Evaluación de la modificación de almidón de yuca (Manihot esculenta) vía desramificación enzimática y entrecruzamiento y la utilización del almidón modificado para la obtención de películas biodegradables

dc.contributor.advisorPerilla Perilla, Jairo Ernesto
dc.contributor.authorAlgecira Enciso, Néstor Ariel
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2023-07-25T21:01:19Z
dc.date.available2023-07-25T21:01:19Z
dc.date.issued2023
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractEn esta investigación se estudió la morfología, cristalinidad y el proceso de gelatinización mediante seguimiento de la viscosidad y calorimetría diferencial de barrido para el almidón de yuca. Se evaluó el proceso de hidrólisis enzimática con pululanasa para obtener almidón desramificado enzimáticamente (ADRE), y se estableció que las mejores condiciones para el proceso son la temperatura de reacción 60 °C y pH 4, y mediante seguimiento cromatográfico se determinó que se producen una mezcla de alto, medio y bajo peso molecular con capacidad filmogénica. Posteriormente se trabajó con esterificación de almidón nativo y almidón desramificado (ADRE) con ácido cítrico, málico y adípico, inicialmente se realizó en medio orgánico con DMSO para la obtención de adipato de ADRE a 90 °C con un grado de sustitución de 0,009, en la segunda parte la evaluación se realizó mediante el método de calor seco en horno, y se logró sintetizar citrato, malato y adipato de almidón y de ADRE con una temperatura de reacción de 100°C, tiempo de reacción 2,5 h y relación ácido/almidón de 15 g/100g, esto se verificó con espectroscopia infrarroja y se complementó con determinaciones de calorimetría diferencial de barrido (DSC) y termogravimetría (TGA), los grados de sustitución obtenidos fueron bajos y estuvieron entre 0,04 y 1,03. Se caracterizaron estos productos y se encontró aumento de la hidrofobicidad, pocos cambios en la cristalinidad, cambios en la morfología y se prepararon películas con estos derivados de almidón por el método de casting con polioles como plastificantes y estas tienen menor permeabilidad a vapor de agua, mejores propiedades mecánicas y son biodegradables. (Texto tomado de la fuente)spa
dc.description.abstractIn this research, the morphology, crystallinity and the gelatinization process were studied by monitoring the viscosity and differential scanning calorimetry for cassava starch. The enzymatic hydrolysis process with pullulanase to obtain enzymatically debranched starch (ADRE) was evaluated, and it was established that the best conditions for the process are the reaction temperature of 60 °C and pH 4, and through chromatographic monitoring it was determined that a mixture of high, medium and low molecular weight with filmogenic capacity. Subsequently, work was carried out with esterification of native starch and debranched starch (ADRE) with citric, malic and adipic acid, initially it was carried out in an organic medium with DMSO to obtain ADRE adipate at 90 °C with a degree of substitution of 0.009, in In the second part, the evaluation was carried out using the oven-dry heat method, and it was possible to synthesize starch and ADRE citrate, malate and adipate with a reaction temperature of 100°C, reaction time of 2.5 h and acid/acid ratio. starch of 15 g/100g, this was verified with infrared spectroscopy and complemented with determinations of differential scanning calorimetry (DSC) and thermogravimetry (TGA), the degrees of substitution obtained were low and were between 0.04 and 1.03. These products were characterized and an increase in hydrophobicity was found, few changes in crystallinity, changes in morphology and films were prepared with these starch derivatives by the casting method with polyols as plasticizers and these have lower permeability to water vapor. better mechanical properties and are biodegradable.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.methodsExperimentalspa
dc.description.researchareaBiopolímerosspa
dc.format.extentxvi, 129 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84270
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAburto, J., Alric, I., & Borredon, E. (1999). Preparation of Long-chain Esters of Starch Using Fatty Acid Chlorides in the Absence of an Organic Solvent. Starch - Stärke, 51(4), 132-135.https://doi.org/10.1002/(SICI)1521-379X(199904)51:4<132::AID-STAR132>3.0.CO;2-Zspa
dc.relation.referencesAburto, J., Alric, I., Thiebaud, S., Borredon, E., Bikiaris, D., Prinos, J., & Panayiotou, C. (1999). Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch. Journal of Applied Polymer Science, 74(6), 1440-1451. https://doi.org/10.1002/(SICI)1097-4628(19991107)74:6<1440::AID-APP17>3.0.CO;2-Vspa
dc.relation.referencesAčkar, Đ., Babić, J., Jozinović, A., Miličević, B., Jokić, S., Miličević, R., Rajič, M., & Šubarić, D. (2015). Starch Modification by Organic Acids and Their Derivatives: A Review. Molecules, 20(10), 19554-19570. https://doi.org/10.3390/molecules201019554spa
dc.relation.referencesAguilar Barranco, A. (2015). Dinámica de carbohidratos y mecanismos de regulación de la ADP-Glucosa pirofosforilasa durante el desarrollo de fruto de plátano macho (Musa paradisiaca L) [Tesis de Maestría, Instituto Politécnico Nacional]. http://tesis.ipn.mx:8080/xmlui/handle/123456789/14685spa
dc.relation.referencesAlarcón, F., & Dufour, D. (1998). Almidón agrio de yuca en Colombia: Producción y recomendaciones. https://cgspace.cgiar.org/handle/10568/54079spa
dc.relation.referencesAnd, Z. L., & Han, J. h. (2005). Film-forming Characteristics of Starches. Journal of Food Science, 70(1), E31-E36. https://doi.org/10.1111/j.1365-2621.2005.tb09034.xspa
dc.relation.referencesAristizábal, J., Sanchez, T., & Mejia Lorio, D. (2007). Guia tecnica para produccion y analisis de almidon de yuca. Boletin de Servicios Agricolas de la FAO (FAO). http://www.fao.org/docrep/010/a1028s/a1028s00.htmspa
dc.relation.referencesArtavia, G., Cortés-Herrera, C., & Granados-Chinchilla, F. (2020). Total and resistant starch from foodstuff for animal and human consumption in Costa Rica. Current Research in Food Science, 3, 275-283. https://doi.org/10.1016/j.crfs.2020.11.001spa
dc.relation.referencesArvanitoyannis, I., Nakayama, A., & Aiba, S. (1998). Edible films made from hydroxypropyl starch and gelatin and plasticized by polyols and water. Carbohydrate Polymers, 36(2), 105-119. https://doi.org/10.1016/S0144-8617(98)00017-4spa
dc.relation.referencesAvila Martin, L. (2018). Efecto de la adición de ácido cítrico y proteína de lactosuero en la elaboración de películas basadas en almidón de Canna indica L [Tesis, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/68666spa
dc.relation.referencesBall, S., Guan, H.-P., James, M., Myers, A., Keeling, P., Mouille, G., Buléon, A., Colonna, P., & Preiss, J. (1996). From Glycogen to Amylopectin: A Model for the Biogenesis of the Plant Starch Granule. Cell, 86(3), 349-352. https://doi.org/10.1016/S0092-8674(00)80107-5spa
dc.relation.referencesBello-Pérez, L. A., Colonna, P., Roger, P., & Octavio Parees-López. (1998). Laser light scattering of high amylose and high amylopectin materials in aqueous solution, effect of storage time. Carbohydrate Polymers, 37(4), 383-394. https://doi.org/10.1016/S0144-8617(97)00139-2spa
dc.relation.referencesBeMiller, J. N. (2018). Chapter 5—Physical Modification of Starch. En M. Sjöö & L. Nilsson (Eds.), Starch in Food (Second Edition) (pp. 223-253). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100868-3.00005-6spa
dc.relation.referencesBeMiller, J. N. (2019). Chapter 19—Corn Starch Modification. En S. O. Serna-Saldivar (Ed.), Corn (Third Edition) (pp. 537-549). AACC International Press. https://doi.org/10.1016/B978-0-12-811971-6.00019-Xspa
dc.relation.referencesBeMiller, J. N., & Huber, K. C. (2015). Physical Modification of Food Starch Functionalities. Annual Review of Food Science and Technology, 6(1), 19-69. https://doi.org/10.1146/annurev-food-022814-015552spa
dc.relation.referencesBerovic, M., & Legisa, M. (2007). Citric acid production. En M. R. El-Gewely (Ed.), Biotechnology Annual Review (Vol. 13, pp. 303-343). Elsevier. https://doi.org/10.1016/S1387-2656(07)13011-8spa
dc.relation.referencesBertoft, E. (2017). Understanding Starch Structure: Recent Progress. Agronomy, 7(3), Article 3. https://doi.org/10.3390/agronomy7030056spa
dc.relation.referencesBertolini, A. (Ed.). (2009). Starches: Characterization, Properties, and Applications. CRC Press. https://doi.org/10.1201/9781420080247spa
dc.relation.referencesBiliaderis, C. G., Page, C. M., Maurice, T. J., & Juliano, B. O. (1986). Thermal characterization of rice starches: A polymeric approach to phase transitions of granular starch. Journal of Agricultural and Food Chemistry, 34(1), 6-14. https://doi.org/10.1021/jf00067a002spa
dc.relation.referencesBiswas, A., Shogren, R. L., Kim, S., & Willett, J. L. (2006). Rapid preparation of starch maleate half-esters. Carbohydrate Polymers, 64(3), 484-487. https://doi.org/10.1016/j.carbpol.2005.12.013spa
dc.relation.referencesBlanshard, J. M. V. (1979). 9—PHYSICOCHEMICAL ASPECTS OF STARCH GELATINIZATION. En J. M. V. Blanshard & J. R. Mitchell (Eds.), Polysaccharides in Food (pp. 139-152). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-408-10618-4.50014-7spa
dc.relation.referencesBlennow, A., Wischmann, B., Houborg, K., Ahmt, T., Jørgensen, K., Engelsen, S. B., Bandsholm, O., & Poulsen, P. (2005). Structure function relationships of transgenic starches with engineered phosphate substitution and starch branching. International Journal of Biological Macromolecules, 36(3), 159-168. https://doi.org/10.1016/j.ijbiomac.2005.05.006spa
dc.relation.referencesBuilders, P. F., & Arhewoh, M. I. (2016). Pharmaceutical applications of native starch in conventional drug delivery. Starch - Stärke, 68(9-10), 864-873. https://doi.org/10.1002/star.201500337spa
dc.relation.referencesBuleon, A., Gallant, D. J., Bouchet, B., Mouille, G., D’Hulst, C., Kossmann, J., & Ball, S. (1997). Starches from A to C (Chlamydomonas reinhardtii as a Model Microbial System to Investigate the Biosynthesis of the Plant Amylopectin Crystal). Plant Physiology, 115(3), 949-957. https://doi.org/10.1104/pp.115.3.949spa
dc.relation.referencesCael, J. J., Koenig, J. L., & Blackwell, J. (1975). Infrared and Raman spectroscopy of carbohydrates. Part VI: Normal coordinate analysis of V-amylose. Biopolymers, 14(9), 1885-1903. https://doi.org/10.1002/bip.1975.360140909spa
dc.relation.referencesCanales, N., & Trujillo, M. (2021). La red de valor de la yuca y su potencial en la bioeconomía de Colombia. https://www.sei.org/publications/la-red-de-valor-de-la-yuca-y-su-potencial-en-la-bioeconomia-de-colombia/spa
dc.relation.referencesCeballos, H., Hershey, C., Iglesias, C., & Zhang, X. (2021). Fifty years of a public cassava breeding program: Evolution of breeding objectives, methods, and decision-making processes. Theoretical and Applied Genetics, 134(8), 2335-2353. https://doi.org/10.1007/s00122-021-03852-9spa
dc.relation.referencesChakraborty, S., Sahoo, B., Teraoka, I., Miller, L. M., & Gross, R. A. (2005). Enzyme-Catalyzed Regioselective Modification of Starch Nanoparticles. Macromolecules, 38(1), 61-68. https://doi.org/10.1021/ma048842wspa
dc.relation.referencesChanzy, H., Vuong, R., & Jésior, J. C. (1990). An Electron Diffraction Study on Whole Granules of Lintnerized Potato Starch. Starch - Stärke, 42(10), 377-379. https://doi.org/10.1002/star.19900421003spa
dc.relation.referencesChatakanonda, P., Varavinit, S., & Chinachoti, P. (2000). Effect of Crosslinking on Thermal and Microscopic Transitions of Rice Starch. LWT - Food Science and Technology, 33(4), 276-284. https://doi.org/10.1006/fstl.2000.0662spa
dc.relation.referencesChen, X.-Y., & Kim, J.-Y. (2006). Transport of macromolecules through plasmodesmata and the phloem. Physiologia Plantarum, 126(4), 560-571. https://doi.org/10.1111/j.1399-3054.2006.00630.xspa
dc.relation.referencesColonna, P., & Mercier, C. (1985). Gelatinization and melting of maize and pea starches with normal and high-amylose genotypes. Phytochemistry, 24(8), 1667-1674. https://doi.org/10.1016/S0031-9422(00)82532-7spa
dc.relation.referencesCornejo-Ramírez, Y. I., Martínez-Cruz, O., Del Toro-Sánchez, C. L., Wong-Corral, F. J., Borboa-Flores, J., & Cinco-Moroyoqui, F. J. (2018). The structural characteristics of starches and their functional properties. CyTA - Journal of Food, 16(1), 1003-1017. https://doi.org/10.1080/19476337.2018.1518343spa
dc.relation.referencesCui, S. W. (Ed.). (2005). Food Carbohydrates: Chemistry, Physical Properties, and Applications. CRC Press. https://doi.org/10.1201/9780203485286spa
dc.relation.referencesCyras, V. P., Tolosa Zenklusen, M. C., & Vazquez, A. (2006). Relationship between structure and properties of modified potato starch biodegradable films. Journal of Applied Polymer Science, 101(6), 4313-4319. https://doi.org/10.1002/app.23924spa
dc.relation.referencesDemiate, I. M., Dupuy, N., Huvenne, J. P., Cereda, M. P., & Wosiacki, G. (2000). Relationship between baking behavior of modified cassava starches and starch chemical structure determined by FTIR spectroscopy. Carbohydrate Polymers, 42(2), 149-158. https://doi.org/10.1016/S0144-8617(99)00152-6spa
dc.relation.referencesDiop, C. I. K., Li, H. L., Xie, B. J., & Shi, J. (2011). Effects of acetic acid/acetic anhydride ratios on the properties of corn starch acetates. Food Chemistry, 126(4), 1662-1669. https://doi.org/10.1016/j.foodchem.2010.12.050spa
dc.relation.referencesDonovan, J. W. (1979). Phase transitions of the starch–water system. Biopolymers, 18(2), 263-275. https://doi.org/10.1002/bip.1979.360180204spa
dc.relation.referencesEbnesajjad, S., & Landrock, A. H. (2015). Adhesives Technology Handbook (3rd ed.). https://www.sciencedirect.com/book/9780323355957/adhesives-technology-handbook#book-infospa
dc.relation.referencesEliasson, A.-C., Larsson, K., Andersson, S., Hyde, S. T., Nesper, R., & Von Schnering, H.-G. (1987). On the Structure of Native Starch—An Analogue to the Quartz Structure. Starch - Stärke, 39(5), 147-152. https://doi.org/10.1002/star.19870390502spa
dc.relation.referencesEllis, R. P., Cochrane, M. P., Dale, M. F. B., Duffus, C. M., Lynn, A., Morrison, I. M., Prentice, R. D. M., Swanston, J. S., & Tiller, S. A. (1998). Starch production and industrial use. Journal of the Science of Food and Agriculture, 77(3), 289-311. https://doi.org/10.1002/(SICI)1097-0010(199807)77:3<289::AID-JSFA38>3.0.CO;2-Dspa
dc.relation.referencesEl-Sharkawy, M. A. (2004). Cassava biology and physiology. Plant Molecular Biology, 56(4), 481-501. https://doi.org/10.1007/s11103-005-2270-7spa
dc.relation.referencesEmeje, M. (2020). Chemical Properties of Starch. https://doi.org/10.5772/intechopen.78119spa
dc.relation.referencesEncalada, K., Aldás, M. B., Proaño, E., & Valle, V. (2018). An overview of starch-based biopolymers and their biodegradability. Ciencia e Ingeniería, 39(3), 245-258spa
dc.relation.referencesEnríquez Collazos, M. G. (2012). Obtención y caracterización de películas activas obtenidas por extrusión de almidón modificado de yuca (Manihot sculenta crantz) [recurso electrónico] [Thesis]. https://bibliotecadigital.univalle.edu.co/handle/10893/7918spa
dc.relation.referencesFang, J. M., Fowler, P. A., Tomkinson, J., & Hill, C. A. S. (2002). The preparation and characterisation of a series of chemically modified potato starches. Carbohydrate Polymers, 47(3), 245-252. https://doi.org/10.1016/S0144-8617(01)00187-4spa
dc.relation.referencesFAO. (2020). Cassava. FAOSTAT. https://www.fao.org/faostat/en/#search/cassavaspa
dc.relation.referencesFornal, J., Sadowska, J., Błaszczak, W., Jeliński, T., Stasiak, M., Molenda, M., & Hajnos, M. (2012). Influence of some chemical modifications on the characteristics of potato starch powders. Journal of Food Engineering, 108(4), 515-522. https://doi.org/10.1016/j.jfoodeng.2011.09.016spa
dc.relation.referencesFrench, D. (1984). CHAPTER VII - ORGANIZATION OF STARCH GRANULES. En R. L. Whistler, J. N. Bemiller, & E. F. Paschall (Eds.), Starch: Chemistry and Technology (Second Edition) (pp. 183-247). Academic Press. https://doi.org/10.1016/B978-0-12-746270-7.50013-6spa
dc.relation.referencesFringant, C., Rinaudo, M., Gontard, N., Guilbert, S., & Derradji, H. (1998). A Biogradable Starch Based Coating to Waterproof Hydrophilic Materials. Starch - Stärke, 50(7), 292-296. https://doi.org/10.1002/(SICI)1521-379X(199807)50:7<292::AID-STAR292>3.0.CO;2-#spa
dc.relation.referencesGao, Q., Li, S., Jian, H., & Liang, S. (2011). Preparation and properties of resistant starch from corn starch with enzymes. African Journal of Biotechnology, 10(7), 1186-1193. https://doi.org/10.5897/AJB10.1381spa
dc.relation.referencesGarcía, M. A., Martino, M. N., & Zaritzky, N. E. (2000). Microstructural Characterization of Plasticized Starch-Based Films. Starch - Stärke, 52(4), 118-124. https://doi.org/10.1002/1521-379X(200006)52:4<118::AID-STAR118>3.0.CO;2-0spa
dc.relation.referencesGarcía, M., Rojas, A. M., Laurindo, J. B., Romero-Bastida, C. A., Grossmann, M. V. E., Martino, M. N., Flores, S., Zamudio-Flores, P. B., Mali, S., Zaritzky, N. E., Sobral, P., Famá, L., Bello-Pérez, L. A., Yamashita, F., & del Beleia, A. P. (2008). Innovations in Starch-Based Film Technology. En G. F. Gutiérrez-López, G. V. Barbosa-Cánovas, J. Welti-Chanes, & E. Parada-Arias (Eds.), Food Engineering: Integrated Approaches (pp. 431-454). Springer. https://doi.org/10.1007/978-0-387-75430-7_32spa
dc.relation.referencesGarg, S., & Jana, A. K. (2011). Characterization and evaluation of acylated starch with different acyl groups and degrees of substitution. Carbohydrate Polymers, 83(4), 1623-1630. https://doi.org/10.1016/j.carbpol.2010.10.015spa
dc.relation.referencesGernat, Ch., Radosta, S., Damaschun, G., & Schierbaum, F. (1990). Supramolecular Structure of Legume Starches Revealed by X-Ray Scattering. Starch - Stärke, 42(5), 175-178. https://doi.org/10.1002/star.19900420504spa
dc.relation.referencesGhiena, C., Schulz, M., & Schnabl, H. (1993). Starch Degradation and Distribution of the Starch-Degrading Enzymes in Vicia faba Leaves (Diurnal Oscillation of Amylolytic Activity and Starch Content in Chloroplasts). Plant Physiology, 101(1), 73-79. https://doi.org/10.1104/pp.101.1.73spa
dc.relation.referencesGolachowski, A., Drożdż, W., Golachowska, M., Kapelko-Żeberska, M., & Raszewski, B. (2020). Production and Properties of Starch Citrates—Current Research. Foods, 9(9), Article 9. https://doi.org/10.3390/foods9091311spa
dc.relation.referencesGong, B., Cheng, L., Gilbert, R. G., & Li, C. (2019). Distribution of short to medium amylose chains are major controllers of in vitro digestion of retrograded rice starch. Food Hydrocolloids, 96, 634-643. https://doi.org/10.1016/j.foodhyd.2019.06.003spa
dc.relation.referencesGong, Q., Wang, L.-Q., & Tu, K. (2006). In situ polymerization of starch with lactic acid in aqueous solution and the microstructure characterization. Carbohydrate Polymers, 64(4), 501-509. https://doi.org/10.1016/j.carbpol.2005.09.005spa
dc.relation.referencesGottret, M. V., Escobar Aragón, Z., & Pérez Suárez, S. (2002). El sector yuquero en Colombia: Desarrollo y competitividad. Centro Internacional de Agricultura Tropical (CIAT). https://cgspace.cgiar.org/handle/10568/55252spa
dc.relation.referencesGouveia, T. I. A., Biernacki, K., Castro, M. C. R., Gonçalves, M. P., & Souza, H. K. S. (2019). A new approach to develop biodegradable films based on thermoplastic pectin. Food Hydrocolloids, 97, 105175. https://doi.org/10.1016/j.foodhyd.2019.105175spa
dc.relation.referencesHeinze, T., Liebert, T., & Koschella, A. (2006). Esterification of Polysaccharides (1.a ed.). Springer-Verlag. https://doi.org/10.1007/3-540-32112-8spa
dc.relation.referencesHershey, C. H. (2020). Cassava genetic improvement: Theory and practice. https://cgspace.cgiar.org/handle/10568/110397spa
dc.relation.referencesHizukuri, S. (1986). Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydrate Research, 147(2), 342-347. https://doi.org/10.1016/S0008-6215(00)90643-8spa
dc.relation.referencesHong, J., Zeng, X.-A., Buckow, R., & Han, Z. (2018). Structural, thermodynamic and digestible properties of maize starches esterified by conventional and dual methods: Differentiation of amylose contents. Food Hydrocolloids, 83, 419-429. https://doi.org/10.1016/j.foodhyd.2018.05.032spa
dc.relation.referencesHoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: A review. Carbohydrate Polymers, 45(3), 253-267. https://doi.org/10.1016/S0144-8617(00)00260-5spa
dc.relation.referencesHu, A., Chen, X., Wang, J., Wang, X., Zheng, J., & Wang, L. (2021). Effects on the structure and properties of native corn starch modified by enzymatic debranching (ED), microwave assisted esterification with citric acid (MCAE) and by the dual ED/MCAE treatment. International Journal of Biological Macromolecules, 171, 123-129. https://doi.org/10.1016/j.ijbiomac.2021.01.012spa
dc.relation.referencesImre, B., & Vilaplana, F. (2020). Organocatalytic esterification of corn starches towards enhanced thermal stability and moisture resistance. Green Chemistry, 22(15), 5017-5031. https://doi.org/10.1039/D0GC00681Espa
dc.relation.referencesJane, J. (2006). Current Understanding on Starch Granule Structures. Journal of Applied Glycoscience, 53(3), 205-213. https://doi.org/10.5458/jag.53.205spa
dc.relation.referencesJenner, C. F. (1991). Effects of Exposure of Wheat Ears to High Temperature on Dry Matter Accumulation and Carbohydrate Metabolism in the Grain of Two Cultivars. I. Immediate Responses. Functional Plant Biology, 18(2), 165-177. https://doi.org/10.1071/pp9910165spa
dc.relation.referencesJobling, S. (2004). Improving starch for food and industrial applications. Current Opinion in Plant Biology, 7(2), 210-218. https://doi.org/10.1016/j.pbi.2003.12.001spa
dc.relation.referencesJyothi, A. N., Rajasekharan, K. N., Moorthy, S. N., & Sreekumar, J. (2005). Microwave-Assisted Synthesis and Characterization of Succinate Derivatives of Cassava (Manihot esculenta Crantz) Starch. Starch - Stärke, 57(11), 556-563. https://doi.org/10.1002/star.200500429spa
dc.relation.referencesKapelko-Żeberska, M., Buksa, K., Szumny, A., Zięba, T., & Gryszkin, A. (2016). Analysis of molecular structure of starch citrate obtained by a well-stablished method. LWT - Food Science and Technology, 69, 334-341. https://doi.org/10.1016/j.lwt.2016.01.066spa
dc.relation.referencesKapelko-Żeberska, M., Zięba, T., Pietrzak, W., & Gryszkin, A. (2016). Effect of citric acid esterification conditions on the properties of the obtained resistant starch. International Journal of Food Science & Technology, 51(7), 1647-1654. https://doi.org/10.1111/ijfs.13136spa
dc.relation.referencesKeeling, P. L., Bacon, P. J., & Holt, D. C. (1993). Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta, 191(3), 342-348. https://doi.org/10.1007/BF00195691spa
dc.relation.referencesKeeling, P. L., Wood, J. R., Tyson, R. H., & Bridges, I. G. (1988). Starch Biosynthesis in Developing Wheat Grain 1. Plant Physiology, 87(2), 311-319spa
dc.relation.referencesKizil, R., Irudayaraj, J., & Seetharaman, K. (2002). Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. Journal of Agricultural and Food Chemistry, 50(14), 3912-3918. https://doi.org/10.1021/jf011652pspa
dc.relation.referencesKlaushofer, H., Berghofer, E., & Steyrer, W. (1978). Stärkecitrate – Produktion und anwendungs-technische Eigenschaften. Starch - Stärke, 30(2), 47-51. https://doi.org/10.1002/star.19780300204spa
dc.relation.referencesKövilein, A., Kubisch, C., Cai, L., & Ochsenreither, K. (2020). Malic acid production from renewables: A review. Journal of Chemical Technology & Biotechnology, 95(3), 513-526. https://doi.org/10.1002/jctb.6269spa
dc.relation.referencesKrogars, K., Heinämäki, J., Karjalainen, M., Rantanen, J., Luukkonen, P., & Yliruusi, J. (2003). Development and characterization of aqueous amylose-rich maize starch dispersion for film formation. European Journal of Pharmaceutics and Biopharmaceutics, 56(2), 215-221. https://doi.org/10.1016/S0939-6411(03)00064-Xspa
dc.relation.referencesKushwaha, R., & Kaur, D. (2018). Recent techniques used in modification of starches: A review. En Food Technology From Health to Wealth & Future Challenges (pp. 1-15).spa
dc.relation.referencesLafargue, D., Pontoire, B., Buléon, A., Doublier, J. L., & Lourdin, D. (2007). Structure and Mechanical Properties of Hydroxypropylated Starch Films. Biomacromolecules, 8(12), 3950-3958. https://doi.org/10.1021/bm7009637spa
dc.relation.referencesLauro, M. (2001). α-amylosisi of barley starch [Tesis de doctorado, Technical Research Centre of Finland]. https://www.vttresearch.com/sites/default/files/pdf/publications/2001/P433.pdfspa
dc.relation.referencesLeón Molina, H. B. (2011). Caracterización térmica, morfológica y determinación de las propiedades de resistencia a la tensión de mezclas de polivinil alcohol (PVOH) y almidón de yuca [Tesis de Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/8734spa
dc.relation.referencesLiu, G., Gu, Z., Hong, Y., Cheng, L., & Li, C. (2017). Structure, functionality and applications of debranched starch: A review. Trends in Food Science & Technology, 63, 70-79. https://doi.org/10.1016/j.tifs.2017.03.004spa
dc.relation.referencesLiu, Q., Charlet, G., Yelle, S., & Arul, J. (2002). Phase transition in potato starch–water system I. Starch gelatinization at high moisture level. Food Research International, 35(4), 397-407. https://doi.org/10.1016/S0963-9969(01)00134-Xspa
dc.relation.referencesLopez-Rubio, A., Flanagan, B. M., Gilbert, E. P., & Gidley, M. J. (2008). A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers, 89(9), 761-768. https://doi.org/10.1002/bip.21005spa
dc.relation.referencesMa, X., Chang, P. R., Yu, J., & Stumborg, M. (2009). Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohydrate Polymers, 75(1), 1-8. https://doi.org/10.1016/j.carbpol.2008.05.020spa
dc.relation.referencesMADR-Colombia. (2021). Cadena Productiva de la yuca. Dirección de cadenas agrícolas y forestales.spa
dc.relation.referencesMajzoobi, M., Beparva, P., Farahnaky, A., & Badii, F. (2014). Effects of malic acid and citric acid on the functional properties of native and cross-linked wheat starches. Starch - Stärke, 66(5-6), 491-495. https://doi.org/10.1002/star.201300188spa
dc.relation.referencesMali, S., & Grossmann, M. V. E. (2001). Preparation of Acetylated Distarch Adipates by Extrusion. LWT - Food Science and Technology, 34(6), 384-389. https://doi.org/10.1006/fstl.2001.0768spa
dc.relation.referencesMali, S., Grossmann, M. V. E., Garcia, M. A., Martino, M. N., & Zaritzky, N. E. (2002). Microstructural characterization of yam starch films. Carbohydrate Polymers, 50(4), 379-386. https://doi.org/10.1016/S0144-8617(02)00058-9spa
dc.relation.referencesMali, S., Grossmann, M. V. E., Garcı́a, M. A., Martino, M. N., & Zaritzky, N. E. (2005). Mechanical and thermal properties of yam starch films. Food Hydrocolloids, 19(1), 157-164. https://doi.org/10.1016/j.foodhyd.2004.05.002spa
dc.relation.referencesMali, S., Grossmann, M. V. E., & Yamashita, F. (2010). Filmes de amido: Produção, propriedades e potencial de utilização. Semina: Ciências Agrárias, 31(1), Article 1. https://doi.org/10.5433/1679-0359.2010v31n1p137spa
dc.relation.referencesMali, S., Sakanaka, L. S., Yamashita, F., & Grossmann, M. V. E. (2005). Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydrate Polymers, 60(3), 283-289. https://doi.org/10.1016/j.carbpol.2005.01.003spa
dc.relation.referencesMartin, C., & Smith, A. M. (1995). Starch biosynthesis. The Plant Cell, 7(7), 971-985. https://doi.org/10.1105/tpc.7.7.971spa
dc.relation.referencesMartínez, P., Peña, F., Bello-Pérez, L. A., Núñez-Santiago, C., Yee-Madeira, H., & Velezmoro, C. (2019). Physicochemical, functional and morphological characterization of starches isolated from three native potatoes of the Andean region. Food Chemistry: X, 2, 100030. https://doi.org/10.1016/j.fochx.2019.100030spa
dc.relation.referencesMatheson, N. K. (1996). The chemical structure of amylose and amylopectin fractions of starch from tobacco leaves during development and diurnally-nocturnally. Carbohydrate Research, 282(2), 247-262. https://doi.org/10.1016/0008-6215(95)00381-9spa
dc.relation.referencesMaurer, H. W. (2009). Chapter 18—Starch in the Paper Industry. En J. BeMiller & R. Whistler (Eds.), Starch (Third Edition) (pp. 657-713). Academic Press. https://doi.org/10.1016/B978-0-12-746275-2.00018-5spa
dc.relation.referencesMedina, J. A., & Salas, J. C. (2008). Caracterización morfológica del granulo de almidón nativo: Apariencia, forma, tamaño y su distribución. Revista de Ingeniería, 27, 56-62.spa
dc.relation.referencesMei, J.-Q., Zhou, D.-N., Jin, Z.-Y., Xu, X.-M., & Chen, H.-Q. (2015). Effects of citric acid esterification on digestibility, structural and physicochemical properties of cassava starch. Food Chemistry, 187, 378-384. https://doi.org/10.1016/j.foodchem.2015.04.076spa
dc.relation.referencesMendoza, A. J. (2015). Tartaric Acid Cross-Linking of Starch: Effect of Reaction Conditions on the Maximum Tensile Strength of Cast Plastic Films. Journal of Student Science and Technology, 8(3). https://doi.org/10.13034/jsst.v8i3.67spa
dc.relation.referencesMiladinov, V. D., & Hanna, M. A. (2000). Starch esterification by reactive extrusion. Industrial Crops and Products, 11(1), 51-57. https://doi.org/10.1016/S0926-6690(99)00033-3spa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural. (2021, marzo 31). Cadena Productiva de la Yuca—Dirección de Cadenas Agrícolas y Forestales—Marzo de 2021. https://sioc.minagricultura.gov.co/Yuca/Documentos/2021-03-31%20Cifras%20Sectoriales%20yuca.pdfspa
dc.relation.referencesMoncayo, D., Buitrago, G., & Algecira, N. (2013). The surface properties of biopolymer-coated fruit: A review. Ingeniería e Investigación, 33(3), 11-16.spa
dc.relation.referencesMonroy, Y., Rivero, S., & García, M. A. (2018). Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrasonics Sonochemistry, 42, 795-804. https://doi.org/10.1016/j.ultsonch.2017.12.048spa
dc.relation.referencesMunyikwa, T. R. I., Langeveld, S., Salehuzzaman, S. N. I. M., Jacobsen, E., & Visser, R. G. F. (1997). Cassava starch biosynthesis: New avenues for modifying starch quantity and quality. Euphytica, 96(1), 65-75. https://doi.org/10.1023/A:1002935603412spa
dc.relation.referencesNa, J. H., Jeong, G. A., Park, H. J., & Lee, C. J. (2021). Impact of esterification with malic acid on the structural characteristics and in vitro digestibilities of different starches. International Journal of Biological Macromolecules, 174, 540-548. https://doi.org/10.1016/j.ijbiomac.2021.01.220spa
dc.relation.referencesNakazawa, F., Noguchi, S., Takahashi, J., & Takada, M. (1984). Gelatinization and Retrogradation of Rice Starch Studied by Differential Scanning Calorimetry. Agricultural and Biological Chemistry, 48(1), 201-203. https://doi.org/10.1080/00021369.1984.10866115spa
dc.relation.referencesNanda, S., Patra, B. R., Patel, R., Bakos, J., & Dalai, A. K. (2022). Innovations in applications and prospects of bioplastics and biopolymers: A review. Environmental Chemistry Letters, 20(1), 379-395. https://doi.org/10.1007/s10311-021-01334-4spa
dc.relation.referencesNaranjo Estepa, E. B. (2020). Evaluation of the effects of different variables over the properties of plantain starch-based films and their potential application in packaging. https://repositorio.unal.edu.co/handle/unal/78757spa
dc.relation.referencesOjogbo, E., Blanchard, R., & Mekonnen, T. (2018). Hydrophobic and Melt Processable Starch-Laurate Esters: Synthesis, Structure–Property Correlations. Journal of Polymer Science Part A: Polymer Chemistry, 56(23), 2611-2622. https://doi.org/10.1002/pola.29237spa
dc.relation.referencesOltramari, K., Madrona, G. S., Neto, A. M., de Morais, G. R., Baesso, M. L., de Cássia. Bergamasco, R., & de Moraes, F. F. (2017). Citrate esterified cassava starch: Preparation, physicochemical characterisation, and application in dairy beverages. Starch - Stärke, 69(11-12), 1700044. https://doi.org/10.1002/star.201700044spa
dc.relation.referencesOng, M. H., Jumel, K., Tokarczuk, P. F., Blanshard, J. M. V., & Harding, S. E. (1994). Simultaneous determinations of the molecular weight distributions of amyloses and the fine structures of amylopectins of native starches. Carbohydrate Research, 260(1), 99-117. https://doi.org/10.1016/0008-6215(94)80025-1spa
dc.relation.referencesPadonou, W., Mestres, C., & Nago, M. C. (2005). The quality of boiled cassava roots: Instrumental characterization and relationship with physicochemical properties and sensorial properties. Food Chemistry, 89(2), 261-270. https://doi.org/10.1016/j.foodchem.2004.02.033spa
dc.relation.referencesParker, R., & Ring, S. G. (2001). Aspects of the Physical Chemistry of Starch. Journal of Cereal Science, 34(1), 1-17. https://doi.org/10.1006/jcrs.2000.0402spa
dc.relation.referencesParra, D. F., Tadini, C. C., Ponce, P., & Lugão, A. B. (2004). Mechanical properties and water vapor transmission in some blends of cassava starch edible films. Carbohydrate Polymers, 58(4), 475-481. https://doi.org/10.1016/j.carbpol.2004.08.021spa
dc.relation.referencesPelissari, F. M., Andrade-Mahecha, M. M., Sobral, P. J. do A., & Menegalli, F. C. (2012). Isolation and characterization of the flour and starch of plantain bananas (Musa paradisiaca). Starch - Stärke, 64(5), 382-391. https://doi.org/10.1002/star.201100133spa
dc.relation.referencesPeñaranda Contreras, O. I., Perilla Perilla, J. E., & Algecira Enciso, N. A. (2008). Revisión de la modificación química del almidón con ácidos orgánicos. Ingeniería e Investigación, 28(3), 47-52. https://doi.org/10.15446/ing.investig.v28n3.15119spa
dc.relation.referencesPeñaranda, O. I. (2009). Producción de ésteres de almidón de yuca. [Tesis de Maestría]. Universidad Nacional de Colombiaspa
dc.relation.referencesPokhrel, S. (2015). A review on introduction and applications of starch and its biodegradable polymers. International Journal of Environment, 4(4), Article 4. https://doi.org/10.3126/ije.v4i4.14108spa
dc.relation.referencesPrachayawarakorn, J., & Tamseekhram, J. (2019). Chemical modification of biodegradable cassava starch films by natural mono-, di- and tri-carboxylic acids. Songklanakarin Journal of Science and Technology, 41(2) 355-362, 355-362. https://doi.org/10.14456/sjst-psu.2019.45spa
dc.relation.referencesQu, J., Xu, S., Zhang, Z., Chen, G., Zhong, Y., Liu, L., Zhang, R., Xue, J., & Guo, D. (2018). Evolutionary, structural and expression analysis of core genes involved in starch synthesis. Scientific Reports, 8(1), Article 1. https://doi.org/10.1038/s41598-018-30411-yspa
dc.relation.referencesRajan, A., & Abraham, T. E. (2006). Enzymatic modification of cassava starch by bacterial lipase. Bioprocess and Biosystems Engineering, 29(1), 65-71. https://doi.org/10.1007/s00449-006-0060-5spa
dc.relation.referencesRatnayake, W. S., & Jackson, D. S. (2008). Chapter 5 Starch Gelatinization. En Advances in Food and Nutrition Research (Vol. 55, pp. 221-268). Academic Press. https://doi.org/10.1016/S1043-4526(08)00405-1spa
dc.relation.referencesReis, R. L., & Cunha, A. M. (2001). Starch Polymers. En K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, & P. Veyssière (Eds.), Encyclopedia of Materials: Science and Technology (pp. 8810-8815). Elsevier. https://doi.org/10.1016/B0-08-043152-6/01583-7spa
dc.relation.referencesRichardson, S., & Gorton, L. (2003). Characterisation of the substituent distribution in starch and cellulose derivatives. Analytica Chimica Acta, 497(1), 27-65. https://doi.org/10.1016/j.aca.2003.08.005spa
dc.relation.referencesRobyt, J. F. (2008). Starch: Structure, Properties, Chemistry, and Enzymology. En B. O. Fraser-Reid, K. Tatsuta, & J. Thiem (Eds.), Glycoscience: Chemistry and Chemical Biology (pp. 1437-1472). Springer. https://doi.org/10.1007/978-3-540-30429-6_35spa
dc.relation.referencesRodriguez-Sandoval, E., Otálvaro-Arenas, J. A., & Hernandez, V. (2016). Bread quality of flours substituted with modified cassava starches. Starch - Stärke, 69(5-6), 1600253. https://doi.org/10.1002/star.201600253spa
dc.relation.referencesRuíz Avilés, G. (2005). Polímeros biodegradables a partir del almidón de yuca [MasterThesis, Universidad EAFIT]. http://repository.eafit.edu.co/handle/10784/7364spa
dc.relation.referencesSaavedra, N., & Algecira, N. (2010). Evaluación de películas comestibles de almidón de yuca y proteína aislada de soya en la conservación de fresas. Nova, 8(14), Article 14. https://doi.org/10.22490/24629448.448spa
dc.relation.referencesSali̇u, O., Olatunji̇, G., Ajetomobi̇, O., Olosho, A., Abi̇odun, İ., & Amusan, G. (2017). CRYSTALLINE STARCH CITRATE BIOPOLYMER NANORODS AS POTENTIAL STABILIZERS IN NANO AND MICRO EMULSIONS. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 1(2), Article 2.spa
dc.relation.referencesSánchez-Rivera, M. M., Núñez-Santiago, M. del C., Bello-Pérez, L. A., Agama-Acevedo, E., & Alvarez-Ramirez, J. (2017). Citric acid esterification of unripe plantain flour: Physicochemical properties and starch digestibility. Starch - Stärke, 69(9-10), 1700019. https://doi.org/10.1002/star.201700019spa
dc.relation.referencesSantayanon, R., & Wootthikanokkhan, J. (2003). Modification of cassava starch by using propionic anhydride and properties of the starch-blended polyester polyurethane. Carbohydrate Polymers, 51(1), 17-24. https://doi.org/10.1016/S0144-8617(02)00109-1spa
dc.relation.referencesSantha, N., Sudha, K. G., Vijayakumari, K. P., Nayar, V. U., & Moorthy, S. N. (1990). Raman and infrared spectra of starch samples of sweet potato and cassava. Journal of Chemical Sciences, 102(5), 705-712. https://doi.org/10.1007/BF03040801spa
dc.relation.referencesSavin, R., Stone, P. J., Nicolas, M. E., & Wardlaw, I. F. (1997). Grain growth and malting quality of barley. 1. Effects of heat stress and moderately high temperature. Australian Journal of Agricultural Research, 48(5), 615-624. https://doi.org/10.1071/a96064spa
dc.relation.referencesSchirmer, M., Jekle, M., & Becker, T. (2015). Starch gelatinization and its complexity for analysis. Starch - Stärke, 67(1-2), 30-41. https://doi.org/10.1002/star.201400071spa
dc.relation.referencesSerrano Chávez, C. A. (2021). A rheological investigation of starch gels and solutions and its relationship with structural properties [Trabajo de grado - Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/79481spa
dc.relation.referencesShannon, J. C., & Garwood, D. L. (1984). CHAPTER III - GENETICS AND PHYSIOLOGY OF STARCH DEVELOPMENT. En R. L. Whistler, J. N. Bemiller, & E. F. Paschall (Eds.), Starch: Chemistry and Technology (Second Edition) (pp. 25-86). Academic Press. https://doi.org/10.1016/B978-0-12-746270-7.50009-4spa
dc.relation.referencesShi, M., Gao, Q., & Liu, Y. (2018). Changes in the Structure and Digestibility of Wrinkled Pea Starch with Malic Acid Treatment. Polymers, 10(12), Article 12. https://doi.org/10.3390/polym10121359spa
dc.relation.referencesShi, M., Jing, Y., Yang, L., Huang, X., Wang, H., Yan, Y., & Liu, Y. (2019). Structure and Physicochemical Properties of Malate Starches from Corn, Potato, and Wrinkled Pea Starches. Polymers, 11(9), Article 9. https://doi.org/10.3390/polym11091523spa
dc.relation.referencesShimooozono, T., & Shiraishi, N. (1997). JP 09031103 CAN 126:226739.spa
dc.relation.referencesShiotsubo, T., & Takahashi, K. (1984). Differential Thermal Analysis of Potato Starch Gelatinization. Agricultural and Biological Chemistry, 48(1), 9-17. https://doi.org/10.1271/bbb1961.48.9spa
dc.relation.referencesShogren, R. L. (2000). Modification of maize starch by thermal processing in glacial acetic acid. Carbohydrate Polymers, 43(4), 309-315. https://doi.org/10.1016/S0144-8617(00)00178-8spa
dc.relation.referencesShogren, R. L. (2003). Rapid preparation of starch esters by high temperature/pressure reaction. Carbohydrate Polymers, 52(3), 319-326. https://doi.org/10.1016/S0144-8617(02)00305-3spa
dc.relation.referencesShow, P. L., Oladele, K. O., Siew, Q. Y., Aziz Zakry, F. A., Lan, J. C.-W., & Ling, T. C. (2015). Overview of citric acid production from Aspergillus niger. Frontiers in Life Science, 8(3), 271-283. https://doi.org/10.1080/21553769.2015.1033653spa
dc.relation.referencesSingh, A. V., & Nath, L. K. (2011). Synthesis and evaluation of physicochemical properties of cross-linked Phaseolus aconitifolius starch. Starch - Stärke, 63(10), 655-660. https://doi.org/10.1002/star.201100034spa
dc.relation.referencesSívoli, L., Pérez, E., Rodriguez, P., & Raymúndez, M. B. (2009). Técnicas microscópicas y de dispersión de luz empleadas en la evaluación de la estructura del almidón nativo de yuca (Manihot esculenta C). Acta Microscopica, 18(3), 195-203spa
dc.relation.referencesSmith, A. M. (2001). The Biosynthesis of Starch Granules. Biomacromolecules, 2(2), 335-341. https://doi.org/10.1021/bm000133cspa
dc.relation.referencesSobral, P. J. D. A. (2000). Influência da espessura de biofilmes feitos à base de proteínas miofibrilares sobre suas propriedades funcionais. Pesquisa Agropecuária Brasileira, 35, 1251-1259. https://doi.org/10.1590/S0100-204X2000000600022spa
dc.relation.referencesSong, L. (2010). Chemical Modification of Starch and Preparation of Starch-Based Nanocomposites [Tesis de doctorado, University of Akron]. https://etd.ohiolink.edu/apexprod/rws_olink/r/1501/10?p10_etd_subid=47384&clear=10spa
dc.relation.referencesSrikaeo, K., Hao, P. T., & Lerdluksamee, C. (2018). Effects of Heating Temperatures and Acid Concentrations on Physicochemical Properties and Starch Digestibility of Citric Acid Esterified Tapioca Starches. Starch - Stärke, 71(1-2), 1800065. https://doi.org/10.1002/star.201800065spa
dc.relation.referencesSrikaeo, K., Hao, P. T., & Lerdluksamee, C. (2019). Effects of Heating Temperatures and Acid Concentrations on Physicochemical Properties and Starch Digestibility of Citric Acid Esterified Tapioca Starches. Starch - Stärke, 71(1-2), 1800065. https://doi.org/10.1002/star.201800065spa
dc.relation.referencesSumardiono, S., Riska, L., Jos, B., & Pudjiastuti, I. (2019). Effect of Esterification on Cassava Starch: Physicochemical Properties and Expansion Ability. Reaktor, 19(1), 34-41. https://doi.org/10.14710/reaktor.19.1.34-41spa
dc.relation.referencesTappiban, P., Smith, D. R., Triwitayakorn, K., & Bao, J. (2019). Recent understanding of starch biosynthesis in cassava for quality improvement: A review. Trends in Food Science & Technology, 83, 167-180. https://doi.org/10.1016/j.tifs.2018.11.019spa
dc.relation.referencesTemesgen, S., Murugesan, B., & Rotich, G. K. (2019). Performance evaluation of cotton yarn sized with natural starches produced from native corn, cassava and potato starches. Journal of Textile Science & Engineering, 9. http://repository.seku.ac.ke/handle/123456789/6129spa
dc.relation.referencesTester, R. F., Karkalas, J., & Qi, X. (2004). Starch—Composition, fine structure and architecture. Journal of Cereal Science, 39(2), 151-165. https://doi.org/10.1016/j.jcs.2003.12.001spa
dc.relation.referencesThomas, D. J., & Atwell, W. A. (1999). Starches. Eagan Press.spa
dc.relation.referencesTomasik, P., & Schilling, C. H. (2004). Chemical modification of starch. Advances in Carbohydrate Chemistry and Biochemistry, 59, 175-403. https://doi.org/10.1016/S0065-2318(04)59005-4spa
dc.relation.referencesTupa Valencia, M. V. (2019). Modificación organocatalítica de almidón para la obtención sostenible de derivados de alto valor agregado [Tesis de doctorado, Universidad de Buenos Aires]. http://bibliotecadigital.fi.uba.ar/items/show/18281spa
dc.relation.referencesVatanasuchart, N., Tungtrakul, P., Wongkrajang, K., & Naivikul, O. (2010). Properties of Pullulanase Debranched Cassava Starch and Type-III Resistant Starch. Agriculture and Natural Resources, 44(1), Article 1spa
dc.relation.referencesVisser, R. G. F., & Jacobsen, E. (1993). Towards modifying plants for altered starch content and composition. Trends in Biotechnology, 11(2), 63-68. https://doi.org/10.1016/0167-7799(93)90124-Rspa
dc.relation.referencesWaigh, T. A., Hopkinson, I., Donald, A. M., Butler, M. F., Heidelbach, F., & Riekel, C. (1997). Analysis of the Native Structure of Starch Granules with X-ray Microfocus Diffraction. Macromolecules, 30(13), 3813-3820. https://doi.org/10.1021/ma970075wspa
dc.relation.referencesWalker, M., & Farisani, L. (2006). Innovation in resource-based technology clusters: Investigating the lateral migration thesis: the manufacture of biodegrable plastics from maize starch. Human Sciences Research Council. https://doi.org/10/6424spa
dc.relation.referencesWang, K., Henry, R. J., & Gilbert, R. G. (2014). Causal Relations Among Starch Biosynthesis, Structure, and Properties. Springer Science Reviews, 2(1), 15-33. https://doi.org/10.1007/s40362-014-0016-0spa
dc.relation.referencesXie, F., Pollet, E., Halley, P. J., & Avérous, L. (2013). Starch-based nano-biocomposites. Progress in Polymer Science, 38(10), 1590-1628. https://doi.org/10.1016/j.progpolymsci.2013.05.002spa
dc.relation.referencesXie, X. (Sherry), Liu, Q., & Cui, S. W. (2006). Studies on the granular structure of resistant starches (type 4) from normal, high amylose and waxy corn starch citrates. Food Research International, 39(3), 332-341. https://doi.org/10.1016/j.foodres.2005.08.004spa
dc.relation.referencesXu, Y., Miladinov, V., & Hanna, M. A. (2004). Synthesis and Characterization of Starch Acetates with High Substitution. Cereal Chemistry, 81(6), 735-740. https://doi.org/10.1094/CCHEM.2004.81.6.735spa
dc.relation.referencesYan, W., Zhang, W., Xia, Q., Wang, S., Zhang, S., Shen, J., & Jin, X. (2020). Highly dispersed metal incorporated hexagonal mesoporous silicates for catalytic cyclohexanone oxidation to adipic acid. Chinese Journal of Chemical Engineering, 28(10), 2542-2548. https://doi.org/10.1016/j.cjche.2020.04.013spa
dc.relation.referencesYe, J., Luo, S., Huang, A., Chen, J., Liu, C., & McClements, D. J. (2019). Synthesis and characterization of citric acid esterified rice starch by reactive extrusion: A new method of producing resistant starch. Food Hydrocolloids, 92, 135-142. https://doi.org/10.1016/j.foodhyd.2019.01.064spa
dc.relation.referencesZambelli, R. A., Galvão, A. M. M. T., Mendonça, L. G. de, Leão, M. V. de S., Carneiro, S. V., Lima, A. C. S., & Melo, C. A. L. (2018). Effect of Different Levels of Acetic, Citric and Lactic Acid in the Cassava Starch Modification on Physical, Rheological, Thermal and Microstructural Properties. Food Science and Technology Research, 24(4), 747-754. https://doi.org/10.3136/fstr.24.747spa
dc.relation.referencesZhang, H., & Mittal, G. (2010). Biodegradable protein-based films from plant resources: A review. Environmental Progress & Sustainable Energy, 29(2), 203-220. https://doi.org/10.1002/ep.10463spa
dc.relation.referencesZhong, C., Xiong, Y., Lu, H., Luo, S., Wu, J., Ye, J., & Liu, C. (2022). Preparation and characterization of rice starch citrates by superheated steam: A new strategy of producing resistant starch. LWT, 154, 112890. https://doi.org/10.1016/j.lwt.2021.112890spa
dc.relation.referencesZhou, J., Zhang, J., Ma, Y., & Tong, J. (2008). Surface photo-crosslinking of corn starch sheets. Carbohydrate Polymers, 74(3), 405-410. https://doi.org/10.1016/j.carbpol.2008.03.006spa
dc.relation.referencesZięba, T., Solińska, D., Kapelko-Żeberska, M., Gryszkin, A., Babić, J., Ačkar, Đ., Hernández, F., Lončarić, A., Šubarić, D., & Jozinović, A. (2020). Properties of Potato Starch Roasted with Apple Distillery Wastewater. Polymers, 12(8), Article 8. https://doi.org/10.3390/polym12081668spa
dc.relation.referencesZobel, H. F. (1988). Molecules to Granules: A Comprehensive Starch Review. Starch - Stärke, 40(2), 44-50. https://doi.org/10.1002/star.19880400203spa
dc.relation.referencesŻołek-Tryznowska, Z., & Kałuża, A. (2021). The Influence of Starch Origin on the Properties of Starch Films: Packaging Performance. Materials, 14(5), Article 5. https://doi.org/10.3390/ma14051146spa
dc.rightsDerechos reservados al autor, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocAlmidones modificadosspa
dc.subject.agrovocModified starcheseng
dc.subject.ddc660 - Ingeniería química::668 - Tecnología de otros productos orgánicosspa
dc.subject.proposalAlmidón de yucaspa
dc.subject.proposalEsterificaciónspa
dc.subject.proposalPoliácidos orgánicosspa
dc.subject.proposalCassava starcheng
dc.subject.proposalesterificationeng
dc.subject.proposalOrganic polyacidseng
dc.subject.wikidataBiodegradaciónspa
dc.subject.wikidataBiodegradationeng
dc.titleEvaluación de la modificación de almidón de yuca (Manihot esculenta) vía desramificación enzimática y entrecruzamiento y la utilización del almidón modificado para la obtención de películas biodegradablesspa
dc.title.translatedEvaluation of the modification of cassava starch (Manihot esculenta) via enzymatic debranching and crosslinking and the use of modified starch to obtain biodegradable filmseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79491089.2023.pdf
Tamaño:
7.57 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: