Evaluación de la modificación de almidón de yuca (Manihot esculenta) vía desramificación enzimática y entrecruzamiento y la utilización del almidón modificado para la obtención de películas biodegradables
dc.contributor.advisor | Perilla Perilla, Jairo Ernesto | |
dc.contributor.author | Algecira Enciso, Néstor Ariel | |
dc.contributor.researchgroup | Grupo de Investigación en Procesos Químicos y Bioquímicos | spa |
dc.date.accessioned | 2023-07-25T21:01:19Z | |
dc.date.available | 2023-07-25T21:01:19Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones, fotografías, gráficas, tablas | spa |
dc.description.abstract | En esta investigación se estudió la morfología, cristalinidad y el proceso de gelatinización mediante seguimiento de la viscosidad y calorimetría diferencial de barrido para el almidón de yuca. Se evaluó el proceso de hidrólisis enzimática con pululanasa para obtener almidón desramificado enzimáticamente (ADRE), y se estableció que las mejores condiciones para el proceso son la temperatura de reacción 60 °C y pH 4, y mediante seguimiento cromatográfico se determinó que se producen una mezcla de alto, medio y bajo peso molecular con capacidad filmogénica. Posteriormente se trabajó con esterificación de almidón nativo y almidón desramificado (ADRE) con ácido cítrico, málico y adípico, inicialmente se realizó en medio orgánico con DMSO para la obtención de adipato de ADRE a 90 °C con un grado de sustitución de 0,009, en la segunda parte la evaluación se realizó mediante el método de calor seco en horno, y se logró sintetizar citrato, malato y adipato de almidón y de ADRE con una temperatura de reacción de 100°C, tiempo de reacción 2,5 h y relación ácido/almidón de 15 g/100g, esto se verificó con espectroscopia infrarroja y se complementó con determinaciones de calorimetría diferencial de barrido (DSC) y termogravimetría (TGA), los grados de sustitución obtenidos fueron bajos y estuvieron entre 0,04 y 1,03. Se caracterizaron estos productos y se encontró aumento de la hidrofobicidad, pocos cambios en la cristalinidad, cambios en la morfología y se prepararon películas con estos derivados de almidón por el método de casting con polioles como plastificantes y estas tienen menor permeabilidad a vapor de agua, mejores propiedades mecánicas y son biodegradables. (Texto tomado de la fuente) | spa |
dc.description.abstract | In this research, the morphology, crystallinity and the gelatinization process were studied by monitoring the viscosity and differential scanning calorimetry for cassava starch. The enzymatic hydrolysis process with pullulanase to obtain enzymatically debranched starch (ADRE) was evaluated, and it was established that the best conditions for the process are the reaction temperature of 60 °C and pH 4, and through chromatographic monitoring it was determined that a mixture of high, medium and low molecular weight with filmogenic capacity. Subsequently, work was carried out with esterification of native starch and debranched starch (ADRE) with citric, malic and adipic acid, initially it was carried out in an organic medium with DMSO to obtain ADRE adipate at 90 °C with a degree of substitution of 0.009, in In the second part, the evaluation was carried out using the oven-dry heat method, and it was possible to synthesize starch and ADRE citrate, malate and adipate with a reaction temperature of 100°C, reaction time of 2.5 h and acid/acid ratio. starch of 15 g/100g, this was verified with infrared spectroscopy and complemented with determinations of differential scanning calorimetry (DSC) and thermogravimetry (TGA), the degrees of substitution obtained were low and were between 0.04 and 1.03. These products were characterized and an increase in hydrophobicity was found, few changes in crystallinity, changes in morphology and films were prepared with these starch derivatives by the casting method with polyols as plasticizers and these have lower permeability to water vapor. better mechanical properties and are biodegradable. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería | spa |
dc.description.methods | Experimental | spa |
dc.description.researcharea | Biopolímeros | spa |
dc.format.extent | xvi, 129 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84270 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química | spa |
dc.relation.references | Aburto, J., Alric, I., & Borredon, E. (1999). Preparation of Long-chain Esters of Starch Using Fatty Acid Chlorides in the Absence of an Organic Solvent. Starch - Stärke, 51(4), 132-135.https://doi.org/10.1002/(SICI)1521-379X(199904)51:4<132::AID-STAR132>3.0.CO;2-Z | spa |
dc.relation.references | Aburto, J., Alric, I., Thiebaud, S., Borredon, E., Bikiaris, D., Prinos, J., & Panayiotou, C. (1999). Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch. Journal of Applied Polymer Science, 74(6), 1440-1451. https://doi.org/10.1002/(SICI)1097-4628(19991107)74:6<1440::AID-APP17>3.0.CO;2-V | spa |
dc.relation.references | Ačkar, Đ., Babić, J., Jozinović, A., Miličević, B., Jokić, S., Miličević, R., Rajič, M., & Šubarić, D. (2015). Starch Modification by Organic Acids and Their Derivatives: A Review. Molecules, 20(10), 19554-19570. https://doi.org/10.3390/molecules201019554 | spa |
dc.relation.references | Aguilar Barranco, A. (2015). Dinámica de carbohidratos y mecanismos de regulación de la ADP-Glucosa pirofosforilasa durante el desarrollo de fruto de plátano macho (Musa paradisiaca L) [Tesis de Maestría, Instituto Politécnico Nacional]. http://tesis.ipn.mx:8080/xmlui/handle/123456789/14685 | spa |
dc.relation.references | Alarcón, F., & Dufour, D. (1998). Almidón agrio de yuca en Colombia: Producción y recomendaciones. https://cgspace.cgiar.org/handle/10568/54079 | spa |
dc.relation.references | And, Z. L., & Han, J. h. (2005). Film-forming Characteristics of Starches. Journal of Food Science, 70(1), E31-E36. https://doi.org/10.1111/j.1365-2621.2005.tb09034.x | spa |
dc.relation.references | Aristizábal, J., Sanchez, T., & Mejia Lorio, D. (2007). Guia tecnica para produccion y analisis de almidon de yuca. Boletin de Servicios Agricolas de la FAO (FAO). http://www.fao.org/docrep/010/a1028s/a1028s00.htm | spa |
dc.relation.references | Artavia, G., Cortés-Herrera, C., & Granados-Chinchilla, F. (2020). Total and resistant starch from foodstuff for animal and human consumption in Costa Rica. Current Research in Food Science, 3, 275-283. https://doi.org/10.1016/j.crfs.2020.11.001 | spa |
dc.relation.references | Arvanitoyannis, I., Nakayama, A., & Aiba, S. (1998). Edible films made from hydroxypropyl starch and gelatin and plasticized by polyols and water. Carbohydrate Polymers, 36(2), 105-119. https://doi.org/10.1016/S0144-8617(98)00017-4 | spa |
dc.relation.references | Avila Martin, L. (2018). Efecto de la adición de ácido cítrico y proteína de lactosuero en la elaboración de películas basadas en almidón de Canna indica L [Tesis, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/68666 | spa |
dc.relation.references | Ball, S., Guan, H.-P., James, M., Myers, A., Keeling, P., Mouille, G., Buléon, A., Colonna, P., & Preiss, J. (1996). From Glycogen to Amylopectin: A Model for the Biogenesis of the Plant Starch Granule. Cell, 86(3), 349-352. https://doi.org/10.1016/S0092-8674(00)80107-5 | spa |
dc.relation.references | Bello-Pérez, L. A., Colonna, P., Roger, P., & Octavio Parees-López. (1998). Laser light scattering of high amylose and high amylopectin materials in aqueous solution, effect of storage time. Carbohydrate Polymers, 37(4), 383-394. https://doi.org/10.1016/S0144-8617(97)00139-2 | spa |
dc.relation.references | BeMiller, J. N. (2018). Chapter 5—Physical Modification of Starch. En M. Sjöö & L. Nilsson (Eds.), Starch in Food (Second Edition) (pp. 223-253). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100868-3.00005-6 | spa |
dc.relation.references | BeMiller, J. N. (2019). Chapter 19—Corn Starch Modification. En S. O. Serna-Saldivar (Ed.), Corn (Third Edition) (pp. 537-549). AACC International Press. https://doi.org/10.1016/B978-0-12-811971-6.00019-X | spa |
dc.relation.references | BeMiller, J. N., & Huber, K. C. (2015). Physical Modification of Food Starch Functionalities. Annual Review of Food Science and Technology, 6(1), 19-69. https://doi.org/10.1146/annurev-food-022814-015552 | spa |
dc.relation.references | Berovic, M., & Legisa, M. (2007). Citric acid production. En M. R. El-Gewely (Ed.), Biotechnology Annual Review (Vol. 13, pp. 303-343). Elsevier. https://doi.org/10.1016/S1387-2656(07)13011-8 | spa |
dc.relation.references | Bertoft, E. (2017). Understanding Starch Structure: Recent Progress. Agronomy, 7(3), Article 3. https://doi.org/10.3390/agronomy7030056 | spa |
dc.relation.references | Bertolini, A. (Ed.). (2009). Starches: Characterization, Properties, and Applications. CRC Press. https://doi.org/10.1201/9781420080247 | spa |
dc.relation.references | Biliaderis, C. G., Page, C. M., Maurice, T. J., & Juliano, B. O. (1986). Thermal characterization of rice starches: A polymeric approach to phase transitions of granular starch. Journal of Agricultural and Food Chemistry, 34(1), 6-14. https://doi.org/10.1021/jf00067a002 | spa |
dc.relation.references | Biswas, A., Shogren, R. L., Kim, S., & Willett, J. L. (2006). Rapid preparation of starch maleate half-esters. Carbohydrate Polymers, 64(3), 484-487. https://doi.org/10.1016/j.carbpol.2005.12.013 | spa |
dc.relation.references | Blanshard, J. M. V. (1979). 9—PHYSICOCHEMICAL ASPECTS OF STARCH GELATINIZATION. En J. M. V. Blanshard & J. R. Mitchell (Eds.), Polysaccharides in Food (pp. 139-152). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-408-10618-4.50014-7 | spa |
dc.relation.references | Blennow, A., Wischmann, B., Houborg, K., Ahmt, T., Jørgensen, K., Engelsen, S. B., Bandsholm, O., & Poulsen, P. (2005). Structure function relationships of transgenic starches with engineered phosphate substitution and starch branching. International Journal of Biological Macromolecules, 36(3), 159-168. https://doi.org/10.1016/j.ijbiomac.2005.05.006 | spa |
dc.relation.references | Builders, P. F., & Arhewoh, M. I. (2016). Pharmaceutical applications of native starch in conventional drug delivery. Starch - Stärke, 68(9-10), 864-873. https://doi.org/10.1002/star.201500337 | spa |
dc.relation.references | Buleon, A., Gallant, D. J., Bouchet, B., Mouille, G., D’Hulst, C., Kossmann, J., & Ball, S. (1997). Starches from A to C (Chlamydomonas reinhardtii as a Model Microbial System to Investigate the Biosynthesis of the Plant Amylopectin Crystal). Plant Physiology, 115(3), 949-957. https://doi.org/10.1104/pp.115.3.949 | spa |
dc.relation.references | Cael, J. J., Koenig, J. L., & Blackwell, J. (1975). Infrared and Raman spectroscopy of carbohydrates. Part VI: Normal coordinate analysis of V-amylose. Biopolymers, 14(9), 1885-1903. https://doi.org/10.1002/bip.1975.360140909 | spa |
dc.relation.references | Canales, N., & Trujillo, M. (2021). La red de valor de la yuca y su potencial en la bioeconomía de Colombia. https://www.sei.org/publications/la-red-de-valor-de-la-yuca-y-su-potencial-en-la-bioeconomia-de-colombia/ | spa |
dc.relation.references | Ceballos, H., Hershey, C., Iglesias, C., & Zhang, X. (2021). Fifty years of a public cassava breeding program: Evolution of breeding objectives, methods, and decision-making processes. Theoretical and Applied Genetics, 134(8), 2335-2353. https://doi.org/10.1007/s00122-021-03852-9 | spa |
dc.relation.references | Chakraborty, S., Sahoo, B., Teraoka, I., Miller, L. M., & Gross, R. A. (2005). Enzyme-Catalyzed Regioselective Modification of Starch Nanoparticles. Macromolecules, 38(1), 61-68. https://doi.org/10.1021/ma048842w | spa |
dc.relation.references | Chanzy, H., Vuong, R., & Jésior, J. C. (1990). An Electron Diffraction Study on Whole Granules of Lintnerized Potato Starch. Starch - Stärke, 42(10), 377-379. https://doi.org/10.1002/star.19900421003 | spa |
dc.relation.references | Chatakanonda, P., Varavinit, S., & Chinachoti, P. (2000). Effect of Crosslinking on Thermal and Microscopic Transitions of Rice Starch. LWT - Food Science and Technology, 33(4), 276-284. https://doi.org/10.1006/fstl.2000.0662 | spa |
dc.relation.references | Chen, X.-Y., & Kim, J.-Y. (2006). Transport of macromolecules through plasmodesmata and the phloem. Physiologia Plantarum, 126(4), 560-571. https://doi.org/10.1111/j.1399-3054.2006.00630.x | spa |
dc.relation.references | Colonna, P., & Mercier, C. (1985). Gelatinization and melting of maize and pea starches with normal and high-amylose genotypes. Phytochemistry, 24(8), 1667-1674. https://doi.org/10.1016/S0031-9422(00)82532-7 | spa |
dc.relation.references | Cornejo-Ramírez, Y. I., Martínez-Cruz, O., Del Toro-Sánchez, C. L., Wong-Corral, F. J., Borboa-Flores, J., & Cinco-Moroyoqui, F. J. (2018). The structural characteristics of starches and their functional properties. CyTA - Journal of Food, 16(1), 1003-1017. https://doi.org/10.1080/19476337.2018.1518343 | spa |
dc.relation.references | Cui, S. W. (Ed.). (2005). Food Carbohydrates: Chemistry, Physical Properties, and Applications. CRC Press. https://doi.org/10.1201/9780203485286 | spa |
dc.relation.references | Cyras, V. P., Tolosa Zenklusen, M. C., & Vazquez, A. (2006). Relationship between structure and properties of modified potato starch biodegradable films. Journal of Applied Polymer Science, 101(6), 4313-4319. https://doi.org/10.1002/app.23924 | spa |
dc.relation.references | Demiate, I. M., Dupuy, N., Huvenne, J. P., Cereda, M. P., & Wosiacki, G. (2000). Relationship between baking behavior of modified cassava starches and starch chemical structure determined by FTIR spectroscopy. Carbohydrate Polymers, 42(2), 149-158. https://doi.org/10.1016/S0144-8617(99)00152-6 | spa |
dc.relation.references | Diop, C. I. K., Li, H. L., Xie, B. J., & Shi, J. (2011). Effects of acetic acid/acetic anhydride ratios on the properties of corn starch acetates. Food Chemistry, 126(4), 1662-1669. https://doi.org/10.1016/j.foodchem.2010.12.050 | spa |
dc.relation.references | Donovan, J. W. (1979). Phase transitions of the starch–water system. Biopolymers, 18(2), 263-275. https://doi.org/10.1002/bip.1979.360180204 | spa |
dc.relation.references | Ebnesajjad, S., & Landrock, A. H. (2015). Adhesives Technology Handbook (3rd ed.). https://www.sciencedirect.com/book/9780323355957/adhesives-technology-handbook#book-info | spa |
dc.relation.references | Eliasson, A.-C., Larsson, K., Andersson, S., Hyde, S. T., Nesper, R., & Von Schnering, H.-G. (1987). On the Structure of Native Starch—An Analogue to the Quartz Structure. Starch - Stärke, 39(5), 147-152. https://doi.org/10.1002/star.19870390502 | spa |
dc.relation.references | Ellis, R. P., Cochrane, M. P., Dale, M. F. B., Duffus, C. M., Lynn, A., Morrison, I. M., Prentice, R. D. M., Swanston, J. S., & Tiller, S. A. (1998). Starch production and industrial use. Journal of the Science of Food and Agriculture, 77(3), 289-311. https://doi.org/10.1002/(SICI)1097-0010(199807)77:3<289::AID-JSFA38>3.0.CO;2-D | spa |
dc.relation.references | El-Sharkawy, M. A. (2004). Cassava biology and physiology. Plant Molecular Biology, 56(4), 481-501. https://doi.org/10.1007/s11103-005-2270-7 | spa |
dc.relation.references | Emeje, M. (2020). Chemical Properties of Starch. https://doi.org/10.5772/intechopen.78119 | spa |
dc.relation.references | Encalada, K., Aldás, M. B., Proaño, E., & Valle, V. (2018). An overview of starch-based biopolymers and their biodegradability. Ciencia e Ingeniería, 39(3), 245-258 | spa |
dc.relation.references | Enríquez Collazos, M. G. (2012). Obtención y caracterización de películas activas obtenidas por extrusión de almidón modificado de yuca (Manihot sculenta crantz) [recurso electrónico] [Thesis]. https://bibliotecadigital.univalle.edu.co/handle/10893/7918 | spa |
dc.relation.references | Fang, J. M., Fowler, P. A., Tomkinson, J., & Hill, C. A. S. (2002). The preparation and characterisation of a series of chemically modified potato starches. Carbohydrate Polymers, 47(3), 245-252. https://doi.org/10.1016/S0144-8617(01)00187-4 | spa |
dc.relation.references | FAO. (2020). Cassava. FAOSTAT. https://www.fao.org/faostat/en/#search/cassava | spa |
dc.relation.references | Fornal, J., Sadowska, J., Błaszczak, W., Jeliński, T., Stasiak, M., Molenda, M., & Hajnos, M. (2012). Influence of some chemical modifications on the characteristics of potato starch powders. Journal of Food Engineering, 108(4), 515-522. https://doi.org/10.1016/j.jfoodeng.2011.09.016 | spa |
dc.relation.references | French, D. (1984). CHAPTER VII - ORGANIZATION OF STARCH GRANULES. En R. L. Whistler, J. N. Bemiller, & E. F. Paschall (Eds.), Starch: Chemistry and Technology (Second Edition) (pp. 183-247). Academic Press. https://doi.org/10.1016/B978-0-12-746270-7.50013-6 | spa |
dc.relation.references | Fringant, C., Rinaudo, M., Gontard, N., Guilbert, S., & Derradji, H. (1998). A Biogradable Starch Based Coating to Waterproof Hydrophilic Materials. Starch - Stärke, 50(7), 292-296. https://doi.org/10.1002/(SICI)1521-379X(199807)50:7<292::AID-STAR292>3.0.CO;2-# | spa |
dc.relation.references | Gao, Q., Li, S., Jian, H., & Liang, S. (2011). Preparation and properties of resistant starch from corn starch with enzymes. African Journal of Biotechnology, 10(7), 1186-1193. https://doi.org/10.5897/AJB10.1381 | spa |
dc.relation.references | García, M. A., Martino, M. N., & Zaritzky, N. E. (2000). Microstructural Characterization of Plasticized Starch-Based Films. Starch - Stärke, 52(4), 118-124. https://doi.org/10.1002/1521-379X(200006)52:4<118::AID-STAR118>3.0.CO;2-0 | spa |
dc.relation.references | García, M., Rojas, A. M., Laurindo, J. B., Romero-Bastida, C. A., Grossmann, M. V. E., Martino, M. N., Flores, S., Zamudio-Flores, P. B., Mali, S., Zaritzky, N. E., Sobral, P., Famá, L., Bello-Pérez, L. A., Yamashita, F., & del Beleia, A. P. (2008). Innovations in Starch-Based Film Technology. En G. F. Gutiérrez-López, G. V. Barbosa-Cánovas, J. Welti-Chanes, & E. Parada-Arias (Eds.), Food Engineering: Integrated Approaches (pp. 431-454). Springer. https://doi.org/10.1007/978-0-387-75430-7_32 | spa |
dc.relation.references | Garg, S., & Jana, A. K. (2011). Characterization and evaluation of acylated starch with different acyl groups and degrees of substitution. Carbohydrate Polymers, 83(4), 1623-1630. https://doi.org/10.1016/j.carbpol.2010.10.015 | spa |
dc.relation.references | Gernat, Ch., Radosta, S., Damaschun, G., & Schierbaum, F. (1990). Supramolecular Structure of Legume Starches Revealed by X-Ray Scattering. Starch - Stärke, 42(5), 175-178. https://doi.org/10.1002/star.19900420504 | spa |
dc.relation.references | Ghiena, C., Schulz, M., & Schnabl, H. (1993). Starch Degradation and Distribution of the Starch-Degrading Enzymes in Vicia faba Leaves (Diurnal Oscillation of Amylolytic Activity and Starch Content in Chloroplasts). Plant Physiology, 101(1), 73-79. https://doi.org/10.1104/pp.101.1.73 | spa |
dc.relation.references | Golachowski, A., Drożdż, W., Golachowska, M., Kapelko-Żeberska, M., & Raszewski, B. (2020). Production and Properties of Starch Citrates—Current Research. Foods, 9(9), Article 9. https://doi.org/10.3390/foods9091311 | spa |
dc.relation.references | Gong, B., Cheng, L., Gilbert, R. G., & Li, C. (2019). Distribution of short to medium amylose chains are major controllers of in vitro digestion of retrograded rice starch. Food Hydrocolloids, 96, 634-643. https://doi.org/10.1016/j.foodhyd.2019.06.003 | spa |
dc.relation.references | Gong, Q., Wang, L.-Q., & Tu, K. (2006). In situ polymerization of starch with lactic acid in aqueous solution and the microstructure characterization. Carbohydrate Polymers, 64(4), 501-509. https://doi.org/10.1016/j.carbpol.2005.09.005 | spa |
dc.relation.references | Gottret, M. V., Escobar Aragón, Z., & Pérez Suárez, S. (2002). El sector yuquero en Colombia: Desarrollo y competitividad. Centro Internacional de Agricultura Tropical (CIAT). https://cgspace.cgiar.org/handle/10568/55252 | spa |
dc.relation.references | Gouveia, T. I. A., Biernacki, K., Castro, M. C. R., Gonçalves, M. P., & Souza, H. K. S. (2019). A new approach to develop biodegradable films based on thermoplastic pectin. Food Hydrocolloids, 97, 105175. https://doi.org/10.1016/j.foodhyd.2019.105175 | spa |
dc.relation.references | Heinze, T., Liebert, T., & Koschella, A. (2006). Esterification of Polysaccharides (1.a ed.). Springer-Verlag. https://doi.org/10.1007/3-540-32112-8 | spa |
dc.relation.references | Hershey, C. H. (2020). Cassava genetic improvement: Theory and practice. https://cgspace.cgiar.org/handle/10568/110397 | spa |
dc.relation.references | Hizukuri, S. (1986). Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydrate Research, 147(2), 342-347. https://doi.org/10.1016/S0008-6215(00)90643-8 | spa |
dc.relation.references | Hong, J., Zeng, X.-A., Buckow, R., & Han, Z. (2018). Structural, thermodynamic and digestible properties of maize starches esterified by conventional and dual methods: Differentiation of amylose contents. Food Hydrocolloids, 83, 419-429. https://doi.org/10.1016/j.foodhyd.2018.05.032 | spa |
dc.relation.references | Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: A review. Carbohydrate Polymers, 45(3), 253-267. https://doi.org/10.1016/S0144-8617(00)00260-5 | spa |
dc.relation.references | Hu, A., Chen, X., Wang, J., Wang, X., Zheng, J., & Wang, L. (2021). Effects on the structure and properties of native corn starch modified by enzymatic debranching (ED), microwave assisted esterification with citric acid (MCAE) and by the dual ED/MCAE treatment. International Journal of Biological Macromolecules, 171, 123-129. https://doi.org/10.1016/j.ijbiomac.2021.01.012 | spa |
dc.relation.references | Imre, B., & Vilaplana, F. (2020). Organocatalytic esterification of corn starches towards enhanced thermal stability and moisture resistance. Green Chemistry, 22(15), 5017-5031. https://doi.org/10.1039/D0GC00681E | spa |
dc.relation.references | Jane, J. (2006). Current Understanding on Starch Granule Structures. Journal of Applied Glycoscience, 53(3), 205-213. https://doi.org/10.5458/jag.53.205 | spa |
dc.relation.references | Jenner, C. F. (1991). Effects of Exposure of Wheat Ears to High Temperature on Dry Matter Accumulation and Carbohydrate Metabolism in the Grain of Two Cultivars. I. Immediate Responses. Functional Plant Biology, 18(2), 165-177. https://doi.org/10.1071/pp9910165 | spa |
dc.relation.references | Jobling, S. (2004). Improving starch for food and industrial applications. Current Opinion in Plant Biology, 7(2), 210-218. https://doi.org/10.1016/j.pbi.2003.12.001 | spa |
dc.relation.references | Jyothi, A. N., Rajasekharan, K. N., Moorthy, S. N., & Sreekumar, J. (2005). Microwave-Assisted Synthesis and Characterization of Succinate Derivatives of Cassava (Manihot esculenta Crantz) Starch. Starch - Stärke, 57(11), 556-563. https://doi.org/10.1002/star.200500429 | spa |
dc.relation.references | Kapelko-Żeberska, M., Buksa, K., Szumny, A., Zięba, T., & Gryszkin, A. (2016). Analysis of molecular structure of starch citrate obtained by a well-stablished method. LWT - Food Science and Technology, 69, 334-341. https://doi.org/10.1016/j.lwt.2016.01.066 | spa |
dc.relation.references | Kapelko-Żeberska, M., Zięba, T., Pietrzak, W., & Gryszkin, A. (2016). Effect of citric acid esterification conditions on the properties of the obtained resistant starch. International Journal of Food Science & Technology, 51(7), 1647-1654. https://doi.org/10.1111/ijfs.13136 | spa |
dc.relation.references | Keeling, P. L., Bacon, P. J., & Holt, D. C. (1993). Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta, 191(3), 342-348. https://doi.org/10.1007/BF00195691 | spa |
dc.relation.references | Keeling, P. L., Wood, J. R., Tyson, R. H., & Bridges, I. G. (1988). Starch Biosynthesis in Developing Wheat Grain 1. Plant Physiology, 87(2), 311-319 | spa |
dc.relation.references | Kizil, R., Irudayaraj, J., & Seetharaman, K. (2002). Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. Journal of Agricultural and Food Chemistry, 50(14), 3912-3918. https://doi.org/10.1021/jf011652p | spa |
dc.relation.references | Klaushofer, H., Berghofer, E., & Steyrer, W. (1978). Stärkecitrate – Produktion und anwendungs-technische Eigenschaften. Starch - Stärke, 30(2), 47-51. https://doi.org/10.1002/star.19780300204 | spa |
dc.relation.references | Kövilein, A., Kubisch, C., Cai, L., & Ochsenreither, K. (2020). Malic acid production from renewables: A review. Journal of Chemical Technology & Biotechnology, 95(3), 513-526. https://doi.org/10.1002/jctb.6269 | spa |
dc.relation.references | Krogars, K., Heinämäki, J., Karjalainen, M., Rantanen, J., Luukkonen, P., & Yliruusi, J. (2003). Development and characterization of aqueous amylose-rich maize starch dispersion for film formation. European Journal of Pharmaceutics and Biopharmaceutics, 56(2), 215-221. https://doi.org/10.1016/S0939-6411(03)00064-X | spa |
dc.relation.references | Kushwaha, R., & Kaur, D. (2018). Recent techniques used in modification of starches: A review. En Food Technology From Health to Wealth & Future Challenges (pp. 1-15). | spa |
dc.relation.references | Lafargue, D., Pontoire, B., Buléon, A., Doublier, J. L., & Lourdin, D. (2007). Structure and Mechanical Properties of Hydroxypropylated Starch Films. Biomacromolecules, 8(12), 3950-3958. https://doi.org/10.1021/bm7009637 | spa |
dc.relation.references | Lauro, M. (2001). α-amylosisi of barley starch [Tesis de doctorado, Technical Research Centre of Finland]. https://www.vttresearch.com/sites/default/files/pdf/publications/2001/P433.pdf | spa |
dc.relation.references | León Molina, H. B. (2011). Caracterización térmica, morfológica y determinación de las propiedades de resistencia a la tensión de mezclas de polivinil alcohol (PVOH) y almidón de yuca [Tesis de Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/8734 | spa |
dc.relation.references | Liu, G., Gu, Z., Hong, Y., Cheng, L., & Li, C. (2017). Structure, functionality and applications of debranched starch: A review. Trends in Food Science & Technology, 63, 70-79. https://doi.org/10.1016/j.tifs.2017.03.004 | spa |
dc.relation.references | Liu, Q., Charlet, G., Yelle, S., & Arul, J. (2002). Phase transition in potato starch–water system I. Starch gelatinization at high moisture level. Food Research International, 35(4), 397-407. https://doi.org/10.1016/S0963-9969(01)00134-X | spa |
dc.relation.references | Lopez-Rubio, A., Flanagan, B. M., Gilbert, E. P., & Gidley, M. J. (2008). A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers, 89(9), 761-768. https://doi.org/10.1002/bip.21005 | spa |
dc.relation.references | Ma, X., Chang, P. R., Yu, J., & Stumborg, M. (2009). Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohydrate Polymers, 75(1), 1-8. https://doi.org/10.1016/j.carbpol.2008.05.020 | spa |
dc.relation.references | MADR-Colombia. (2021). Cadena Productiva de la yuca. Dirección de cadenas agrícolas y forestales. | spa |
dc.relation.references | Majzoobi, M., Beparva, P., Farahnaky, A., & Badii, F. (2014). Effects of malic acid and citric acid on the functional properties of native and cross-linked wheat starches. Starch - Stärke, 66(5-6), 491-495. https://doi.org/10.1002/star.201300188 | spa |
dc.relation.references | Mali, S., & Grossmann, M. V. E. (2001). Preparation of Acetylated Distarch Adipates by Extrusion. LWT - Food Science and Technology, 34(6), 384-389. https://doi.org/10.1006/fstl.2001.0768 | spa |
dc.relation.references | Mali, S., Grossmann, M. V. E., Garcia, M. A., Martino, M. N., & Zaritzky, N. E. (2002). Microstructural characterization of yam starch films. Carbohydrate Polymers, 50(4), 379-386. https://doi.org/10.1016/S0144-8617(02)00058-9 | spa |
dc.relation.references | Mali, S., Grossmann, M. V. E., Garcı́a, M. A., Martino, M. N., & Zaritzky, N. E. (2005). Mechanical and thermal properties of yam starch films. Food Hydrocolloids, 19(1), 157-164. https://doi.org/10.1016/j.foodhyd.2004.05.002 | spa |
dc.relation.references | Mali, S., Grossmann, M. V. E., & Yamashita, F. (2010). Filmes de amido: Produção, propriedades e potencial de utilização. Semina: Ciências Agrárias, 31(1), Article 1. https://doi.org/10.5433/1679-0359.2010v31n1p137 | spa |
dc.relation.references | Mali, S., Sakanaka, L. S., Yamashita, F., & Grossmann, M. V. E. (2005). Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydrate Polymers, 60(3), 283-289. https://doi.org/10.1016/j.carbpol.2005.01.003 | spa |
dc.relation.references | Martin, C., & Smith, A. M. (1995). Starch biosynthesis. The Plant Cell, 7(7), 971-985. https://doi.org/10.1105/tpc.7.7.971 | spa |
dc.relation.references | Martínez, P., Peña, F., Bello-Pérez, L. A., Núñez-Santiago, C., Yee-Madeira, H., & Velezmoro, C. (2019). Physicochemical, functional and morphological characterization of starches isolated from three native potatoes of the Andean region. Food Chemistry: X, 2, 100030. https://doi.org/10.1016/j.fochx.2019.100030 | spa |
dc.relation.references | Matheson, N. K. (1996). The chemical structure of amylose and amylopectin fractions of starch from tobacco leaves during development and diurnally-nocturnally. Carbohydrate Research, 282(2), 247-262. https://doi.org/10.1016/0008-6215(95)00381-9 | spa |
dc.relation.references | Maurer, H. W. (2009). Chapter 18—Starch in the Paper Industry. En J. BeMiller & R. Whistler (Eds.), Starch (Third Edition) (pp. 657-713). Academic Press. https://doi.org/10.1016/B978-0-12-746275-2.00018-5 | spa |
dc.relation.references | Medina, J. A., & Salas, J. C. (2008). Caracterización morfológica del granulo de almidón nativo: Apariencia, forma, tamaño y su distribución. Revista de Ingeniería, 27, 56-62. | spa |
dc.relation.references | Mei, J.-Q., Zhou, D.-N., Jin, Z.-Y., Xu, X.-M., & Chen, H.-Q. (2015). Effects of citric acid esterification on digestibility, structural and physicochemical properties of cassava starch. Food Chemistry, 187, 378-384. https://doi.org/10.1016/j.foodchem.2015.04.076 | spa |
dc.relation.references | Mendoza, A. J. (2015). Tartaric Acid Cross-Linking of Starch: Effect of Reaction Conditions on the Maximum Tensile Strength of Cast Plastic Films. Journal of Student Science and Technology, 8(3). https://doi.org/10.13034/jsst.v8i3.67 | spa |
dc.relation.references | Miladinov, V. D., & Hanna, M. A. (2000). Starch esterification by reactive extrusion. Industrial Crops and Products, 11(1), 51-57. https://doi.org/10.1016/S0926-6690(99)00033-3 | spa |
dc.relation.references | Ministerio de Agricultura y Desarrollo Rural. (2021, marzo 31). Cadena Productiva de la Yuca—Dirección de Cadenas Agrícolas y Forestales—Marzo de 2021. https://sioc.minagricultura.gov.co/Yuca/Documentos/2021-03-31%20Cifras%20Sectoriales%20yuca.pdf | spa |
dc.relation.references | Moncayo, D., Buitrago, G., & Algecira, N. (2013). The surface properties of biopolymer-coated fruit: A review. Ingeniería e Investigación, 33(3), 11-16. | spa |
dc.relation.references | Monroy, Y., Rivero, S., & García, M. A. (2018). Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrasonics Sonochemistry, 42, 795-804. https://doi.org/10.1016/j.ultsonch.2017.12.048 | spa |
dc.relation.references | Munyikwa, T. R. I., Langeveld, S., Salehuzzaman, S. N. I. M., Jacobsen, E., & Visser, R. G. F. (1997). Cassava starch biosynthesis: New avenues for modifying starch quantity and quality. Euphytica, 96(1), 65-75. https://doi.org/10.1023/A:1002935603412 | spa |
dc.relation.references | Na, J. H., Jeong, G. A., Park, H. J., & Lee, C. J. (2021). Impact of esterification with malic acid on the structural characteristics and in vitro digestibilities of different starches. International Journal of Biological Macromolecules, 174, 540-548. https://doi.org/10.1016/j.ijbiomac.2021.01.220 | spa |
dc.relation.references | Nakazawa, F., Noguchi, S., Takahashi, J., & Takada, M. (1984). Gelatinization and Retrogradation of Rice Starch Studied by Differential Scanning Calorimetry. Agricultural and Biological Chemistry, 48(1), 201-203. https://doi.org/10.1080/00021369.1984.10866115 | spa |
dc.relation.references | Nanda, S., Patra, B. R., Patel, R., Bakos, J., & Dalai, A. K. (2022). Innovations in applications and prospects of bioplastics and biopolymers: A review. Environmental Chemistry Letters, 20(1), 379-395. https://doi.org/10.1007/s10311-021-01334-4 | spa |
dc.relation.references | Naranjo Estepa, E. B. (2020). Evaluation of the effects of different variables over the properties of plantain starch-based films and their potential application in packaging. https://repositorio.unal.edu.co/handle/unal/78757 | spa |
dc.relation.references | Ojogbo, E., Blanchard, R., & Mekonnen, T. (2018). Hydrophobic and Melt Processable Starch-Laurate Esters: Synthesis, Structure–Property Correlations. Journal of Polymer Science Part A: Polymer Chemistry, 56(23), 2611-2622. https://doi.org/10.1002/pola.29237 | spa |
dc.relation.references | Oltramari, K., Madrona, G. S., Neto, A. M., de Morais, G. R., Baesso, M. L., de Cássia. Bergamasco, R., & de Moraes, F. F. (2017). Citrate esterified cassava starch: Preparation, physicochemical characterisation, and application in dairy beverages. Starch - Stärke, 69(11-12), 1700044. https://doi.org/10.1002/star.201700044 | spa |
dc.relation.references | Ong, M. H., Jumel, K., Tokarczuk, P. F., Blanshard, J. M. V., & Harding, S. E. (1994). Simultaneous determinations of the molecular weight distributions of amyloses and the fine structures of amylopectins of native starches. Carbohydrate Research, 260(1), 99-117. https://doi.org/10.1016/0008-6215(94)80025-1 | spa |
dc.relation.references | Padonou, W., Mestres, C., & Nago, M. C. (2005). The quality of boiled cassava roots: Instrumental characterization and relationship with physicochemical properties and sensorial properties. Food Chemistry, 89(2), 261-270. https://doi.org/10.1016/j.foodchem.2004.02.033 | spa |
dc.relation.references | Parker, R., & Ring, S. G. (2001). Aspects of the Physical Chemistry of Starch. Journal of Cereal Science, 34(1), 1-17. https://doi.org/10.1006/jcrs.2000.0402 | spa |
dc.relation.references | Parra, D. F., Tadini, C. C., Ponce, P., & Lugão, A. B. (2004). Mechanical properties and water vapor transmission in some blends of cassava starch edible films. Carbohydrate Polymers, 58(4), 475-481. https://doi.org/10.1016/j.carbpol.2004.08.021 | spa |
dc.relation.references | Pelissari, F. M., Andrade-Mahecha, M. M., Sobral, P. J. do A., & Menegalli, F. C. (2012). Isolation and characterization of the flour and starch of plantain bananas (Musa paradisiaca). Starch - Stärke, 64(5), 382-391. https://doi.org/10.1002/star.201100133 | spa |
dc.relation.references | Peñaranda Contreras, O. I., Perilla Perilla, J. E., & Algecira Enciso, N. A. (2008). Revisión de la modificación química del almidón con ácidos orgánicos. Ingeniería e Investigación, 28(3), 47-52. https://doi.org/10.15446/ing.investig.v28n3.15119 | spa |
dc.relation.references | Peñaranda, O. I. (2009). Producción de ésteres de almidón de yuca. [Tesis de Maestría]. Universidad Nacional de Colombia | spa |
dc.relation.references | Pokhrel, S. (2015). A review on introduction and applications of starch and its biodegradable polymers. International Journal of Environment, 4(4), Article 4. https://doi.org/10.3126/ije.v4i4.14108 | spa |
dc.relation.references | Prachayawarakorn, J., & Tamseekhram, J. (2019). Chemical modification of biodegradable cassava starch films by natural mono-, di- and tri-carboxylic acids. Songklanakarin Journal of Science and Technology, 41(2) 355-362, 355-362. https://doi.org/10.14456/sjst-psu.2019.45 | spa |
dc.relation.references | Qu, J., Xu, S., Zhang, Z., Chen, G., Zhong, Y., Liu, L., Zhang, R., Xue, J., & Guo, D. (2018). Evolutionary, structural and expression analysis of core genes involved in starch synthesis. Scientific Reports, 8(1), Article 1. https://doi.org/10.1038/s41598-018-30411-y | spa |
dc.relation.references | Rajan, A., & Abraham, T. E. (2006). Enzymatic modification of cassava starch by bacterial lipase. Bioprocess and Biosystems Engineering, 29(1), 65-71. https://doi.org/10.1007/s00449-006-0060-5 | spa |
dc.relation.references | Ratnayake, W. S., & Jackson, D. S. (2008). Chapter 5 Starch Gelatinization. En Advances in Food and Nutrition Research (Vol. 55, pp. 221-268). Academic Press. https://doi.org/10.1016/S1043-4526(08)00405-1 | spa |
dc.relation.references | Reis, R. L., & Cunha, A. M. (2001). Starch Polymers. En K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, & P. Veyssière (Eds.), Encyclopedia of Materials: Science and Technology (pp. 8810-8815). Elsevier. https://doi.org/10.1016/B0-08-043152-6/01583-7 | spa |
dc.relation.references | Richardson, S., & Gorton, L. (2003). Characterisation of the substituent distribution in starch and cellulose derivatives. Analytica Chimica Acta, 497(1), 27-65. https://doi.org/10.1016/j.aca.2003.08.005 | spa |
dc.relation.references | Robyt, J. F. (2008). Starch: Structure, Properties, Chemistry, and Enzymology. En B. O. Fraser-Reid, K. Tatsuta, & J. Thiem (Eds.), Glycoscience: Chemistry and Chemical Biology (pp. 1437-1472). Springer. https://doi.org/10.1007/978-3-540-30429-6_35 | spa |
dc.relation.references | Rodriguez-Sandoval, E., Otálvaro-Arenas, J. A., & Hernandez, V. (2016). Bread quality of flours substituted with modified cassava starches. Starch - Stärke, 69(5-6), 1600253. https://doi.org/10.1002/star.201600253 | spa |
dc.relation.references | Ruíz Avilés, G. (2005). Polímeros biodegradables a partir del almidón de yuca [MasterThesis, Universidad EAFIT]. http://repository.eafit.edu.co/handle/10784/7364 | spa |
dc.relation.references | Saavedra, N., & Algecira, N. (2010). Evaluación de películas comestibles de almidón de yuca y proteína aislada de soya en la conservación de fresas. Nova, 8(14), Article 14. https://doi.org/10.22490/24629448.448 | spa |
dc.relation.references | Sali̇u, O., Olatunji̇, G., Ajetomobi̇, O., Olosho, A., Abi̇odun, İ., & Amusan, G. (2017). CRYSTALLINE STARCH CITRATE BIOPOLYMER NANORODS AS POTENTIAL STABILIZERS IN NANO AND MICRO EMULSIONS. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 1(2), Article 2. | spa |
dc.relation.references | Sánchez-Rivera, M. M., Núñez-Santiago, M. del C., Bello-Pérez, L. A., Agama-Acevedo, E., & Alvarez-Ramirez, J. (2017). Citric acid esterification of unripe plantain flour: Physicochemical properties and starch digestibility. Starch - Stärke, 69(9-10), 1700019. https://doi.org/10.1002/star.201700019 | spa |
dc.relation.references | Santayanon, R., & Wootthikanokkhan, J. (2003). Modification of cassava starch by using propionic anhydride and properties of the starch-blended polyester polyurethane. Carbohydrate Polymers, 51(1), 17-24. https://doi.org/10.1016/S0144-8617(02)00109-1 | spa |
dc.relation.references | Santha, N., Sudha, K. G., Vijayakumari, K. P., Nayar, V. U., & Moorthy, S. N. (1990). Raman and infrared spectra of starch samples of sweet potato and cassava. Journal of Chemical Sciences, 102(5), 705-712. https://doi.org/10.1007/BF03040801 | spa |
dc.relation.references | Savin, R., Stone, P. J., Nicolas, M. E., & Wardlaw, I. F. (1997). Grain growth and malting quality of barley. 1. Effects of heat stress and moderately high temperature. Australian Journal of Agricultural Research, 48(5), 615-624. https://doi.org/10.1071/a96064 | spa |
dc.relation.references | Schirmer, M., Jekle, M., & Becker, T. (2015). Starch gelatinization and its complexity for analysis. Starch - Stärke, 67(1-2), 30-41. https://doi.org/10.1002/star.201400071 | spa |
dc.relation.references | Serrano Chávez, C. A. (2021). A rheological investigation of starch gels and solutions and its relationship with structural properties [Trabajo de grado - Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/79481 | spa |
dc.relation.references | Shannon, J. C., & Garwood, D. L. (1984). CHAPTER III - GENETICS AND PHYSIOLOGY OF STARCH DEVELOPMENT. En R. L. Whistler, J. N. Bemiller, & E. F. Paschall (Eds.), Starch: Chemistry and Technology (Second Edition) (pp. 25-86). Academic Press. https://doi.org/10.1016/B978-0-12-746270-7.50009-4 | spa |
dc.relation.references | Shi, M., Gao, Q., & Liu, Y. (2018). Changes in the Structure and Digestibility of Wrinkled Pea Starch with Malic Acid Treatment. Polymers, 10(12), Article 12. https://doi.org/10.3390/polym10121359 | spa |
dc.relation.references | Shi, M., Jing, Y., Yang, L., Huang, X., Wang, H., Yan, Y., & Liu, Y. (2019). Structure and Physicochemical Properties of Malate Starches from Corn, Potato, and Wrinkled Pea Starches. Polymers, 11(9), Article 9. https://doi.org/10.3390/polym11091523 | spa |
dc.relation.references | Shimooozono, T., & Shiraishi, N. (1997). JP 09031103 CAN 126:226739. | spa |
dc.relation.references | Shiotsubo, T., & Takahashi, K. (1984). Differential Thermal Analysis of Potato Starch Gelatinization. Agricultural and Biological Chemistry, 48(1), 9-17. https://doi.org/10.1271/bbb1961.48.9 | spa |
dc.relation.references | Shogren, R. L. (2000). Modification of maize starch by thermal processing in glacial acetic acid. Carbohydrate Polymers, 43(4), 309-315. https://doi.org/10.1016/S0144-8617(00)00178-8 | spa |
dc.relation.references | Shogren, R. L. (2003). Rapid preparation of starch esters by high temperature/pressure reaction. Carbohydrate Polymers, 52(3), 319-326. https://doi.org/10.1016/S0144-8617(02)00305-3 | spa |
dc.relation.references | Show, P. L., Oladele, K. O., Siew, Q. Y., Aziz Zakry, F. A., Lan, J. C.-W., & Ling, T. C. (2015). Overview of citric acid production from Aspergillus niger. Frontiers in Life Science, 8(3), 271-283. https://doi.org/10.1080/21553769.2015.1033653 | spa |
dc.relation.references | Singh, A. V., & Nath, L. K. (2011). Synthesis and evaluation of physicochemical properties of cross-linked Phaseolus aconitifolius starch. Starch - Stärke, 63(10), 655-660. https://doi.org/10.1002/star.201100034 | spa |
dc.relation.references | Sívoli, L., Pérez, E., Rodriguez, P., & Raymúndez, M. B. (2009). Técnicas microscópicas y de dispersión de luz empleadas en la evaluación de la estructura del almidón nativo de yuca (Manihot esculenta C). Acta Microscopica, 18(3), 195-203 | spa |
dc.relation.references | Smith, A. M. (2001). The Biosynthesis of Starch Granules. Biomacromolecules, 2(2), 335-341. https://doi.org/10.1021/bm000133c | spa |
dc.relation.references | Sobral, P. J. D. A. (2000). Influência da espessura de biofilmes feitos à base de proteínas miofibrilares sobre suas propriedades funcionais. Pesquisa Agropecuária Brasileira, 35, 1251-1259. https://doi.org/10.1590/S0100-204X2000000600022 | spa |
dc.relation.references | Song, L. (2010). Chemical Modification of Starch and Preparation of Starch-Based Nanocomposites [Tesis de doctorado, University of Akron]. https://etd.ohiolink.edu/apexprod/rws_olink/r/1501/10?p10_etd_subid=47384&clear=10 | spa |
dc.relation.references | Srikaeo, K., Hao, P. T., & Lerdluksamee, C. (2018). Effects of Heating Temperatures and Acid Concentrations on Physicochemical Properties and Starch Digestibility of Citric Acid Esterified Tapioca Starches. Starch - Stärke, 71(1-2), 1800065. https://doi.org/10.1002/star.201800065 | spa |
dc.relation.references | Srikaeo, K., Hao, P. T., & Lerdluksamee, C. (2019). Effects of Heating Temperatures and Acid Concentrations on Physicochemical Properties and Starch Digestibility of Citric Acid Esterified Tapioca Starches. Starch - Stärke, 71(1-2), 1800065. https://doi.org/10.1002/star.201800065 | spa |
dc.relation.references | Sumardiono, S., Riska, L., Jos, B., & Pudjiastuti, I. (2019). Effect of Esterification on Cassava Starch: Physicochemical Properties and Expansion Ability. Reaktor, 19(1), 34-41. https://doi.org/10.14710/reaktor.19.1.34-41 | spa |
dc.relation.references | Tappiban, P., Smith, D. R., Triwitayakorn, K., & Bao, J. (2019). Recent understanding of starch biosynthesis in cassava for quality improvement: A review. Trends in Food Science & Technology, 83, 167-180. https://doi.org/10.1016/j.tifs.2018.11.019 | spa |
dc.relation.references | Temesgen, S., Murugesan, B., & Rotich, G. K. (2019). Performance evaluation of cotton yarn sized with natural starches produced from native corn, cassava and potato starches. Journal of Textile Science & Engineering, 9. http://repository.seku.ac.ke/handle/123456789/6129 | spa |
dc.relation.references | Tester, R. F., Karkalas, J., & Qi, X. (2004). Starch—Composition, fine structure and architecture. Journal of Cereal Science, 39(2), 151-165. https://doi.org/10.1016/j.jcs.2003.12.001 | spa |
dc.relation.references | Thomas, D. J., & Atwell, W. A. (1999). Starches. Eagan Press. | spa |
dc.relation.references | Tomasik, P., & Schilling, C. H. (2004). Chemical modification of starch. Advances in Carbohydrate Chemistry and Biochemistry, 59, 175-403. https://doi.org/10.1016/S0065-2318(04)59005-4 | spa |
dc.relation.references | Tupa Valencia, M. V. (2019). Modificación organocatalítica de almidón para la obtención sostenible de derivados de alto valor agregado [Tesis de doctorado, Universidad de Buenos Aires]. http://bibliotecadigital.fi.uba.ar/items/show/18281 | spa |
dc.relation.references | Vatanasuchart, N., Tungtrakul, P., Wongkrajang, K., & Naivikul, O. (2010). Properties of Pullulanase Debranched Cassava Starch and Type-III Resistant Starch. Agriculture and Natural Resources, 44(1), Article 1 | spa |
dc.relation.references | Visser, R. G. F., & Jacobsen, E. (1993). Towards modifying plants for altered starch content and composition. Trends in Biotechnology, 11(2), 63-68. https://doi.org/10.1016/0167-7799(93)90124-R | spa |
dc.relation.references | Waigh, T. A., Hopkinson, I., Donald, A. M., Butler, M. F., Heidelbach, F., & Riekel, C. (1997). Analysis of the Native Structure of Starch Granules with X-ray Microfocus Diffraction. Macromolecules, 30(13), 3813-3820. https://doi.org/10.1021/ma970075w | spa |
dc.relation.references | Walker, M., & Farisani, L. (2006). Innovation in resource-based technology clusters: Investigating the lateral migration thesis: the manufacture of biodegrable plastics from maize starch. Human Sciences Research Council. https://doi.org/10/6424 | spa |
dc.relation.references | Wang, K., Henry, R. J., & Gilbert, R. G. (2014). Causal Relations Among Starch Biosynthesis, Structure, and Properties. Springer Science Reviews, 2(1), 15-33. https://doi.org/10.1007/s40362-014-0016-0 | spa |
dc.relation.references | Xie, F., Pollet, E., Halley, P. J., & Avérous, L. (2013). Starch-based nano-biocomposites. Progress in Polymer Science, 38(10), 1590-1628. https://doi.org/10.1016/j.progpolymsci.2013.05.002 | spa |
dc.relation.references | Xie, X. (Sherry), Liu, Q., & Cui, S. W. (2006). Studies on the granular structure of resistant starches (type 4) from normal, high amylose and waxy corn starch citrates. Food Research International, 39(3), 332-341. https://doi.org/10.1016/j.foodres.2005.08.004 | spa |
dc.relation.references | Xu, Y., Miladinov, V., & Hanna, M. A. (2004). Synthesis and Characterization of Starch Acetates with High Substitution. Cereal Chemistry, 81(6), 735-740. https://doi.org/10.1094/CCHEM.2004.81.6.735 | spa |
dc.relation.references | Yan, W., Zhang, W., Xia, Q., Wang, S., Zhang, S., Shen, J., & Jin, X. (2020). Highly dispersed metal incorporated hexagonal mesoporous silicates for catalytic cyclohexanone oxidation to adipic acid. Chinese Journal of Chemical Engineering, 28(10), 2542-2548. https://doi.org/10.1016/j.cjche.2020.04.013 | spa |
dc.relation.references | Ye, J., Luo, S., Huang, A., Chen, J., Liu, C., & McClements, D. J. (2019). Synthesis and characterization of citric acid esterified rice starch by reactive extrusion: A new method of producing resistant starch. Food Hydrocolloids, 92, 135-142. https://doi.org/10.1016/j.foodhyd.2019.01.064 | spa |
dc.relation.references | Zambelli, R. A., Galvão, A. M. M. T., Mendonça, L. G. de, Leão, M. V. de S., Carneiro, S. V., Lima, A. C. S., & Melo, C. A. L. (2018). Effect of Different Levels of Acetic, Citric and Lactic Acid in the Cassava Starch Modification on Physical, Rheological, Thermal and Microstructural Properties. Food Science and Technology Research, 24(4), 747-754. https://doi.org/10.3136/fstr.24.747 | spa |
dc.relation.references | Zhang, H., & Mittal, G. (2010). Biodegradable protein-based films from plant resources: A review. Environmental Progress & Sustainable Energy, 29(2), 203-220. https://doi.org/10.1002/ep.10463 | spa |
dc.relation.references | Zhong, C., Xiong, Y., Lu, H., Luo, S., Wu, J., Ye, J., & Liu, C. (2022). Preparation and characterization of rice starch citrates by superheated steam: A new strategy of producing resistant starch. LWT, 154, 112890. https://doi.org/10.1016/j.lwt.2021.112890 | spa |
dc.relation.references | Zhou, J., Zhang, J., Ma, Y., & Tong, J. (2008). Surface photo-crosslinking of corn starch sheets. Carbohydrate Polymers, 74(3), 405-410. https://doi.org/10.1016/j.carbpol.2008.03.006 | spa |
dc.relation.references | Zięba, T., Solińska, D., Kapelko-Żeberska, M., Gryszkin, A., Babić, J., Ačkar, Đ., Hernández, F., Lončarić, A., Šubarić, D., & Jozinović, A. (2020). Properties of Potato Starch Roasted with Apple Distillery Wastewater. Polymers, 12(8), Article 8. https://doi.org/10.3390/polym12081668 | spa |
dc.relation.references | Zobel, H. F. (1988). Molecules to Granules: A Comprehensive Starch Review. Starch - Stärke, 40(2), 44-50. https://doi.org/10.1002/star.19880400203 | spa |
dc.relation.references | Żołek-Tryznowska, Z., & Kałuża, A. (2021). The Influence of Starch Origin on the Properties of Starch Films: Packaging Performance. Materials, 14(5), Article 5. https://doi.org/10.3390/ma14051146 | spa |
dc.rights | Derechos reservados al autor, 2023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.agrovoc | Almidones modificados | spa |
dc.subject.agrovoc | Modified starches | eng |
dc.subject.ddc | 660 - Ingeniería química::668 - Tecnología de otros productos orgánicos | spa |
dc.subject.proposal | Almidón de yuca | spa |
dc.subject.proposal | Esterificación | spa |
dc.subject.proposal | Poliácidos orgánicos | spa |
dc.subject.proposal | Cassava starch | eng |
dc.subject.proposal | esterification | eng |
dc.subject.proposal | Organic polyacids | eng |
dc.subject.wikidata | Biodegradación | spa |
dc.subject.wikidata | Biodegradation | eng |
dc.title | Evaluación de la modificación de almidón de yuca (Manihot esculenta) vía desramificación enzimática y entrecruzamiento y la utilización del almidón modificado para la obtención de películas biodegradables | spa |
dc.title.translated | Evaluation of the modification of cassava starch (Manihot esculenta) via enzymatic debranching and crosslinking and the use of modified starch to obtain biodegradable films | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 79491089.2023.pdf
- Tamaño:
- 7.57 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería Química
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: