol. 69, no. 1, pp. 89–100, 2020, doi: 10.24425/aee.2020.131760.spa
dc.relation.references[98] J. Garcia-Guarin, D. Alvarez, and S. Rivera, “Uncertainty Costs Optimization of Residential Solar Generators Considering Intraday Markets,” Electron. 2021, vol. 10, no. 22, p. 2826, Nov. 2021, doi: 10.3390/electronics10222826.spa
dc.relation.references[99] J. H. Zhao, F. Wen, Z. Y. Dong, Y. Xue, and K. P. Wong, “Optimal dispatch of electric vehicles and wind power using enhanced particle swarm optimization,” IEEE Trans. Ind. Informatics, vol. 8, no. 4, pp. 889–899, 2012, doi: 10.1109/TII.2012.2205398.spa
dc.relation.references[100] N. Nikmehr and S. Najafi Ravadanegh, “Optimal Power Dispatch of Multi-Microgrids at Future Smart Distribution Grids,” IEEE Trans. Smart Grid, vol. 6, no. 4, pp. 1648–1657, Jul. 2015, doi: 10.1109/TSG.2015.2396992.spa
dc.relation.references[101] J. A. Botero, J. J. Garcia, and L. G. Vélez, Mecanismos utilizados para monitorear el poder de mercado en mercados eléctricos: reflexiones para Colombia, vol. 32, no. 60. Departamento de Economía, Universidad Nacional de Colombia, 2013.spa
dc.relation.references[102] R. Zhang, S. Wu, Z. Cao, J. Lu, and F. Gao, “A Systematic Min-Max Optimization Design of Constrained Model Predictive Tracking Control for Industrial Processes against Uncertainty,” IEEE Trans. Control Syst. Technol., vol. 26, no. 6, pp. 2157–2164, Nov. 2018, doi: 10.1109/TCST.2017.2748059.spa
dc.relation.references[103] M. Gendreau and J. Potvin, Handbook of Metaheuristics, vol. 2. Boston, MA: Springer US, 2010. [spa
dc.relation.references[104] D. Dabhi and K. Pandya, “Enhanced Velocity Differential Evolutionary Particle Swarm Optimization for Optimal Scheduling of a Distributed Energy Resources With Uncertain Scenarios,” IEEE Access, vol. 8, pp. 27001–27017, Jan. 2020, doi: 10.1109/access.2020.2970236.spa
dc.relation.references[105] J. Soares, C. Lobo, M. Silva, H. Morais, and Z. Vale, “Relaxation of non-convex problem as an initial solution of meta-heuristics for energy resource management,” in IEEE Power and Energy Society General Meeting, Sep. 2015, vol. 2015-September, doi: 10.1109/PESGM.2015.7286391.spa
dc.relation.references[106] J. Soares, N. Borges, C. Lobo, and Z. Vale, “VPP energy resources management considering emissions: The case of Northern Portugal 2020 to 2050,” in Proceedings - 2015 IEEE Symposium Series on Computational Intelligence, SSCI 2015, 2015, pp. 1259–1266, doi: 10.1109/SSCI.2015.180.spa
dc.relation.references[107] T. Sousa, H. Morais, R. Castro, and Z. Vale, “A new heuristic providing an effective initial solution for a simulated annealing approach to energy resource scheduling in smart grids,” in IEEE Symposium on Computational Intelligence Applications in Smart Grid, CIASG, Jan. 2015, vol. 2015-January, no. January, doi: 10.1109/CIASG.2014.7011563. [spa
dc.relation.references[108] T. Sousa, H. Morais, R. Castro, and Z. Vale, “Evaluation of different initial solution algorithms to be used in the heuristics optimization to solve the energy resource scheduling in smart grids,” Appl. Soft Comput. J., vol. 48, pp. 491–506, Nov. 2016, doi: 10.1016/j.asoc.2016.07.028.spa
dc.relation.references[109] J. Garcia-Guarin, J. Cantor, C. Cortés, M. A. Guzmán, and S. Rivera Rodríguez, “Scheduling of distributed smart grid elements considering uncertainty with the algorithm VNS-DEEPSO,” Inge Cuc, vol. 1, pp. 1–10, 2019.spa
dc.relation.references[110] M. Ramli and H. Bouchekara, “Solving the Problem of Large-Scale Optimal Scheduling of Distributed Energy Resources in Smart Grids Using an Improved Variable Neighborhood Search,” IEEE Access, vol. XX, p. 15, 2020, doi: 10.1109/ACCESS.2020.2986895.spa
dc.relation.references[111] X. Xu, H. Rong, M. Trovati, M. Liptrott, and N. Bessis, “CS-PSO: chaotic particle swarm optimization algorithm for solving combinatorial optimization problems,” Soft Comput., vol. 22, no. 3, pp. 783–795, Feb. 2018, doi: 10.1007/s00500-016-2383-8.spa
dc.relation.references[112] N. Dong, X. Fang, A. W.-M. P. in Engineering, and undefined 2016, “A novel chaotic particle swarm optimization algorithm for parking space guidance,” hindawi.com, Accessed: Mar. 29, 2020. [Online]. Available: https://www.hindawi.com/journals/mpe/2016/5126808/abs/.spa
dc.relation.references[113] K. Du, M. S.-T. and A. I. by Nature;, and undefined 2016, “Search and optimization by metaheuristics,” Springer, Accessed: Mar. 29, 2020. [Online]. Available: https://link.springer.com/content/pdf/10.1007/978-3-319-41192-7.pdf.spa
dc.relation.references[114] S. Hui, P. S.-I. transactions on cybernetics, and undefined 2015, “Ensemble and arithmetic recombination-based speciation differential evolution for multimodal optimization,” ieeexplore.ieee.org, Accessed: Mar. 29, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7059242/.spa
dc.relation.references[115] Y. Zhao, J. Cao, X. Lai, … C. Y.-2015 34th C. C., and undefined 2015, “Ensemble based constrained-optimization extreme learning machine for landmark recognition,” ieeexplore.ieee.org, Accessed: Mar. 29, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7260239/.spa
dc.relation.references[116] X. Li, S. Ma, Y. W.-I. Access, and undefined 2016, “Multi-population based ensemble mutation method for single objective bilevel optimization problem,” ieeexplore.ieee.org, Accessed: Mar. 29, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7590112/.spa
dc.relation.references[117] F. Lezama, J. Soares, Z. Vale, and J. Rueda, “Competition GECAD WCCI2018 Evolutionary Computation in Uncertain Environments: A Smart Grid Application,” IEEE World Congress on Computational Intelligence 2018 – WCCI 2018 Congress on Evolutionary Computation – CEC 2018, 2018. http://www.gecad.isep.ipp.pt/WCCI2018-SG-COMPETITION/ (accessed Mar. 31, 2020).spa
dc.relation.references[118] V. Miranda and N. Fonseca, “EPSO - best-of-two-worlds meta-heuristic applied to power system problems,” in Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600), 2002, vol. 2, pp. 1080–1085, doi: 10.1109/CEC.2002.1004393.spa
dc.relation.references[119] V. Miranda and N. Fonseca, “EPSO-evolutionary particle swarm optimization, a new algorithm with applications in power systems,” IEEE/PES Transm. Distrib. Conf. Exhib., vol. 2, no. 1, pp. 745–750, 2002, Accessed: Mar. 23, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/1177567/.spa
dc.relation.references[120] V. Palakonda, N. H. Awad, R. Mallipeddi, M. Z. Ali, K. C. Veluvolu, and P. N. Suganthan, “Differential Evolution with Stochastic Selection for Uncertain Environments: A Smart Grid Application,” Sep. 2018, doi: 10.1109/CEC.2018.8477809.spa
dc.relation.references[121] R. Storn, “Differential evolution design of an IIR-filter,” in Proceedings of the IEEE Conference on Evolutionary Computation, 1996, pp. 268–273, doi: 10.1109/icec.1996.542373. [spa
dc.relation.references122] M. Venu, R. Mallipeddi, and P. Suganthan, “Fiber Bragg grating sensor array interrogation using differential evolution,” Optoelectron. Adv. Mater., vol. 11, no. 2, pp. 682–685, 2008.spa
dc.relation.references[123] R. Mallipeddi and P. Suganthan, “Unit commitment - A survey and comparison of conventional and nature inspired algorithms,” Bio-Inspired Comput., vol. 6, no. 2, pp. 71–90, 2014.spa
dc.relation.references[124] S. Das and P. N. Suganthan, “Differential Evolution: A Survey of the State-of-the-Art,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4–31, Feb. 2011, doi: 10.1109/TEVC.2010.2059031.spa
dc.relation.references[125] X. Qiu, J. X. Xu, Y. Xu, and K. C. Tan, “A New Differential Evolution Algorithm for Minimax Optimization in Robust Design,” IEEE Trans. Cybern., vol. 48, no. 5, pp. 1355–1368, May 2018, doi: 10.1109/TCYB.2017.2692963.spa
dc.relation.references[126] N. Johari, A. Mohd, N. Mustaffa, and A. Udin, “Firefly Algorithm for Optimization Problem,” Appl. Mech. Mater. 421, vol. 421, no. 1, pp. 512–517, 2013, doi: 10.4028/www.scientific.net/AMM.421.512.spa
dc.relation.references[127] G. S. Chaurasia, A. K. Singh, S. Agrawal, and N. K. Sharma, “A meta-heuristic firefly algorithm based smart control strategy and analysis of a grid connected hybrid photovoltaic/wind distributed generation system,” Sol. Energy, vol. 150, pp. 265–274, Jul. 2017, doi: 10.1016/j.solener.2017.03.079.spa
dc.relation.references[128] S. Mohammadi, S. Soleymani, and B. Mozafari, “Scenario-based stochastic operation management of MicroGrid including Wind, Photovoltaic, Micro-Turbine, Fuel Cell and Energy Storage Devices,” Int. J. Electr. Power Energy Syst., vol. 54, pp. 525–535, Jan. 2014, doi: 10.1016/j.ijepes.2013.08.004.spa
dc.relation.references[129] Y. Sun, G. Qi, Z. Wang, B. Wyk, and Y. Haman, “Chaotic Particle Swarm Optimization,” Genet. Evol. Comput. Conf. GEC Summit 2009, vol. 1, no. 1, pp. 1–6, 2009, doi: 10.1145/1543834.1543902.spa
dc.relation.references[130] Ma, Yuan, Han, Sun, and Ma, “Improved Chaotic Particle Swarm Optimization Algorithm with More Symmetric Distribution for Numerical Function Optimization,” Symmetry (Basel)., vol. 11, no. 7, p. 876, Jul. 2019, doi: 10.3390/sym11070876.spa
dc.relation.references[131] A. Biju, T. Victoire, and K. Mohanasundaram, “An Improved Differential Evolution Solution for Software Project Scheduling Problem,” Hindawi Publ. Corp. Sci. world J., vol. 1, no. 1, pp. 1–9, 2015, doi: 10.1155/2015/232193.spa
dc.relation.references[132] R. Faia, T. Pinto, Z. Vale, and J. M. Corchado, “Hybrid approach based on particle swarm optimization for electricity markets participation,” Energy Informatics, vol. 2, no. 1, p. 1, Dec. 2019, doi: 10.1186/s42162-018-0066-7.spa
dc.relation.references[133] A. S. Bouhouras, P. A. Gkaidatzis, and D. P. Labridis, “Optimal application order of network reconfiguration and ODGP for loss reduction in distribution networks,” Jul. 2017, doi: 10.1109/EEEIC.2017.7977443.spa
dc.relation.references[134] P. Gkaidatzis, A. Bouhouras, K. Sgouras, D. Doukas, G. Christoforidis, and D. Labridis, “Efficient RES Penetration under Optimal Distributed Generation Placement Approach,” Energies, vol. 12, no. 7, p. 1250, Apr. 2019, doi: 10.3390/en12071250.spa
dc.relation.references[135] K. Parsopoulos and M. Vrahatis, “UPSO: A Unified Particle Swarm Optimization Scheme,” Int. Conf. Comput. Methods Sci. Eng. 2004, vol. 1, pp. 868–873, 2004, doi: 10.1201/9780429081385-222.spa
dc.relation.references[136] P. A. Gkaidatzis, A. S. Bouhouras, D. I. Doukas, K. I. Sgouras, and D. P. Labridis, “Application and evaluation of UPSO to ODGP in radial Distribution Networks,” in International Conference on the European Energy Market, EEM, Jul. 2016, vol. 2016-July, doi: 10.1109/EEM.2016.7521223.spa
dc.relation.references[137] P. A. Gkaidatzis, D. I. Doukas, D. P. Labridis, and A. S. Bouhouras, “Comparative analysis of heuristic techniques applied to ODGP,” Jul. 2017, doi: 10.1109/EEEIC.2017.7977444.spa
dc.relation.references[138] G. A. Bula, C. Prodhon, F. A. Gonzalez, H. M. Afsar, and N. Velasco, “Variable neighborhood search to solve the vehicle routing problem for hazardous materials transportation,” J. Hazard. Mater., vol. 324, pp. 472–480, Feb. 2017, doi: 10.1016/j.jhazmat.2016.11.015.spa
dc.relation.references[139] M. Bazaraa, H. Sherali, and C. Shetty, “Nonlinear programming: theory and algorithms,” 2013, Accessed: Apr. 01, 2020. [Online]. Available: https://books.google.com/books?hl=es&lr=&id=nDYz-NIpIuEC&oi=fnd&pg=PT10&ots=qNnR4iphzm&sig=d62LCqeKIp1JOT6VmYYijPPfmgQ.spa
dc.relation.references[140] P. Hansen and N. Mladenović, “Variable neighborhood search: Principles and applications,” Eur. J. Oper. Res., vol. 130, no. 3, pp. 449–467, May 2001, doi: 10.1016/S0377-2217(00)00100-4.spa
dc.relation.references[141] M. S. Bazaraa, “An efficient cyclic coordinate method for optimizing penalty functions,” Nav. Res. Logist. Q., vol. 22, no. 2, pp. 399–404, Jun. 1975, doi: 10.1002/nav.3800220215.spa
dc.relation.references[142] M. Subasi, N. Yildirim, and B. Yildiz, “An improvement on Fibonacci search method in optimization theory,” Appl. Math. Comput., vol. 147, no. 3, pp. 893–901, Jan. 2004, doi: 10.1016/S0096-3003(02)00828-7.spa
dc.relation.references[143] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proc. ICNN’95 - Int. Conf. Neural Networks, vol. 4, no. 1, pp. 1942–1948, 1995, doi: 10.1109/ICNN.1995.488968.spa
dc.relation.references[144] D. Montgomery, Design and Analysis of Experiments Eighth Edition, vol. 3. 2013.spa
dc.relation.references[145] H. Abdi and L. Williams, “Tukeys honestly signi_cant difference (HSD) test,” Encycl. Res. Des., pp. 1–5, 2010, [Online]. Available: https://personal.utdallas.edu/~herve/abdi-HSD2010-pretty.pdf.spa
dc.relation.references[146] H. Harter, “Critical values for Duncan’s new multiple range test,” Biometrics, vol. 16, no. 4, pp. 671–685, 1960.spa
dc.relation.references[147] F. S. Molina Sanchez, S. J. Pérez Sichacá, and S. R. Rivera Rodriguez, “Formulación de Funciones de Costo de Incertidumbre en Pequeñas Centrales Hidroeléctricas dentro de una Microgrid,” Ing. USBMed, vol. 8, no. 1, pp. 29–36, 2017, doi: 10.21500/20275846.2683.spa
dc.relation.references[148] J. C. Arevalo, F. Santos, and S. Rivera, “Uncertainty cost functions for solar photovoltaic generation, wind energy generation, and plug-in electric vehicles: Mathematical expected value and verification by Monte Carlo simulation,” Int. J. Power Energy Convers., vol. 10, no. 2, pp. 171–207, 2019, doi: 10.1504/IJPEC.2019.098621.spa
dc.relation.references[149] A. Sanchez, A. Romero, G. Rattá, and S. Rivera, “Smart charging of PEVs to reduce the power transformer loss of life,” in 2017 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2017, 2017, vol. 2017-Janua, no. 2, pp. 1–6, doi: 10.1109/ISGT-LA.2017.8126729.spa
dc.relation.references[150] J. D. Bastidas Rodríguez, C. A. Ramos Paja, and E. Franco Mejía, Modeling and parameter calculation of photovoltaic fields in irregular weather conditions, vol. 17, no. 1. Universidad Distrital Francisco Jose de Caldas, 2012.spa
dc.relation.references[151] T. P. Chang, “Investigation on frequency distribution of global radiation using different probability density functions,” Int. J. Appl. Sci. Eng., vol. 8, no. 2, pp. 99–107, 2010, Accessed: Mar. 30, 2019. [Online]. Available: https://www.cyut.edu.tw/~ijase/2010/8(2)/1_018002.pdf.spa
dc.relation.references[152] S. Surender Reddy, P. R. Bijwe, and A. R. Abhyankar, “Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period,” IEEE Syst. J., vol. 9, no. 4, pp. 1440–1451, Dec. 2015, doi: 10.1109/JSYST.2014.2325967.spa
dc.relation.references[153] E. Abramova and D. Bunn, “Forecasting the Intra-Day Spread Densities of Electricity Prices,” Energies, vol. 13, no. 3, p. 687, Feb. 2020, doi: 10.3390/en13030687.spa
dc.relation.references[154] J. Soares, B. Canizes, M. A. F. Ghazvini, Z. Vale, and G. K. Venayagamoorthy, “Two-Stage Stochastic Model Using Benders’ Decomposition for Large-Scale Energy Resource Management in Smart Grids,” IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5905–5914, Nov. 2017, doi: 10.1109/TIA.2017.2723339.spa
dc.relation.references[155] S. Fattler and C. Pellinger, “The value of flexibility and the effect of an integrated European Intraday-Market,” in International Conference on the European Energy Market, EEM, Jul. 2016, vol. 2016-July, doi: 10.1109/EEM.2016.7521195.spa
dc.relation.references[156] L. Xin, “Effectiveness of the intraday filter trading,” Sep. 2013, doi: 10.1109/ICEMSI.2013.6913989.spa
dc.relation.references[157] Automaker, “EVAdoption,” Analyzing Key Factors That Will Drive Mass Adoption of Electric Vehicles, 2019. https://evadoption.com/ev-sales/evs-percent-of-vehicle-sales-by-brand/ (accessed Dec. 29, 2019).spa
dc.relation.references[158] AEMO, “Electricity price and demand,” Australian Energy Market Operator-, 2019. https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Data-dashboard (accessed Dec. 29, 2019).spa
dc.relation.references[159] W. Infante, J. Ma, X. Han, and A. Liebman, “Optimal Recourse Strategy for Battery Swapping Stations Considering Electric Vehicle Uncertainty,” IEEE Trans. Intell. Transp. Syst., vol. 1, no. 1, pp. 1–11, 2019, doi: 10.1109/TITS.2019.2905898.spa
dc.relation.references[160] H. Liu, Y. Zhang, S. Ge, C. Gu, and F. Li, “Day-Ahead Scheduling for an Electric Vehicle PV-Based Battery Swapping Station Considering the Dual Uncertainties,” IEEE Access, vol. 7, pp. 115625–115636, 2019, doi: 10.1109/ACCESS.2019.2935774.spa
dc.relation.references[161] M. Alipour, K. Zare, and B. Mohammadi-Ivatloo, “Short-term scheduling of combined heat and power generation units in the presence of demand response programs,” Energy, vol. 71, pp. 289–301, Jul. 2014, doi: 10.1016/j.energy.2014.04.059.spa
dc.relation.references[162] J. Aghaei and M.-I. Alizadeh, “Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems),” Energy, vol. 55, pp. 1044–1054, Jun. 2013, doi: 10.1016/j.energy.2013.04.048.spa
dc.relation.references[163] J. Owens, “Tesla motors to try out battery-swap station,” Bay Area News Group, 2014. https://www.eastbaytimes.com/2014/12/19/tesla-motors-to-try-out-battery-swap-station/ (accessed Mar. 04, 2019).spa
dc.relation.references[164] M. R. Sarker, H. Pandžić, and M. A. Ortega-Vazquez, “Optimal operation and services scheduling for an electric vehicle battery swapping station,” IEEE Trans. Power Syst., vol. 30, no. 2, pp. 901–910, Mar. 2015, doi: 10.1109/TPWRS.2014.2331560.spa
dc.relation.references[165] M. Silva, H. Morais, T. Sousa, and Z. Vale, “Energy resources management in three distinct time horizons considering a large variation in wind power,” EWE Annu. event 2013, vol. 1, no. 1, p. 10, 2013, Accessed: Mar. 27, 2020. [Online]. Available: https://www.researchgate.net/publication/264974366_Energy_resources_management_in_three_distinct_time_horizons_considering_a_large_variation_in_wind_power.spa
dc.relation.references[166] J. Soares, M. A. Fotouhi Ghazvini, M. Silva, and Z. Vale, “Multi-dimensional signaling method for population-based metaheuristics: Solving the large-scale scheduling problem in smart grids,” Swarm Evol. Comput., vol. 29, pp. 13–32, Aug. 2016, doi: 10.1016/j.swevo.2016.02.005.spa
dc.relation.references[167] M. Hemmati, … M. A.-E. V. in E., and undefined 2020, “Optimal scheduling of smart Microgrid in presence of battery swapping station of electrical vehicles,” Springer, Accessed: Apr. 13, 2020. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-34448-1_10.spa
dc.relation.references[168] M. Mahoor, Z. S. Hosseini, and A. Khodaei, “Least-cost operation of a battery swapping station with random customer requests,” Energy, vol. 172, pp. 913–921, 2019, doi: 10.1016/j.energy.2019.02.018.spa
dc.relation.references[169] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Transactions on Power Electronics, vol. 28, no. 5. pp. 2151–2169, 2013, doi: 10.1109/TPEL.2012.2212917.spa
dc.relation.references[170] J. Ferreira, “Mobi-System: towards an information system to support sustainable mobility with electric vehicle integration,” Minho Escola de Engenharia, 2013.spa
dc.relation.references[171] Y. Cheng and C. Zhang, “Configuration and operation combined optimization for EV battery swapping station considering PV consumption bundling,” Prot. Control Mod. Power Syst., vol. 2, no. 1, pp. 1–18, Dec. 2017, doi: 10.1186/s41601-017-0056-y.spa
dc.relation.references[172] T. Li et al., “An optimal design and analysis of a hybrid power charging station for electric vehicles considering uncertainties,” in Proceedings: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, Dec. 2018, pp. 5147–5152, doi: 10.1109/IECON.2018.8592855.spa
dc.relation.references[173] J. Li, X. Tan, and B. Sun, “Optimal Power Dispatch of a Centralized Electric Vehicle Battery Charging Station with Renewables,” IET J., vol. 12, no. 5, pp. 579–585, 2018, doi: 10.1049/iet-com.2017.0610.spa
dc.relation.references[174] E. Naderi, A. Azizivahed, H. Narimani, M. Fathi, and M. R. Narimani, “A comprehensive study of practical economic dispatch problems by a new hybrid evolutionary algorithm,” Appl. Soft Comput. J., vol. 61, pp. 1186–1206, 2017, doi: 10.1016/j.asoc.2017.06.041.spa
dc.relation.references[175] A. Najafi et al., “Uncertainty-based models for optimal management of energy hubs considering demand response,” Energies, vol. 12, no. 8, p. 1413, Apr. 2019, doi: 10.3390/en12081413.spa
dc.relation.references[176] J. Soares, M. Silva, B. Canizes, and Z. Vale, “MicroGrid der control including EVs in a residential area,” in 2015 IEEE Eindhoven PowerTech, PowerTech 2015, Aug. 2015, pp. 1–6, doi: 10.1109/PTC.2015.7232512.spa
dc.relation.references[177] F. Lezama, J. Soares, P. Hernandez-Leal, M. Kaisers, T. Pinto, and Z. Vale, “Local Energy Markets: Paving the Path Toward Fully Transactive Energy Systems,” IEEE Trans. Power Syst., vol. 34, no. 5, pp. 4081–4088, 2019, doi: 10.1109/TPWRS.2018.2833959.spa
dc.relation.references[178] B. Canizes, M. Silva, P. Faria, S. Ramos, and Z. Vale, “Resource scheduling in residential microgrids considering energy selling to external players,” 2015, doi: 10.1109/PSC.2015.7101700.spa
dc.relation.references[179] J. Soares, B. Canizes, C. Lobo, Z. Vale, and H. Morais, “Electric vehicle scenario simulator tool for smart grid operators,” Energies, vol. 5, no. 6, pp. 1881–1899, 2012, doi: 10.3390/en5061881.spa
dc.relation.references[180] D. Wackerly, W. Mendenhall, and R. Scheaffer, Estadística Matemática con Aplicaciones 7 ed. 2010.spa
dc.relation.references[181] W. Cox and T. Considdine, “Energy, micromarkets, and microgrids,” Grid-interop, vol. 1, no. 1, pp. 1–8, 2011.spa
dc.relation.references[182] S. Choi, S. Park, and H. M. Kim, “The application of the 0-1 knapsack problem to the load-shedding problem in microgrid operation,” in Communications in Computer and Information Science, 2011, vol. 256 CCIS, pp. 227–234, doi: 10.1007/978-3-642-26010-0_28.spa
dc.relation.references[183] M. S. Sapre, H. Patel, K. Vaishnani, R. Thaker, and A. S. Shastri, “Solution to small size 0–1 knapsack problem using cohort intelligence with educated approach,” in Studies in Computational Intelligence, vol. 828, Springer Verlag, 2019, pp. 137–149.spa
dc.relation.references[184] A. Trigos, J. Garcia-Guarin, and E. Blanco, “Design of a PID control for a prototype of an automated GMAW welding bench,” J. Phys. Conf. Ser., vol. 1257, no. 1, pp. 1–9, 2019, doi: 10.1088/1742-6596/1257/1/012001.spa
dc.relation.references[185] K. Ogata, Modern control engineering. 2002.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.lembINTELIGENCIA ARTIFICIAL
dc.subject.lembArtificial intelligence
dc.subject.lembRenewable energy sources
dc.subject.lembRECURSOS ENERGETICOS RENOVABLES
dc.subject.proposalSmart microgrideng
dc.subject.proposalintraday marketseng
dc.subject.proposalheuristic optimizationeng
dc.subject.proposalMicrorredes inteligentesspa
dc.subject.proposalMercados intradíaspa
dc.subject.proposalOptimización heurísticaspa
dc.titleOperational planning of smart microgrids considering intraday marketseng
dc.title.translatedPlanificación operativa de microrredes inteligentes considerando mercados intradiariosspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleProyecto 785spa
oaire.fundernameColcienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis1052388958.pdf
Tamaño:
3.75 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: