Influence of the micro-geometry of a scaffold for bone regeneration on the stresses of the newly formed tissue

dc.contributor.advisorCortés Rodríguez, Carlos Julio
dc.contributor.advisorBoccaccio, Antonio
dc.contributor.authorRodríguez Montaño, Óscar Libardo
dc.contributor.researchgroupGrupo de Investigación en Biomecánica / Universidad Nacional de Colombia Gibm-Uncbspa
dc.contributor.sponsorMINCIENCIAS
dc.date.accessioned2022-02-14T14:37:50Z
dc.date.available2022-02-14T14:37:50Z
dc.date.issued2021-12-17
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractScaffolds for tissue engineering are porous devices that have gain an enormous attention in the last decades for multiple disciplines, as solution to help the repair process that cannot heal spontaneously by natural mechanisms. Since the in vitro and in vivo procedures test the different key factors in the design and its outcomes, in silico research brings an unbeatable tool for understanding the processes that occur within these devices and how different design variables will influence the final result of the treatment. It is well known that the biomechanical cues are relevant in the bone repair processes and those are related to the stimuli transmitted to the repair environment, as the callus in a normal healing process, or to the support structure, such as orthopedic fixation devices and/or the scaffold to help the regeneration process. Researchers in the last decades have made efforts to characterize the favorable biophysical stimuli to the formation of bone and other types of tissue. Different geometric configurations of the scaffold microstructure can transmit the loads to the newly formed tissue in different ways, depending on the topology of the microstructure, but it is not clear how this process takes place during the regeneration, and moreover, how it changes if the biophysical environment is changing, as a consequence of the scaffold degradation. However, it has been demonstrated that there are more favorable scaffold micro-geometries to the bone healing process than others. The general aim of this research was to investigate computationally, how the micro-geometry of scaffolds for bone regeneration influences the stresses on the newly formed tissue. To achieve this objective, an in silico framework based on the finite element method is used to represent the tissue evolution inside the scaffold and statistical analysis is used to determine the evolution of the stresses within the neo-formed tissue. The in silico framework is also used to find favorable parameters that define the micro-geometry of different bone tissue scaffold designs. The results obtained in this thesis enrich the understanding and discussion regarding the biophysical phenomena that occur inside the scaffold, thus allowing to identify better designs from a biomechanical perspective.eng
dc.description.abstractLos scaffolds para ingeniería de tejidos son dispositivos que han ganado una enorme atención en múltiples disciplinas durante las últimas décadas, como apoyo para los procesos de reparación que no ocurren de forma espontánea por medio de mecanismos naturales. Dado que los procedimientos in vitro e in vivo permiten evaluar los diferentes factores claves en el diseño de scaffolds y sus resultados, la investigación in silico brinda una herramienta excepcional para entender los procesos que ocurren dentro de estos dispositivos y cómo las diferentes variables de diseño influencian sus resultados finales. Es bien sabido que las señales biomecánicas son relevantes en los procesos de reparación ósea y éstas están relacionadas con los estímulos transmitidos al ambiente de reparación como el callo en procesos normales o a las estructuras de soporte como dispositivos ortopédicos de fijación y/o scaffolds que favorecen el proceso de regeneración. En las últimas décadas los investigadores han hecho esfuerzos por caracterizar los estímulos biofísicos favorables para la formación de hueso y otros tipos de tejidos. Diferentes configuraciones geométricas de un scaffold pueden transmitir las cargas al tejido en formación en diferentes maneras dependiendo de la topología de su microestructura, pero no es claro como es este proceso durante la regeneración, y más aún, se desconoce como el ambiente biofísico dentro del scaffold está cambiando como consecuencia de su degradación. Pese a lo anterior, ha sido demostrado que hay micro-geometrías de scaffolds más favorables que otras para la regeneración ósea. El objetivo general es investigar computacionalmente como la micro-geometría de un scaffold para regeneración ósea influencia los esfuerzos en el tejido en formación. Para lograr este objetivo, un marco computacional basado en el método de los elementos finitos es usado para representar la evolución del tejido dentro del scaffold, en conjunto con análisis estadísticos para determinar la evolución de los esfuerzos en el tejido. Dicho marco tambien es usado para encontrar parámetros favorables que definen la micro-geometría de diferentes diseños de scaffolds. Los resultados obtenidos en esta tesis enriquecen la comprensión y discusión sobre los fenómenos biofísicos que suceden dentro del scaffold, permitiendo identificar mejores diseños desde una perspectiva biomecánica. (Texto tomado de la fuente).spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.notesIncluye anexoseng
dc.description.researchareaBiomecánicaspa
dc.description.sponsorshipMinisterio de Ciencia, Tecnología e Innovación MINCIENCIASspa
dc.format.extentxvii, 169 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80968
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónicaspa
dc.relation.references[1] S. H. Kim, Y. Jung, Y. H. Kim, and S. H. Kim, “Mechano-active scaffolds,” in Handbook of Intelligent Scaffolds for Tissue Engineering and Regenerative Medicine, G. Khang, Ed. Pan Stanford Publishing, 2012, pp. 537–559.spa
dc.relation.references[2] D. A. Wahl and J. T. Czernuszka, “Collagen-hydroxyapatite composites for hard tissue repair,” Eur. Cells Mater., vol. 11, pp. 43–56, 2006, doi: vol011a06 [pii].spa
dc.relation.references[3] J. Guo, D. Y. Nguyen, R. T. Tran, Z. Xie, X. Bai, and J. Yang, “Design Strategies and Applications of Citrate-Based Biodegradable Elastomeric Polymers,” in Natural and Synthetic Biomedical Polymers, 1st ed., S. Kumbar, C. Laurencin, and M. Deng, Eds. Elsevier, 2014, pp. 259–285.spa
dc.relation.references[4] J. Brown, S. Kumbar, and B. Banik, Bio-Instructive Scaffolds for Musculoskeletal Tissue Engineering and Regenerative Medicine. Academic Press, 2016.spa
dc.relation.references[5] L. Geris, J. Vander Sloten, and H. Van Oosterwyck, “In silico biology of bone modelling and remodelling: regeneration,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 367, no. 1895, pp. 2031–2053, 2009, doi: 10.1098/rsta.2008.0293.spa
dc.relation.references[6] Y. Li, S. K. Chen, L. Li, L. Qin, X. L. Wang, and Y. X. Lai, “Bone defect animal models for testing efficacy of bone substitute biomaterials,” J. Orthop. Transl., vol. 3, no. 3, pp. 95–104, 2015, doi: 10.1016/j.jot.2015.05.002.spa
dc.relation.references[7] S. Stewart, S. J. Bryant, J. Ahn, and K. D. Hankenson, “Bone regeneration,” in Translational Regenerative Medicine, A. Atala and J. Allickson, Eds. Academic Press, 2015, pp. 313–334.spa
dc.relation.references[8] A. Oryan, A. Kamali, A. Moshirib, and M. B. Eslaminejad, “Role of Mesenchymal Stem Cells in Bone Regenerative Medicine: What Is the Evidence?,” Cells Tissues Organs, vol. 204, no. 2, pp. 59–83, 2017, doi: 10.1159/000469704.spa
dc.relation.references[9] C. E. Holy, M. S. Shoichet, and J. E. Davies, “Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: Investigating initial cell-seeding density and culture period,” J. Biomed. Mater. Res., vol. 51, no. 3, pp. 376–382, 2000, doi: 10.1002/1097-4636(20000905)51:3<376::AID-JBM11>3.0.CO;2-G.spa
dc.relation.references[10] E. Gómez-Barrena, P. Rosset, D. Lozano, J. Stanovici, C. Ermthaller, and F. Gerbhard, “Bone fracture healing: Cell therapy in delayed unions and nonunions,” Bone, vol. 70, pp. 93–101, 2015, doi: 10.1016/j.bone.2014.07.033.spa
dc.relation.references[11] K. F. Leong, C. M. Cheah, and C. K. Chua, “Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs,” Biomaterials, vol. 24, no. 13, pp. 2363–2378, 2003, doi: 10.1016/S0142-9612(03)00030-9.spa
dc.relation.references[12] F. J. O’Brien, “Biomaterials & scaffolds for tissue engineering,” Mater. Today, vol. 14, no. 3, pp. 88–95, Mar. 2011, doi: 10.1016/S1369-7021(11)70058-X.spa
dc.relation.references13] C. M. Murphy, F. J. O’Brien, D. G. Little, and A. Schindeler, “Cell-scaffold interactions in the bone tissue engineering triad,” Eur. Cells Mater., vol. 26, pp. 120–132, 2013.spa
dc.relation.references[14] K. A. Hing, “Bone repair in the twenty-first century: Biology, chemistry or engineering?,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 362, no. 1825, pp. 2821–2850, 2004, doi: 10.1098/rsta.2004.1466.spa
dc.relation.references[15] G. Brunetti, P. D’Amelio, M. Wasniewska, G. Mori, and M. F. Faienza, “Editorial: Bone: Endocrine target and organ,” Front. Endocrinol. (Lausanne)., vol. 8, no. DEC, pp. 249–257, Dec. 2017, doi: 10.3389/fendo.2017.00354.spa
dc.relation.references[16] E. F. Morgan, G. L. Barnes, and T. A. Einhorn, “The Bone Organ System,” in Osteoporosis, 4th Ed., Elsevier, 2013, pp. 3–20.spa
dc.relation.references[17] B. Clarke, “Normal bone anatomy and physiology.,” Clinical journal of the American Society of Nephrology : CJASN. 2008, doi: 10.2215/CJN.04151206.spa
dc.relation.references[18] M. Doblaré, J. M. García, and M. J. Gómez, “Modelling bone tissue fracture and healing: A review,” Engineering Fracture Mechanics, vol. 71, no. 13–14. pp. 1809–1840, 2004, doi: 10.1016/j.engfracmech.2003.08.003.spa
dc.relation.references[19] R. Florencio-Silva, G. R. D. S. Sasso, E. Sasso-Cerri, M. J. Simões, and P. S. Cerri, “Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells,” Biomed Res. Int., vol. 2015, 2015, doi: 10.1155/2015/421746.spa
dc.relation.references[20] R. Ozawa, Y. Yamada, T. Nagasaka, and M. Ueda, “A comparison of osteogenesis-related gene expression of mesenchymal stem cells during the osteoblastic differentiation induced by Type-I collagen and/or fibronectin,” Int. J. Oral-Medical Sci., vol. 1, no. 2, pp. 139–146, 2003, doi: 10.5466/ijoms.1.139.spa
dc.relation.references[21] L. Qin, W. Liu, H. Cao, and G. Xiao, “Molecular mechanosensors in osteocytes,” Bone Res., vol. 8, no. 1, pp. 1–24, 2020, doi: 10.1038/s41413-020-0099-y.spa
dc.relation.references[22] B. Alberts et al., Molecular Biology of the Cell. W.W. Norton & Company, 2017.spa
dc.relation.references[23] P. R. Buenzli, P. Pivonka, and D. W. Smith, “Bone refilling in cortical basic multicellular units: Insights into tetracycline double labelling from a computational model,” Biomech. Model. Mechanobiol., vol. 13, no. 1, pp. 185–203, 2014, doi: 10.1007/s10237-013-0495-y.spa
dc.relation.references[24] J. R. Perez, D. Kouroupis, D. J. Li, T. M. Best, L. Kaplan, and D. Correa, “Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects,” Front. Bioeng. Biotechnol., vol. 6, no. July, pp. 1–23, 2018, doi: 10.3389/fbioe.2018.00105.spa
dc.relation.references[25] T. A. Franz-Odendaal, B. K. Hall, and P. E. Witten, “Buried alive: How osteoblasts become osteocytes,” Dev. Dyn., vol. 235, no. 1, pp. 176–190, 2006, doi: 10.1002/dvdy.20603.spa
dc.relation.references[26] D. C. Betts and R. Müller, “Mechanical regulation of bone regeneration: Theories, models, and experiments,” Front. Endocrinol. (Lausanne)., vol. 5, no. DEC, pp. 1–14, 2014, doi: 10.3389/fendo.2014.00211.spa
dc.relation.references[27] R. Marsell and T. A. Einhorn, “The biology of fracture healing,” Injury, vol. 42, no. 6, pp. 551–555, Jun. 2011, doi: 10.1016/j.injury.2011.03.031.spa
dc.relation.references[28] M. R. Appleford, “Trabecular Calcium Phosphate Scaffolds for Bone Regeneration Trabecular Calcium Phosphate Scaffolds for Bone Regeneration,” 2007, doi: 10.21007/etd.cghs.2007.0017.spa
dc.relation.references[29] P. Su et al., “Mesenchymal stem cell migration during bone formation and bone diseases therapy,” Int. J. Mol. Sci., vol. 19, no. 8, 2018, doi: 10.3390/ijms19082343.spa
dc.relation.references[30] S. J. Shefelbine, P. Augat, L. Claes, and U. Simon, “Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic,” J. Biomech., vol. 38, no. 12, pp. 2440–2450, 2005, doi: 10.1016/j.jbiomech.2004.10.019.spa
dc.relation.references[31] M. A. Fernandez-Yague, S. A. Abbah, L. McNamara, D. I. Zeugolis, A. Pandit, and M. J. Biggs, “Biomimetic Approaches in Bone Tissue Engineering: Integrating Biological and Physicomechanical Strategies,” Adv. Drug Deliv. Rev., vol. 84, pp. 1–29, Sep. 2014, doi: 10.1016/j.addr.2014.09.005.spa
dc.relation.references[32] E. C. Yusko and C. L. Asbury, “Force is a signal that cells cannot ignore,” Mol. Biol. Cell, vol. 25, no. 23, pp. 3717–3725, 2014, doi: 10.1091/mbc.E13-12-0707.spa
dc.relation.references[33] A. Gelmi and C. E. Schutt, “Stimuli-Responsive Biomaterials: Scaffolds for Stem Cell Control,” Adv. Healthc. Mater., vol. 10, no. 1, pp. 1–30, 2021, doi: 10.1002/adhm.202001125.spa
dc.relation.references[34] U. Meyer, T. Meyer, J. Handschel, and H. P. Wiesmann, Fundamentals of Tissue Engineering and Regenerative Medicine. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.spa
dc.relation.references[35] L. Polo-Corrales, M. Latorre-Esteves, and J. E. Ramirez-Vick, “Scaffold design for bone regeneration.,” J. Nanosci. Nanotechnol., vol. 14, no. 1, pp. 15–56, 2014, doi: 10.1166/jnn.2014.9127.spa
dc.relation.references[36] K. S. Houschyar et al., “Wnt Pathway in Bone Repair and Regeneration – What Do We Know So Far,” Front. Cell Dev. Biol., vol. 6, no. January, pp. 1–13, 2019, doi: 10.3389/fcell.2018.00170.spa
dc.relation.references[37] M. Levin and C. G. Stevenson, “Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering.,” Annu. Rev. Biomed. Eng., vol. 14, pp. 295–323, 2012, doi: 10.1146/annurev-bioeng-071811-150114.spa
dc.relation.references[38] C. Chen, X. Bai, Y. Ding, and I. S. Lee, “Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering,” Biomater. Res., vol. 23, no. 1, pp. 1–12, 2019, doi: 10.1186/s40824-019-0176-8.spa
dc.relation.references[39] L. Leppik, K. M. C. Oliveira, M. B. Bhavsar, and J. H. Barker, “Electrical stimulation in bone tissue engineering treatments,” Eur. J. Trauma Emerg. Surg., vol. 46, no. 2, pp. 231–244, 2020, doi: 10.1007/s00068-020-01324-1.spa
dc.relation.references[40] A. S. Çakmak et al., “Synergistic effect of exogeneous and endogeneous electrostimulation on osteogenic differentiation of human mesenchymal stem cells seeded on silk scaffolds,” J. Orthop. Res., 2016, doi: 10.1002/jor.23059.spa
dc.relation.references[41] M. G. Vavva et al., “Effect of ultrasound on bone fracture healing: A computational bioregulatory model,” Comput. Biol. Med., vol. 100, pp. 74–85, 2018, doi: 10.1016/j.compbiomed.2018.06.024.spa
dc.relation.references[42] K. N. Grivas et al., “Effect of ultrasound on bone fracture healing: A computational mechanobioregulatory model,” J. Acoust. Soc. Am., vol. 145, no. 2, pp. 1048–1059, 2019, doi: 10.1121/1.5089221.spa
dc.relation.references[43] H. Huang, R. D. Kamm, and R. T. Lee, “Cell mechanics and mechanotransduction: pathways, probes, and physiology.,” Am. J. Physiol. Cell Physiol., vol. 287, no. 1, pp. C1-11, 2004, doi: 10.1152/ajpcell.00559.2003.spa
dc.relation.references[44] A. J. Steward and D. J. Kelly, “Mechanical regulation of mesenchymal stem cell differentiation,” J. Anat., vol. 227, no. 6, pp. 717–731, 2015, doi: 10.1111/joa.12243.spa
dc.relation.references[45] D. Huber, A. Oskooei, X. Casadevall Solvas, Andrew Demello, and G. V. Kaigala, “Hydrodynamics in Cell Studies,” Chem. Rev., vol. 118, no. 4, pp. 2042–2079, 2018, doi: 10.1021/acs.chemrev.7b00317.spa
dc.relation.references[46] W. R. Thompson, C. T. Rubin, and J. Rubin, “Mechanical regulation of signaling pathways in bone,” Gene, vol. 503, no. 2, pp. 179–193, 2012, doi: 10.1016/j.gene.2012.04.076.spa
dc.relation.references[47] E. K. Rodriguez, A. Hoger, and A. D. McCulloch, “Stress-dependent finite growth in soft elastic tissues,” J. Biomech., vol. 27, no. 4, pp. 455–467, 1994, doi: 10.1016/0021-9290(94)90021-3.spa
dc.relation.references[48] D. Ambrosi et al., “Growth and remodelling of living tissues: Perspectives, challenges and opportunities,” J. R. Soc. Interface, vol. 16, no. 157, 2019, doi: 10.1098/rsif.2019.0233.spa
dc.relation.references[49] P. J. Prendergast, S. Checa, and D. Lacroix, “Computational Models of Tissue Differentiation,” in Computational Modeling in Biomechanics, S. De, F. Guilak, and M. R. K. Mofrad, Eds. Springer Science, 2010, pp. 353–372.spa
dc.relation.references[50] L. E. Delgado, “Modelos matemáticos de reparación ósea,” Universidad Complutense de Madrid, 2009.spa
dc.relation.references[51] S. M. Perren and J. Cordey, “The concept of interfragmentary strain pp. 63- 77. Current concepts of internal fixation of fractures.,” Curr. concepts Intern. Fixat. Fract., pp. 63–77, 1980.spa
dc.relation.references[52] H. M. Frost, “Bone’s Mechanostat: A 2003 Update,” Anat. Rec. - Part A Discov. Mol. Cell. Evol. Biol., vol. 275, no. 2, pp. 1081–1101, 2003, doi: 10.1002/ar.a.10119.spa
dc.relation.references[53] S. C. Cowin and D. H. Hegedus, “Bone remodeling I: theory of adaptive elasticity,” J. Elast., vol. 6, no. 3, pp. 313–326, 1976, doi: 10.1007/BF00041724.spa
dc.relation.references[54] S. C. Cowin, “Bone poroelasticity,” Bone Mech. Handbook, Second Ed., vol. 32, pp. 23-1-23–31, 2001.spa
dc.relation.references[55] R. Huiskes, H. Weinans, H. J. Grootenboer, M. Dalstra, B. Fudala, and T. J. Slooff, “Adaptive bone-remodeling theory applied to prosthetic-design analysis,” J. Biomech., vol. 20, no. 11–12, pp. 1135–1150, 1987, doi: 10.1016/0021-9290(87)90030-3.spa
dc.relation.references[56] H. Weinans, R. Huiskes, and H. J. Grootenboer, “The behavior of adaptive bone-remodeling simulation models,” J. Biomech., vol. 25, no. 12, pp. 1425–1441, 1992, doi: 10.1016/0021-9290(92)90056-7.spa
dc.relation.references[57] D. R. Carter, G. S. Beaupré, N. J. Giori, and J. A. Helms, “Mechanobiology of skeletal regeneration,” Clin. Orthop. Relat. Res., no. 355 Suppl, pp. S41-55, 1998, doi: Non-programmatic.spa
dc.relation.references[58] L. E. Claes and C. A. Heigele, “Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing,” J. Biomech., vol. 32, pp. 255–266, 1999.spa
dc.relation.references[59] P. J. Prendergast, R. Huiskes, K. Søballe, and S, “Biophysical stimuli on cells during tissue differentiation at implant interfaces,” J. Biomech., vol. 30, no. 6, pp. 539–548, 1997, doi: 10.1016/S0021-9290(96)00140-6.spa
dc.relation.references[60] D. Lacroix and P. J. Prendergast, “A mechano-regulation model for tissue differentiation during fracture healing: Analysis of gap size and loading,” J. Biomech., vol. 35, no. 9, pp. 1163–1171, 2002, doi: 10.1016/S0021-9290(02)00086-6.spa
dc.relation.references[61] D. R. Suárez, “Theories of mechanically induced tissue differentiation and adaptation in the musculoskeletal system,” Ing. y Univ., vol. 20, no. 1, pp. 21–40, 2015, doi: 10.11144/javeriana.iyu20-1.tmit.spa
dc.relation.references[62] D. P. Byrne, D. Lacroix, J. A. Planell, D. J. Kelly, and P. J. Prendergast, “Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: Application of mechanobiological models in tissue engineering,” Biomaterials, vol. 28, no. 36, pp. 5544–5554, 2007, doi: 10.1016/j.biomaterials.2007.09.003.spa
dc.relation.references[63] H. Khayyeri, S. Checa, M. Tägil, F. J. O’Brien, and P. J. Prendergast, “Tissue differentiation in an in vivo bioreactor: in silico investigations of scaffold stiffness.,” J. Mater. Sci. Mater. Med., vol. 21, no. 8, pp. 2331–6, 2010, doi: 10.1007/s10856-009-3973-0.spa
dc.relation.references[64] J. A. Sanz-Herrera, J. M. Garcia-Aznar, and M. Doblare, “A mathematical model for bone tissue regeneration inside a specific type of scaffold,” Biomech. Model. Mechanobiol., vol. 7, no. 5, pp. 355–366, 2008, doi: 10.1007/s10237-007-0089-7.spa
dc.relation.references[65] J. A. Sanz-Herrera, J. M. García-Aznar, and M. Doblaré, “Micro-macro numerical modelling of bone regeneration in tissue engineering,” Comput. Methods Appl. Mech. Eng., vol. 197, no. 33–40, pp. 3092–3107, 2008, doi: 10.1016/j.cma.2008.02.010.spa
dc.relation.references[66] T. Adachi, Y. Osako, M. Tanaka, M. Hojo, and S. J. Hollister, “Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration,” Biomaterials, vol. 27, no. 21, pp. 3964–3972, 2006, doi:10.1016/j.biomaterials.2006.02.039.spa
dc.relation.referencesG. S. Beaupre and T. E. Orr, “An approach for time-dependent bone modeling and remodeling—theoretical development - Beaupré - 2005 - Journal of Orthopaedic Research - Wiley Online Library,” J. Orthop. …, no. 3, pp. 651–661, 1990, [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/jor.1100080506/abstract%5Cnpapers2://publication/uuid/945494C3-62EC-49A9-849A-91728212793D.spa
dc.relation.references[68] A. Bailón-Plaza and M. C. H. Van Der Meulen, “A mathematical framework to study the effects of growth factor influences on fracture healing,” J. Theor. Biol., vol. 212, no. 2, pp. 191–209, 2001, doi: 10.1006/jtbi.2001.2372.spa
dc.relation.references[69] D. Lacroix, P. J. Prendergast, G. Li, and D. Marsh, “Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing,” Med. Biol. Eng. Comput., vol. 40, no. 1, pp. 14–21, 2002, doi: 10.1007/BF02347690.spa
dc.relation.references[70] L. Geris, A. Gerisch, J. Vander Sloten, R. Weiner, and H. Van Oosterwyck, “Angiogenesis in bone fracture healing: A bioregulatory model,” J. Theor. Biol., vol. 251, no. 1, pp. 137–158, 2008, doi: 10.1016/j.jtbi.2007.11.008.spa
dc.relation.references[71] M. J. Gómez-Benito, J. M. García-Aznar, J. H. Kuiper, and M. Doblaré, “Influence of fracture gap size on the pattern of long bone healing: A computational study,” J. Theor. Biol., vol. 235, no. 1, pp. 105–119, 2005, doi: 10.1016/j.jtbi.2004.12.023.spa
dc.relation.references[72] J. M. García-Aznar, J. H. Kuiper, M. J. Gómez-Benito, M. Doblaré, and J. B. Richardson, “Computational simulation of fracture healing: Influence of interfragmentary movement on the callus growth,” J. Biomech., vol. 40, no. 7, pp. 1467–1476, 2007, doi: 10.1016/j.jbiomech.2006.06.013.spa
dc.relation.references[73] S. Kawamura et al., “Simulation of Fracture Healing Using Cellular Automata (Influence of Operation Conditions on Healing Result in External Fixation),” JSME Int. J. Ser. A Solid Mech. Mater. Eng., vol. 2, no. 48, pp. 57–64, 2005.spa
dc.relation.references[74] M. Wang and N. Yang, “Three-dimensional computational model simulating the fracture healing process with both biphasic poroelastic finite element analysis and fuzzy logic control,” Sci. Rep., vol. 8, no. 1, pp. 1–13, 2018, doi: 10.1038/s41598-018-25229-7.spa
dc.relation.references[75] C. M. Bidan, F. M. Wang, and J. W. C. Dunlop, “A three-dimensional model for tissue deposition on complex surfaces,” Comput. Methods Biomech. Biomed. Engin., vol. 16, no. 10, pp. 1056–1070, 2013, doi: 10.1080/10255842.2013.774384.spa
dc.relation.references[76] C. M. Bidan, K. P. Kommareddy, M. Rumpler, P. Kollmannsberger, P. Fratzl, and J. W. C. Dunlop, “Geometry as a Factor for Tissue Growth: Towards Shape Optimization of Tissue Engineering Scaffolds,” Adv. Healthc. Mater., vol. 2, no. 1, pp. 186–194, 2013, doi: 10.1002/adhm.201200159.spa
dc.relation.references[77] P. F. Egan, K. A. Shea, and S. J. Ferguson, “Simulated tissue growth for 3D printed scaffolds,” Biomech. Model. Mechanobiol., vol. 17, no. 5, pp. 1481–1495, 2018, doi: 10.1007/s10237-018-1040-9.spa
dc.relation.references[78] Y. F. Feng et al., “Influence of Architecture of β-Tricalcium Phosphate Scaffolds on Biological Performance in Repairing Segmental Bone Defects,” PLoS One, vol. 7, no. 11, 2012, doi: 10.1371/journal.pone.0049955.spa
dc.relation.references[79] J. Chang, X. Zhang, and K. Dai, “Material characteristics, surface/interface, and biological effects on the osteogenesis of bioactive materials,” in Bioactive Materials for Bone Regeneration, Elsevier, 2020, pp. 1–103.spa
dc.relation.references[80] L. J. Gibson and M. F. Ashby, Cellular materials in nature and medicine, vol. 51. Cambridge University Press, 2010.spa
dc.relation.references[81] A. Boccaccio, A. E. Uva, M. Fiorentino, L. Lamberti, and G. Monno, “A Mechanobiology-based Algorithm to Optimize the Microstructure Geometry of Bone Tissue Scaffolds,” Int. J. Biol. Sci., vol. 12, no. 1, pp. 1–17, 2016, doi: 10.7150/ijbs.13158.spa
dc.relation.references[82] J. A. a. Sanz-Herrera, M. Doblaré, and J. M. M. García-Aznar, “Scaffold microarchitecture determines internal bone directional growth structure: A numerical study,” J. Biomech., vol. 43, no. 13, pp. 2480–2486, 2010, doi: 10.1016/j.jbiomech.2010.05.027.spa
dc.relation.references[83] G. Li et al., “In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects,” Sci. Rep., vol. 6, pp. 1–11, 2016, doi: 10.1038/srep34072.spa
dc.relation.references[84] M. A. Velasco Peña and D. A. Garzón Alvarado, “Implantes Scaffolds para regeneración ósea. Materiales, técnicas y modelado mediante sistemas de reacción-difusión,” Rev. Cuba. Investig. Biomédicas, vol. 29, no. 1, pp. 0–0, 2010.spa
dc.relation.references[85] Q. Fu, E. Saiz, M. N. Rahaman, and A. P. Tomsia, “Bioactive glass scaffolds for bone tissue engineering: State of the art and future perspectives,” Mater. Sci. Eng. C, vol. 31, no. 7, pp. 1245–1256, 2011, doi: 10.1016/j.msec.2011.04.022.spa
dc.relation.references[86] T. Wu, S. Yu, D. Chen, and Y. Wang, “Bionic design, materials and performance of bone tissue scaffolds,” Materials (Basel)., vol. 10, no. 10, 2017, doi: 10.3390/ma10101187.spa
dc.relation.references[87] T. Albrektsson and C. Johansson, “Osteoinduction, osteoconduction and osseointegration,” Eur. Spine J., vol. 10, pp. S96–S101, 2001, doi: 10.1007/s005860100282.spa
dc.relation.references[88] M. A. Velasco, C. A. Narváez-Tovar, and D. A. Garzón-Alvarado, “Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering,” Biomed Res. Int., vol. 2015, p. 21, 2015, doi: 10.1155/2015/729076.spa
dc.relation.references[89] B. P. Chan and K. W. Leong, “Scaffolding in tissue engineering: General approaches and tissue-specific considerations,” Eur. Spine J., vol. 17, no. SUPPL. 4, 2008, doi: 10.1007/s00586-008-0745-3.spa
dc.relation.references[90] T. W. Gilbert, T. L. Sellaro, and S. F. Badylak, “Decellularization of tissues and organs,” Biomaterials, vol. 27, no. 19, pp. 3675–3683, 2006, doi: 10.1016/j.biomaterials.2006.02.014.spa
dc.relation.references[91] T. S. Karande and C. M. Agrawal, “Functions and requirements of synthetic scaffolds in tissue engineering,” Nanotechnol. Tissue Eng. Scaffold, pp. 53–86, 2008, doi: 10.1201/9781420051834.ch3.spa
dc.relation.references[92] F. R. A. J. Rose and R. O. C. Oreffo, “Bone Tissue Engineering: Hope vs Hype,” Biochem. Biophys. Res. Commun., vol. 292, no. 1, pp. 1–7, 2002, doi: 10.1006/bbrc.2002.6519.spa
dc.relation.references[93] B. Dhandayuthapani, Y. Yoshida, T. Maekawa, and D. S. Kumar, “Polymeric scaffolds in tissue engineering application: A review,” Int. J. Polym. Sci., vol. 2011, no. ii, 2011, doi: 10.1155/2011/290602.spa
dc.relation.references[94] C. Gomez, “A Unit Cell Based Multi-scale Modeling and Design Approach for Tissue Engineered Scaffolds,” Drexel University, 2007.spa
dc.relation.references[95] H. N. Chia and B. M. Wu, “Recent advances in 3D printing of biomaterials,” J. Biol. Eng., vol. 9, no. 1, pp. 1–14, 2015, doi: 10.1186/s13036-015-0001-4.spa
dc.relation.references[96] Z. Gu, J. Fu, H. Lin, and Y. He, “Development of 3D bioprinting: From printing methods to biomedical applications,” Asian J. Pharm. Sci., vol. 15, no. 5, pp. 529–557, 2020, doi: 10.1016/j.ajps.2019.11.003.spa
dc.relation.references[97] S. Checa, C. Sandino, D. P. Byrne, D. J. Kelly, D. Lacroix, and P. J. Prendergast, “Computational techniques for selection of biomaterial scaffolds for tissue engineering,” in Advances on Modeling in Tissue Engineering, P. R. Fernandes and P. J. Bártolo, Eds. Springer Science & Business Media, 2011, pp. 55–69.spa
dc.relation.references[98] S. R. Caliari and B. A. C. Harley, “2.216 – Collagen–GAG Materials,” in Comprehensive Biomaterials, 2011, pp. 279–302.spa
dc.relation.references[99] R. Hedayati, M. Sadighi, M. Mohammadi-Aghdam, and A. A. Zadpoor, “Mechanical behavior of additively manufactured porous biomaterials made from truncated cuboctahedron unit cells,” Int. J. Mech. Sci., vol. 106, no. November, pp. 19–38, 2016, doi: 10.1016/j.ijmecsci.2015.11.033.spa
dc.relation.references[100] A. Boccaccio, A. E. Uva, M. Fiorentino, G. Mori, and G. Monno, “Geometry design optimization of functionally graded scaffolds for bone tissue engineering: A mechanobiological approach,” PLoS One, vol. 11, no. 1, 2016, doi: 10.1371/journal.pone.0146935.spa
dc.relation.references[101] F. J. O’Brien, B. A. Harley, I. V. Yannas, and L. J. Gibson, “The effect of pore size on cell adhesion in collagen-GAG scaffolds,” Biomaterials, vol. 26, no. 4, pp. 433–441, 2005, doi: 10.1016/j.biomaterials.2004.02.052.spa
dc.relation.references[102] A. J. EL Haj, K. Hampson, and G. Gogniat, “Bioreactors for Connective Tissue Engineering: Design and Monitoring Innovations,” in Bioreactor Systems for Tissue Engineering, vol. 1, C. Kasper, M. Van Griensven, and R. Pörtner, Eds. Springer Science & Business Media, 2009, pp. 81–94.spa
dc.relation.references[103] C. H. Ma, H. B. Zhang, S. M. Yang, R. X. Yin, X. J. Yao, and W. J. Zhang, “Comparison of the degradation behavior of PLGA scaffolds in micro-channel, shaking, and static conditions,” Biomicrofluidics, vol. 12, no. 3, 2018, doi: 10.1063/1.5021394.spa
dc.relation.references[104] H. Zhang, L. Zhou, and W. Zhang, “Control of scaffold degradation in tissue engineering: A review,” Tissue Eng. - Part B Rev., vol. 20, no. 5, pp. 492–502, 2014, doi: 10.1089/ten.teb.2013.0452.spa
dc.relation.references[105] A. H. M. Yusop, A. Alsakkaf, M. R. A. Kadir, I. Sukmana, and H. Nur, “Corrosion of porous Mg and Fe scaffolds: a review of mechanical and biocompatibility responses,” Corros. Eng. Sci. Technol., vol. 0, no. 0, pp. 1–17, 2021, doi: 10.1080/1478422x.2021.1879427.spa
dc.relation.references[106] R. Detsch and A. R. Boccaccini, “The role of osteoclasts in bone tissue engineering.,” J. Tissue Eng. Regen. Med., vol. 9, no. 10, pp. 1133–49, Oct. 2015, doi: 10.1002/term.1851.spa
dc.relation.references[107] M. Brugmans, “The interplay between biomaterial degradation and tissue properties: Relevance for in situ cardiovascular tissue engineering,” Technische Universiteit Eindhoven, 2015.spa
dc.relation.references[108] G. Erkizia, A. Rainer, E. M. De Juan-Pardo, and J. Aldazabal, “Computer Simulation of Scaffold Degradation,” J. Phys. Conf. Ser., vol. 252, no. 1, p. 012004, 2010, doi: 10.1088/1742-6596/252/1/012004.spa
dc.relation.references[109] G. Chao, S. Xiaobo, C. Chenglin, D. Yinsheng, P. Yuepu, and L. Pinghua, “A cellular automaton simulation of the degradation of porous polylactide scaffold: I. Effect of porosity,” Mater. Sci. Eng. C, vol. 29, no. 6, pp. 1950–1958, 2009, doi: 10.1016/j.msec.2009.03.003.spa
dc.relation.references110] L. Yunfeng, Z. Gen, X. Jianbin, J. Xianfeng, and P. Wei, “Simulation of Bone Regeneration within Stress Environment based on Scaffold Degradation,” Int. J. Digit. Content Technol. its Appl., vol. 7, no. 6, pp. 799–807, 2013, doi: 10.4156/jdcta.vol7.issue6.90.spa
dc.relation.references[111] Y. Chen, S. Zhou, and Q. Li, “Biomaterials Microstructure design of biodegradable scaffold and its effect on tissue regeneration,” Biomaterials, vol. 32, no. 22, pp. 5003–5014, 2011, doi: 10.1016/j.biomaterials.2011.03.064.spa
dc.relation.references[112] A. C. Vieir, R. M. Guedes, and V. Tita, “On different approaches to simulate the mechanical behavior of scaffolds during degradation,” Procedia Eng., vol. 110, pp. 21–28, 2015, doi: 10.1016/j.proeng.2015.07.005.spa
dc.relation.references[113] J. Pan, “Modelling Degradation of Bioresorbable Polymeric Medical Devices,” in Modelling Degradation of Bioresorbable Polymeric Medical Devices, J. Pan, Ed. Woodhead Publishing, 2015, pp. 1–14.spa
dc.relation.references[114] Q. Shi, Q. Chen, N. Pugno, and Z. Y. Li, “Effect of rehabilitation exercise durations on the dynamic bone repair process by coupling polymer scaffold degradation and bone formation,” Biomech. Model. Mechanobiol., vol. 17, no. 3, pp. 763–775, 2018, doi: 10.1007/s10237-017-0991-6.spa
dc.relation.references[115] L. Wang, Q. Shi, Y. Cai, Q. Chen, X. Guo, and Z. Li, “Mechanical–chemical coupled modeling of bone regeneration within a biodegradable polymer scaffold loaded with VEGF,” Biomech. Model. Mechanobiol., vol. 19, no. 6, pp. 2285–2306, 2020, doi: 10.1007/s10237-020-01339-y.spa
dc.relation.references[116] M. A. Sulong, I. V. Belova, A. R. Boccaccini, G. E. Murch, and T. Fiedler, “A model of the mechanical degradation of foam replicated scaffolds,” J. Mater. Sci., vol. 51, no. 8, pp. 3824–3835, 2016, doi: 10.1007/s10853-015-9701-x.spa
dc.relation.references[117] D. A. Garzón-Alvarado, M. A. Velasco, and C. A. Narváez-Tovar, “Modeling porous scaffold microstructure by a reaction-diffusion system and its degradation by hydrolysis,” Comput. Biol. Med., vol. 42, no. 2, pp. 147–155, 2012, doi: 10.1016/j.compbiomed.2011.11.002.spa
dc.relation.references[118] S. J. Hollister, “Scaffold engineering: A bridge to where?,” Biofabrication, vol. 1, no. 1, 2009, doi: 10.1088/1758-5082/1/1/012001.spa
dc.relation.references[119] M. Rumpler, A. Woesz, J. W. . Dunlop, J. T. van Dongen, and P. Fratzl, “The effect of geometry on three-dimensional tissue growth,” J. R. Soc. Interface, vol. 5, no. 27, pp. 1173–1180, 2008, doi: 10.1098/rsif.2008.0064.spa
dc.relation.references[120] E. Saito, E. E. Liao, and W.-W. Hu, “Effects of designed PLLA and 50:50 PLGA scaffold architectures on bone formation in vivo,” J. Tissue Eng. Regen. Med., vol. 4, no. 7, pp. 99–111, 2011, doi: 10.1002/term.spa
dc.relation.references[121] W. Bian et al., “Morphological characteristics of cartilage ‑ bone transitional structures in the human knee joint and CAD design of an osteochondral scaffold,” Biomed. Eng. Online, pp. 1–14, 2016, doi: 10.1186/s12938-016-0200-3.spa
dc.relation.references[122] L. Wang, M. Xu, L. Zhang, Q. Zhou, and L. Luo, “Automated quantitative assessment of three-dimensional bioprinted hydrogel scaffolds using optical coherence tomography,” Biomed. Opt. Express, vol. 7, no. 3, p. 894, 2016, doi: 10.1364/BOE.7.000894.spa
dc.relation.references[123] A. Liu et al., “3D Printing Surgical Implants at the clinic: A Experimental Study on Anterior Cruciate Ligament Reconstruction.,” Sci. Rep., vol. 6, no. October 2015, p. 21704, 2016, doi: 10.1038/srep21704.spa
dc.relation.references[124] V. T. Athanasiou, D. J. Papachristou, A. Panagopoulos, A. Saridis, C. D. Scopa, and P. Megas, “Histological comparison of autograft, allograft-DBM, xenograft, and synthetic grafts in a trabecular bone defect: an experimental study in rabbits.,” Med. Sci. Monit., vol. 16, no. 1, pp. BR24-31, Jan. 2010, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/20037482.spa
dc.relation.references[125] A. M. Pobloth et al., “Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep,” Sci. Transl. Med., vol. 10, no. 423, 2018, doi: 10.1126/scitranslmed.aam8828.spa
dc.relation.references[126] X. Zhou et al., “Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation,” Sci. Rep., vol. 6, no. August, pp. 1–12, 2016, doi: 10.1038/srep32876.spa
dc.relation.references[127] M. Aliabouzar, S. J. Lee, X. Zhou, G. L. Zhang, and K. Sarkar, “Effects of scaffold microstructure and low intensity pulsed ultrasound on chondrogenic differentiation of human mesenchymal stem cells,” Biotechnol. Bioeng., vol. 115, no. 2, pp. 495–506, 2018, doi: 10.1002/bit.26480.spa
dc.relation.references[128] X. Chen and Q. Hu, “Bioactive Glasses,” Front. Nanobiomedical Res., vol. 3, no. October, pp. 147–182, 2017, doi: 10.1142/9789813202573_0004.spa
dc.relation.references[129] I. Gendviliene et al., “Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAp scaffolds,” J. Mech. Behav. Biomed. Mater., vol. 104, no. December 2019, p. 103616, 2020, doi: 10.1016/j.jmbbm.2020.103616.spa
dc.relation.references[130] C. Silva, C. J. Cortés-Rodriguez, J. Hazur, S. Reakasame, and A. R. Boccaccini, “Rational design of a triple-layered coaxial extruder system: In silico and in vitro evaluations directed toward optimizing cell viability,” Int. J. Bioprinting, vol. 6, no. 4, pp. 1–10, 2020, doi: 10.18063/IJB.V6I4.282.spa
dc.relation.references[131] J. Zhang, E. Wehrle, J. R. Vetsch, G. R. Paul, M. Rubert, and R. Müller, “Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology,” Biomed. Mater., vol. 14, no. 6, p. 065009, Sep. 2019, doi: 10.1088/1748-605X/ab3c74.spa
dc.relation.references[132] W. Li, “45S5 Bioactive Glass-Based Composite Scaffolds with Polymer Coatings for Bone Tissue Engineering Therapeutics,” Friedrich-Alexander-Universität Erlangen-Nürnberg, 2015.spa
dc.relation.references[133] J. Li, M. Chen, X. Wei, Y. Hao, and J. Wang, “Evaluation of 3D-printed polycaprolactone scaffolds coated with freeze-dried platelet-rich plasma for bone regeneration,” Materials (Basel)., vol. 10, no. 7, 2017, doi: 10.3390/ma10070831.spa
dc.relation.references[134] C. D. Chaput, “Optimization of scaffolds and surface-based treatments for orthopedic applications,” Spine (Phila. Pa. 1976)., vol. 41, no. 7, pp. S14–S15, 2016, doi: 10.1097/BRS.0000000000001426.spa
dc.relation.references[135] D. Lin, K. Yang, W. Tang, Y. Liu, Y. Yuan, and C. Liu, “Colloids and Surfaces B : Biointerfaces A poly ( glycerol sebacate ) -coated mesoporous bioactive glass scaffold with adjustable mechanical strength , degradation rate , controlled-release and cell behavior for bone tissue engineering,” Colloids Surfaces B Biointerfaces, vol. 131, pp. 1–11, 2015, doi: 10.1016/j.colsurfb.2015.04.031.spa
dc.relation.references[136] F. Westhauser et al., “Three-dimensional polymer coated 45S5-type bioactive glass scaffolds seeded with human mesenchymal stem cells show bone formation in vivo,” J. Mater. Sci. Mater. Med., vol. 27, no. 7, 2016, doi: 10.1007/s10856-016-5732-3.spa
dc.relation.references[137] A. Cipitria et al., “BMP delivery complements the guiding effect of scaffold architecture without altering bone microstructure in critical-sized long bone defects: A multiscale analysis,” Acta Biomater., vol. 23, pp. 282–294, 2015, doi: 10.1016/j.actbio.2015.05.015.spa
dc.relation.references[138] A. Entezari et al., “Architectural Design of 3D Printed Scaffolds Controls the Volume and Functionality of Newly Formed Bone,” Adv. Healthc. Mater., vol. 8, no. 1, pp. 1–12, 2019, doi: 10.1002/adhm.201801353.spa
dc.relation.references[139] A. Anindyajati, P. Boughton, and A. J. Ruys, “Mechanical and cytocompatibility evaluation of UHMWPE/PCL/Bioglass® fibrous composite for acetabular labrum implant,” Materials (Basel)., vol. 16, no. 6, 2019, doi: 10.3390/ma12060916.spa
dc.relation.references[140] A. A. Zadpoor and R. Hedayati, “Analytical relationships for prediction of the mechanical properties of additively manufactured porous biomaterials,” J. Biomed. Mater. Res. A, vol. 104A, no. 12, pp. 3164–3174, 2016, doi: 10.1002/jbm.a.35855.spa
dc.relation.references[141] K. A. Corin and L. J. Gibson, “Cell Contraction Forces in Scaffolds with Varying Pore Size and Cell Density,” Am. J. Manag. Care, vol. 15, no. 3, pp. 189–193, 2009, doi: 10.1038/jid.2014.371.spa
dc.relation.references[142] M. Afshar, A. P. Anaraki, H. Montazerian, and J. Kadkhodapour, “Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures,” J. Mech. Behav. Biomed. Mater., vol. 62, pp. 481–494, 2016, doi: 10.1016/j.jmbbm.2016.05.027.spa
dc.relation.references[143] A. Carlier et al., “Designing optimal calcium phosphate scaffold-cell combinations using an integrative model-based approach,” Acta Biomater., vol. 7, no. 10, pp. 3573–3585, 2011, doi: 10.1016/j.actbio.2011.06.021.spa
dc.relation.references[144] W. Sun, B. Starly, A. Darling, and C. Gomez, “Computer-aided tissue engineering: application to biomimetic modelling and design of tissue scaffolds.,” Biotechnol. Appl. Biochem., vol. 39, no. Pt 1, pp. 49–58, 2004, doi: 10.1042/BA20030109.spa
dc.relation.references[145] F. A. Sabet, A. R. Najafi, E. Hamed, and I. Jasiuk, “Modelling of bone fracture and strength at different length scales: A review,” Interface Focus, vol. 6, no. 1, pp. 20–30, 2016, doi: 10.1098/rsfs.2015.0055.spa
dc.relation.references[146] A. Sharma, S. Molla, K. S. Katti, and D. R. Katti, “Multiscale models of degradation and healing of bone tissue engineering nanocomposite scaffolds,” J. Nanomechanics Micromechanics, vol. 7, no. 4, pp. 1–14, 2017, doi: 10.1061/(ASCE)NM.2153-5477.0000133.spa
dc.relation.references[147] S. Checa and P. J. Prendergast, “Effect of cell seeding and mechanical loading on vascularization and tissue formation inside a scaffold : A mechano-biological model using a lattice approach to simulate cell activity,” J. Biomech., vol. 43, no. 5, pp. 961–968, 2010, doi: 10.1016/j.jbiomech.2009.10.044.spa
dc.relation.references[148] M. J. Song, D. Dean, and M. L. Knothe Tate, “Computational Modeling of Tissue Engineering Scaffolds as Delivery Devices for Mechanical and Mechanically Modulated Signals,” no. February 2011, 2012, pp. 127–143.spa
dc.relation.references[149] N. H. Pham, R. S. Voronov, S. B. Vangordon, V. I. Sikavitsas, and D. V. Papavassiliou, “Predicting the stress distribution within scaffolds with ordered architecture,” Biorheology, vol. 49, no. 4, pp. 235–247, 2012, doi: 10.3233/BIR-2012-0613.spa
dc.relation.references[150] F. Zhao, T. J. Vaughan, and L. M. Mcnamara, “Multiscale fluid–structure interaction modelling to determine the mechanical stimulation of bone cells in a tissue engineered scaffold,” Biomech. Model. Mechanobiol., vol. 14, no. 2, pp. 231–243, 2015, doi: 10.1007/s10237-014-0599-z.spa
dc.relation.references[151] A. Campos Marin and D. Lacroix, “The inter-sample structural variability of regular tissue-engineered scaffolds significantly affects the micromechanical local cell environment,” Interface Focus, vol. 5, no. 2, pp. 20140097–20140097, 2015, doi: 10.1098/rsfs.2014.0097.spa
dc.relation.references[152] H. a. Almeida and P. J. Bártolo, “Design of tissue engineering scaffolds based on hyperbolic surfaces: Structural numerical evaluation,” Med. Eng. Phys., vol. 36, no. 8, pp. 1033–1040, 2014, doi: 10.1016/j.medengphy.2014.05.006.spa
dc.relation.references[153] A. S. Dalaq, D. W. Abueidda, R. K. Abu Al-Rub, and I. M. Jasiuk, “Finite element prediction of effective elastic properties of interpenetrating phase composites with architectured 3D sheet reinforcements,” Int. J. Solids Struct., vol. 83, pp. 169–182, 2016, doi: 10.1016/j.ijsolstr.2016.01.011.spa
dc.relation.references[154] J. Shi, L. Zhu, L. Li, Z. Li, J. Yang, and X. Wang, “A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering,” Sci. Rep., vol. 8, no. 1, 2018, doi: 10.1038/s41598-018-25750-9.spa
dc.relation.references[155] A. Salehi and A. Daneshmehr, “Using Minimal Surface theory to design bone tissue scaffold and validate it with SLS 3D printer,” 2019.spa
dc.relation.references[156] S. M. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer, “Current trends in the design of scaffolds for computer-aided tissue engineering,” Acta Biomater., vol. 10, no. 2, pp. 580–594, 2014, doi: 10.1016/j.actbio.2013.10.024.spa
dc.relation.references[157] S. Limmahakhun and C. Yan, “Graded Cellular Bone Scaffolds,” Scaffolds Tissue Eng. - Mater. Technol. Clin. Appl., 2017, doi: 10.5772/intechopen.69911.spa
dc.relation.references[158] C. Y. Lin, N. Kikuchi, and S. J. Hollister, “A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity,” J. Biomech., vol. 37, no. 5, pp. 623–636, 2004, doi: 10.1016/j.jbiomech.2003.09.029.spa
dc.relation.references[159] J. Wieding, A. Wolf, and R. Bader, “Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone,” J. Mech. Behav. Biomed. Mater., vol. 37, pp. 56–68, 2014, doi: 10.1016/j.jmbbm.2014.05.002.spa
dc.relation.references[160] N. Reznikov et al., “Individual response variations in scaffold-guided bone regeneration are determined by independent strain- and injury-induced mechanisms,” Biomaterials, vol. 194, no. August 2018, pp. 183–194, 2019, doi: 10.1016/j.biomaterials.2018.11.026.spa
dc.relation.references[161] W. J. Hendrikson, C. A. van Blitterswijk, J. Rouwkema, and L. Moroni, “The use of finite element analyses to design and fabricate three-dimensional scaffolds for skeletal tissue engineering,” Front. Bioeng. Biotechnol., vol. 5, no. MAY, pp. 1–13, 2017, doi: 10.3389/fbioe.2017.00030.spa
dc.relation.references[162] X. Liu, “Application Of Mechano-Regulatory Tissue Differentiation Theory In Tendon Attachment Scaffold Design - A Finite Element Study,” University of Notre Dame, 2006.spa
dc.relation.references[163] C. Liu, Z. Xia, and J. T. Czernuszka, “Design and development of three-dimensional scaffolds for tissue engineering,” Chem. Eng. Res., vol. 85, no. 1, pp. 1051–1064, 2007, doi: 10.1205/cherd06196.spa
dc.relation.references[164] Y. Chen, S. Zhou, and Q. Li, “Microstructure design of biodegradable scaffold and its effect on tissue regeneration,” Biomaterials, vol. 32, no. 22, pp. 5003–5014, 2011, doi: 10.1016/j.biomaterials.2011.03.064.spa
dc.relation.references[165] A. Boccaccio et al., “Rhombicuboctahedron Unit Cell Based Scaffolds for Bone Regeneration : Geometry Optimization with a Mechanobiology – driven Algorithm,” Mater. Sci. Eng. C, 2017.spa
dc.relation.references[166] Ó. L. Rodríguez-Montaño et al., “Irregular Load Adapted Scaffold Optimization: A Computational Framework Based on Mechanobiological Criteria,” ACS Biomater. Sci. Eng., vol. 5, no. 10, pp. 5392–5411, 2019, doi: 10.1021/acsbiomaterials.9b01023.spa
dc.relation.references[167] G. Percoco, A. E. Uva, M. Fiorentino, M. Gattullo, V. M. Manghisi, and A. Boccaccio, “Mechanobiological approach to design and optimize bone tissue scaffolds 3D printed with fused deposition modeling: A feasibility study,” Materials (Basel)., vol. 13, no. 3, 2020, doi: 10.3390/ma13030648.spa
dc.relation.references[168] C. Gorriz, F. Ribeiro, J. M. Guedes, and P. R. Fernandes, “A biomechanical approach for bone regeneration inside scaffolds,” in Procedia Engineering, 2015, vol. 110, pp. 82–89, doi: 10.1016/j.proeng.2015.07.013.spa
dc.relation.references[169] M. A. Velasco, Y. Lancheros, and D. A. Garzón-Alvarado, “Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction-diffusion models and manufactured with a material jetting system,” J. Comput. Des. Eng., vol. 3, no. 4, pp. 1–13, 2016, doi: 10.1016/j.jcde.2016.06.006.spa
dc.relation.references[170] S. Wu, X. Liu, K. W. K. Yeung, C. Liu, and X. Yang, “Biomimetic porous scaffolds for bone tissue engineering,” Mater. Sci. Eng. R Reports, vol. 80, pp. 1–36, Jun. 2014, doi: 10.1016/j.mser.2014.04.001.spa
dc.relation.references[171] G. Falvo D’Urso Labate et al., “Bone structural similarity score: a multiparametric tool to match properties of biomimetic bone substitutes with their target tissues.,” J. Appl. Biomater. Funct. Mater., vol. 14, no. 3, p. 0, 2016, doi: 10.5301/jabfm.5000283.spa
dc.relation.references[172] D. F. Williams, “Challenges With the Development of Biomaterials for Sustainable Tissue Engineering,” Front. Bioeng. Biotechnol., vol. 7, no. May, pp. 1–10, 2019, doi: 10.3389/fbioe.2019.00127.spa
dc.relation.references[173] A. De Pieri, Y. Rochev, and D. I. Zeugolis, “Scaffold-free cell-based tissue engineering therapies: advances, shortfalls and forecast,” npj Regen. Med., vol. 6, no. 1, 2021, doi: 10.1038/s41536-021-00133-3.spa
dc.relation.references[174] O. de Weck and I. Y. Kim, “Finite element method.” Massachusetts Institute of Technology, pp. 1–26, 2004.spa
dc.relation.references[175] A. D. Chandrupatla, T. R., Belegundu, T. Ramesh, and C. Ray, Introduction to finite elements in engineering, Vol. 2. Upper Saddle River: Prentice Hall, 2002.spa
dc.relation.references[176] Dassault Systèmes, “Abaqus 6.11 Documentation.” Abaqus, 2011.spa
dc.relation.references[177] Ó. L. Rodríguez-Montaño et al., “An algorithm to optimize the micro-geometrical dimensions of scaffolds with spherical pores,” Materials (Basel)., vol. 13, no. 18, pp. 1–17, 2020, doi: 10.3390/ma13184062.spa
dc.relation.references[178] C. E. Korenczuk et al., “Isotropic failure criteria are not appropriate for anisotropic fibrous biological tissues,” J. Biomech. Eng., vol. 139, no. 7, pp. 1–10, 2017, doi: 10.1115/1.4036316.spa
dc.relation.references[179] D. J. Kelly and P. J. Prendergast, “Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects,” J. Biomech., vol. 38, no. 7, pp. 1413–1422, 2005, doi: 10.1016/j.jbiomech.2004.06.026.spa
dc.relation.references[180] F. S. L. Bobbert et al., “Additively manufactured metallic porous biomaterials based on minimal surfaces : A unique combination of topological , mechanical , and mass transport properties,” Acta Biomater., vol. 53, pp. 572–584, 2017, doi: 10.1016/j.actbio.2017.02.024.spa
dc.relation.references[181] P. F. Egan, “Integrated Design Approaches for 3D Printed Tissue Scaffolds: Review and Outlook,” Materials (Basel)., vol. 12, no. 15, p. 2355, Jul. 2019, doi: 10.3390/ma12152355.spa
dc.relation.references[182] A. Boccaccio, D. J. Kelly, and C. Pappalettere, “A Mechano-Regulation Model of Fracture Repair in Vertebral Bodies,” no. March, pp. 433–443, 2011, doi: 10.1002/jor.21231.spa
dc.relation.references[183] C. Sandino and D. Lacroix, “A dynamical study of the mechanical stimuli and tissue differentiation within a CaP scaffold based on micro-CT finite element models,” Biomech. Model. Mechanobiol., vol. 10, no. 4, pp. 565–576, 2011, doi: 10.1007/s10237-010-0256-0.spa
dc.relation.references[184] H. Isaksson, W. Wilson, C. C. van Donkelaar, R. Huiskes, and K. Ito, “Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing,” J. Biomech., vol. 39, no. 8, pp. 1507–1516, 2006, doi: 10.1016/j.jbiomech.2005.01.037.spa
dc.relation.references[185] J. A. Sanz-Herrera and A. R. Boccaccini, “Modelling bioactivity and degradation of bioactive glass based tissue engineering scaffolds,” Int. J. Solids Struct., vol. 48, no. 2, pp. 257–268, 2011, doi: 10.1016/j.ijsolstr.2010.09.025.spa
dc.relation.references[186] T. E. G. Krueger, D. L. J. Thorek, S. R. Denmeade, J. T. Isaacs, and W. N. Brennen, “Concise Review: Mesenchymal Stem Cell-Based Drug Delivery: The Good, the Bad, the Ugly, and the Promise,” Stem Cells Transl. Med., vol. 7, no. 9, pp. 651–663, 2018, doi: 10.1002/sctm.18-0024.spa
dc.relation.references[187] M. A. Pérez and P. J. Prendergast, “Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation,” J. Biomech., vol. 40, no. 10, pp. 2244–2253, 2007, doi: 10.1016/j.jbiomech.2006.10.020.spa
dc.relation.references[188] P. Schneider, M. Meier, R. Wepf, and R. Müller, “Towards quantitative 3D imaging of the osteocyte lacuno-canalicular network,” Bone, vol. 47, no. 5, pp. 848–858, 2010, doi: 10.1016/j.bone.2010.07.026.spa
dc.relation.references[189] A. Boccaccio, P. J. Prendergast, C. Pappalettere, and D. J. Kelly, “Tissue differentiation and bone regeneration in an osteotomized mandible: A computational analysis of the latency period,” Med. Biol. Eng. Comput., vol. 46, no. 3, pp. 283–298, 2008, doi: 10.1007/s11517-007-0247-1.spa
dc.relation.references[190] A. Göpferich, “Mechanisms of polymer degradation and erosion,” Biomaterials, vol. 17, no. 2, pp. 103–114, 1996, doi: 10.1016/B978-008045154-1.50016-2.spa
dc.relation.references[191] C. Mircioiu et al., “Mathematical modeling of release kinetics from supramolecular drug delivery systems,” Pharmaceutics, vol. 11, no. 3, 2019, doi: 10.3390/pharmaceutics11030140.spa
dc.relation.references[192] F. Ye and H. Wang, “A simple Python code for computing effective properties of 2D and 3D representative volume element under periodic boundary conditions,” arXiv, 2017.spa
dc.relation.references[193] A. Ramos and J. A. Simões, “Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur,” Med. Eng. Phys., vol. 28, no. 9, pp. 916–924, 2006, doi: 10.1016/j.medengphy.2005.12.006.spa
dc.relation.references[194] S. C. Tadepalli, A. Erdemir, and P. R. Cavanagh, “Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear,” J. Biomech., vol. 44, no. 12, pp. 2337–2343, Aug. 2011, doi: 10.1016/j.jbiomech.2011.05.006.spa
dc.relation.references[195] A. Lipphaus and U. Witzel, “Three‑dimensional finite element analysis of the dural folds and the human skull under head acceleration,” Anat. Rec., vol. 304, no. 2, pp. 1–9, Feb. 2020, doi: 10.1002/ar.24401.spa
dc.relation.references[196] J. Y. Won et al., “Evaluation of 3D printed PCL/PLGA/β-TCP versus collagen membranes for guided bone regeneration in a beagle implant model,” Biomed. Mater., vol. 11, no. 5, p. 55013, 2016, doi: 10.1088/1748-6041/11/5/055013.spa
dc.relation.references[197] A. Tsoularis and J. Wallace, “Analysis of logistic growth models,” Math. Biosci., vol. 179, no. 1, pp. 21–55, Jul. 2002, doi: 10.1016/S0025-5564(02)00096-2.spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.decsTissue Engineeringeng
dc.subject.decsIngeniería de Tejidosspa
dc.subject.decsTissue Scaffoldseng
dc.subject.decsAndamios del Tejidospa
dc.subject.decsBone Regenerationeng
dc.subject.decsRegeneración Óseaspa
dc.subject.proposalScaffoldeng
dc.subject.proposalMechanobiologyeng
dc.subject.proposalBoneeng
dc.subject.proposalHealingeng
dc.subject.proposalComputationaleng
dc.subject.proposalModelingeng
dc.subject.proposalDegradationeng
dc.subject.proposalNewly formed tissueeng
dc.subject.proposalAndamiospa
dc.subject.proposalHuesospa
dc.subject.proposalModelamiento computacionalspa
dc.subject.proposalDiferenciaciónspa
dc.subject.proposalTejido en formaciónspa
dc.subject.proposalSimulationeng
dc.subject.proposalSimulaciónspa
dc.titleInfluence of the micro-geometry of a scaffold for bone regeneration on the stresses of the newly formed tissueeng
dc.title.translatedInfluencia de la micro-geometría de un scaffold para regeneración ósea en los esfuerzos en el tejido en formaciónspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80658337.2022.pdf
Tamaño:
9.79 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería Mecánica y Mecatrónica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: