Analítica de aprendizaje en la asignatura Programación de Computadores: una investigación basada en métodos mixtos

dc.contributor.advisorRestrepo Calle, Felipespa
dc.contributor.authorChaparro Amaya, Edna Johannaspa
dc.contributor.researchgroupPlas Programming languages And Systemsspa
dc.date.accessioned2023-01-20T17:55:21Z
dc.date.available2023-01-20T17:55:21Z
dc.date.issued2022
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractEl reciente crecimiento de nuevas formas de datos educativos, ha hecho que la analítica del aprendizaje surja como una solución para identificar información relevante en la toma de decisiones educativas. Un grupo de investigaciones en analítica del aprendizaje se concentra en identificar variables del proceso de aprendizaje relacionadas con el desempeño académico de los estudiantes. Sin embargo, pocas investigaciones consideran el uso de metodologías mixtas o cualitativas, lo que limita el entendimiento sobre los comportamientos de los alumnos. El objetivo general de este trabajo es determinar las relaciones existentes entre las medidas y métricas derivadas del proceso de aprendizaje y el rendimiento académico de los estudiantes en la asignatura Programación de Computadores de la Facultad de Ingeniería en la Universidad Nacional de Colombia durante 2019 y 2020. Este trabajo propone un diseño metodológico con enfoque mixto, no experimental, donde la fase cualitativa de la metodología está enfocada hacia el análisis de contenido. Los resultados evidencian que existe una correlación positiva entre la cantidad de intentos de solución realizados por el alumno y su desempeño académico, lo que posiblemente se puede asociar a las percepciones de los estudiantes sobre la plataforma educativa utilizada en el curso como un ambiente que promueve la práctica constante debido a su disponibilidad en línea. Los errores/veredictos de las soluciones enviadas (respuesta correctas e incorrecta, límite de memoria excedido, errores de compilación y límite de tiempo excedido) también tienen correlaciones positivas, las cuales son corroboradas con las referencias de los estudiantes sobre retroalimentación formativa, consejos orientativos y casos de prueba. Métricas de software como el conteo de tokens y las líneas de código de los programas diseñados por los estudiantes tienen una correlación positiva significativa con la calificación final del alumno, lo cual se puede vincular con las referencias sobre ejercicios estimulantes y motivantes dentro de la plataforma educativa. Por otra parte, el índice de mantenibilidad tiene una correlación negativa, lo que se puede relacionar con las opiniones que resaltan la obtención de habilidades de programación. En contraste, se observan correlaciones negativas entre el uso de las herramientas de la plataforma educativa utilizada en el curso (p. ej. pruebas personalizadas, visualización de la ejecución del código y verificación de buenas prácticas de programación) con el rendimiento académico, las cuales son refutadas con las referencias de los estudiantes a estas herramientas como elementos positivos de la plataforma. En conclusión, se evidencia como el uso de métodos mixtos permite que los hallazgos de la fase cuantitativa sean corroborados, complementados o refutados por medio de las observaciones de los datos cualitativos. (Texto tomado de la fuente).spa
dc.description.abstractThe recent growth of new forms of educational data has led to the emergence of learning analytics as a solution to identify relevant information for educational decision making. A body of research in learning analytics focuses on identifying learning process variables related to students’ academic performance. However, little research considers the use of mixed or qualitative methodologies, which limits the understanding of student behaviors. The general objective of this work is to determine the existing relationships between measures and metrics derived from the learning process and the academic performance of students in the Computer Programming courses of the Faculty of Engineering at the National University of Colombia during 2019 and 2020. This work proposes a methodological design with a mixed, non-experimental approach, where the qualitative phase of the methodology is focused on content analysis. The results show that there is a positive correlation between the number of solution attempts made by the student and their academic performance, which can possibly be associated with the students’ perceptions of the educational platform used in the course as an environment that promotes constant practice due to its online availability. Errors/verdicts of submitted solutions (correct and incorrect answer, memory limit exceeded, compilation errors, and time limit exceeded) also have positive correlations, which are corroborated with students’ references to formative feedback, guiding hints, and test cases. Software metrics such as token count and lines of code of student-designed programs have a significant positive correlation with the student’s final grade, which can be linked to references about stimulating and motivating exercises within the educational platform. On the other hand, the maintainability index has a negative correlation, which can be linked to opinions highlighting the attainment of programming skills. In contrast, negative correlations are observed between the use of the educational platform tools used in the course (e.g., custom input tests, visualization of code execution and verification of good programming practices) with academic performance, which are refuted by the students’ references to these tools as positive elements of the platform. In conclusion, it is evident how the use of mixed methods allows the findings of the quantitative phase to be corroborated, complemented or refuted by the observations of the qualitative data.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.description.researchareaComputación aplicada - educación en ingenieríaspa
dc.format.extentxvii, 139 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83049
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesAljohani, N. R., Daud, A., Abbasi, R. A., Alowibdi, J. S., Basheri, M. & Aslam, M. A. (2019). An integrated framework for course adapted student learning analytics dashboard. Computers in Human Behavior, 92, 679-690.spa
dc.relation.referencesAndergassen, M., Mödritscher, F. & Neumann, G. (2014). Practice and Repetition during Exam Preparation in Blended Learning Courses: Correlations with Learning Results. Journal of Learning Analytics, 1(1), 48-74.spa
dc.relation.referencesAng, K. L.-M., Ge, F. L. & Seng, K. P. (2020). Big Educational Data amp; Analytics: Survey, Architecture and Challenges. IEEE Access, 8, 116392-116414. https://doi.org/10.1109/ACCESS.2020. 2994561spa
dc.relation.referencesArgyris, C. & Schon, D. A. (1974). Theory in practice: Increasing professional effectiveness. Jossey-Bass.spa
dc.relation.referencesArnold, K. E. & Pistilli, M. D. (2012). Course Signals at Purdue: Using Learning Analytics to Increase Student Success. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, 267-270.spa
dc.relation.referencesAzcona, D., Hsiao, I.-H. & Smeaton, A. F. (2019). Detecting students-at-risk in computer programming classes with learning analytics from students’ digital footprints. User Modeling and User- Adapted Interaction, 29, 759-788.spa
dc.relation.referencesBaker, R. S. & Inventado, P. S. (2014). Educational Data Mining and Learning Analytics. Learning Analytics: From Research to Practice (pp. 61-75). Springer New York.spa
dc.relation.referencesBarber, R. & Sharkey, M. (2012). Course Correction: Using Analytics to Predict Course Success. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, 259-262. https: //doi.org/10.1145/2330601.2330664spa
dc.relation.referencesBerelson, B. (1952). Content analysis in communication research. Glencoe (Ill.) : Free Press.spa
dc.relation.referencesBerland, M., Davis, D. & Smith, C. P. (2015). AMOEBA: Designing for collaboration in computer science classrooms through live learning analytics. International Journal of Computer-Supported Collaborative Learning, 10, 425-4447.spa
dc.relation.referencesBlikstein, P. (2011). Using Learning Analytics to Assess Students’ Behavior in Open-Ended Programming Tasks. Proceedings of the 1st International Conference on Learning Analytics and Knowledge, 110-116.spa
dc.relation.referencesBlikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S. & Koller, D. (2014). Programming Pluralism: Using Learning Analytics to Detect Patterns in the Learning of Computer Programming. Journal of the Learning Sciences, 23(4), 561-599.spa
dc.relation.referencesBryman, A. (2015). Mixed methods research: combining quantitative and qualitative research. Social Research Methods. Oxford University Press.spa
dc.relation.referencesCao, L. (2017). Data Science: A Comprehensive Overview. ACM Comput. Surv., 50(3).spa
dc.relation.referencesCarter, A., Hundhausen, C. & Olivares, D. (2019). Leveraging the Integrated Development Environment for Learning Analytics. University Press.spa
dc.relation.referencesChaparro, E., Restrepo-Calle, F. & Ramírez-Echeverry, J. J. (2021). Learning analytics in computer programming courses [October 19–21, 2021, Arequipa, Perú]. Proceedings of the IV Latin American Conference on Learning Analytics, 78-87. http://ceur-ws.org/Vol-3059/paper8.pdfspa
dc.relation.referencesCharlton, P., Mavrikis, M. & Katsifli, D. (2013). The Potential of Learning Analytics and Big Data. Ariadne. http://www.ariadne.ac.uk/issue/71/charlton-et-al/spa
dc.relation.referencesClow, D. (2012). The Learning Analytics Cycle: Closing the loop effectively. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge - LAK ’12, 134-138.spa
dc.relation.referencesCoffrin, C., Corrin, L., de Barba, P. & Kennedy, G. (2014). Visualizing Patterns of Student Engagement and Performance in MOOCs. Proceedings of the Fourth International Conference on Learning Analytics And Knowledge, 83-92.spa
dc.relation.referencesCorbin, J. M. & Strauss, A. (1990). Grounded theory research: Procedures, canons, and evaluative criteria. Qualitative Sociology, 13(1), 3-21. https://doi.org/10.1007/BF00988593spa
dc.relation.referencesCreswell, J. W. (2014). Chapter 1: The Selection of a Research Approach. Research Design Qualitative, Quantitative, And Mixed Methods Approaches (4th). SAGE Publications.spa
dc.relation.referencesDascalu, M.-I., Bodea, C.-N., Mogos, R. I., Purnus, A. & Tesila, B. (2018). A Survey on Social Learning Analytics: Applications, Challenges and Importance. En G. C. Silaghi, R. A. Buchmann y C. Boja (Eds.), Informatics in Economy (pp. 70-83). Springer International Publishing.spa
dc.relation.referencesDhakal, K. (2022). NVivo. Journal of the Medical Library Association : JMLA, 110(2), 270-272.spa
dc.relation.referencesDietze, S., Siemens, G., Taibi, D. & Drachsler, H. (2016). Editorial: Datasets for Learning Analytics. Journal of Learning Analytics, 3(2), 307-311.spa
dc.relation.referencesDrachsler, H. & Greller, W. (2016). Privacy and Analytics: It’s a DELICATE Issue a Checklist for Trusted Learning Analytics. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, 89-98.spa
dc.relation.referencesElia, G., Solazzo, G., Lorenzo, G. & Passiante, G. (2019). Assessing learners’ satisfaction in collaborative online courses through a big data approach. Computers in Human Behavior, 92, 589-599.spa
dc.relation.referencesFerguson, R. (2012). Learning analytics: drivers, developments and challenges. International Journal of Technology Enhanced Learning, 4(5/6), 304-317.spa
dc.relation.referencesGasevic, D., Mirriahi, N., Long, P. & Dawson, S. (2014). Editorial: Inaugural Issue of the Journal of Learning Analytics. Journal of Learning Analytics, 1(1).spa
dc.relation.referencesGašević, D., Mirriahi, N. & Dawson, S. (2014). Analytics of the Effects of Video Use and Instruction to Support Reflective Learning. Proceedings of the Fourth International Conference on Learning Analytics And Knowledge, 123-132.spa
dc.relation.referencesGergen, K. J., Josselson, R. & Freeman, M. (2015). The promises of qualitative inquiry. American Psychologist, 70(1), 1-9.spa
dc.relation.referencesGuo, P. J. (2013). Online Python Tutor: Embeddable Web-Based Program Visualization for Cs Education. Proceeding of the 44th ACM Technical Symposium on Computer Science Education, 579-584. https://doi.org/10.1145/2445196.2445368spa
dc.relation.referencesHernández-Sampieri, R., Fernández-Collado, C. & Baptista-Lucio, P. (2014). Proceso de la investigación cualitativa. Metodología de la Investigación. McGraw-Hill.spa
dc.relation.referencesHilliger, I., Ortiz-Rojas, M., Pesántez-Cabrera, P., Scheihing, E., Tsai, Y.-S., Muñoz-Merino, P. J., Broos, T., Whitelock-Wainwright, A. & Pérez-Sanagustín, M. (2020). Identifying needs for learning analytics adoption in Latin American universities: A mixed-methods approach. The Internet and Higher Education, 45, 100726.spa
dc.relation.referencesHsiao, I.-H. & Lin, Y.-L. (2017). Enriching programming content semantics: An evaluation of visual analytics approach. Computers in Human Behavior, 72, 771-782.spa
dc.relation.referencesHu, Q. & Huang, Y. (2018). A Framework for Analysis Learning Pattern Toward Online Forum in Programming Course. En L. Deng, W. W. K. Ma y C. W. R. Fong (Eds.), New Media for Educational Change (pp. 71-80). Springer Singapore.spa
dc.relation.referencesIfenthaler, D. (2017). Are Higher Education Institutions Prepared for Learning Analytics? TechTrends, 61(4), 366-371.spa
dc.relation.referencesIhantola, P., Vihavainen, A., Ahadi, A., Butler, M., Börstler, J., Edwards, S. H., Isohanni, E., Korhonen, A., Petersen, A., Rivers, K., Rubio, M. Á., Sheard, J., Skupas, B., Spacco, J., Szabo, C. & Toll, D. (2015). Educational Data Mining and Learning Analytics in Programming: Literature Review and Case Studies. ITICSE-WGR ’15: Proceedings of the 2015 ITiCSE on Working Group Reports., 41-63.spa
dc.relation.referencesKizilcec, R. F., Pérez-Sanagustín, M. & Maldonado, J. J. (2017). Self-regulated learning strategies predict learner behavior and goal attainment in Massive Open Online Courses. Computers and Education, 104, 18-33.spa
dc.relation.referencesKlašnja-Milićević, A., Vesin, B., Ivanović, M. & Budimac, Z. (2011). E-Learning personalization based on hybrid recommendation strategy and learning style identification. Computers & Education, 56(3), 885-899.spa
dc.relation.referencesKolb, D. A. (1984). Experiential learning: experience as thesource of learning and development. Prentice Hall.spa
dc.relation.referencesKop, R., Fournier, H. & Durand, G. (2017). A Critical Perspective on Learning Analytics and Educational Data Mining. En C. Lang, G. Siemens, A. F. Wise y D. Gaševic (Eds.), The Handbook of Learning Analytics (1.a ed., pp. 319-326). Society for Learning Analytics Research (SoLAR).spa
dc.relation.referencesKumar, V. S., Kinshuk, Somasundaram, T. S., Boulanger, D., Seanosky, J. & Vilela, M. F. (2015). Big Data Learning Analytics: A New Perpsective. Ubiquitous Learning Environments and Technologies (pp. 139-158). Springer Berlin Heidelberg.spa
dc.relation.referencesKurilovas, E. (2019). Advanced machine learning approaches to personalise learning: learning analytics and decision making. Behaviour and Information Technology, 38(4), 410-421.spa
dc.relation.referencesLagus, J., Longi, K., Klami, A. & Hellas, A. (2018). Transfer-Learning Methods in Programming Course Outcome Prediction. ACM Trans. Comput. Educ., 18(4).spa
dc.relation.referencesLaurillard, D. (2002). Rethinking University Teaching: A conversational framework for the effective use of learning technologies. Routledge.spa
dc.relation.referencesLeony, D., Muñoz-Merino, P. J., Pardo, A. & Delgado Kloos, C. (2013). Provision of awareness of learners’ emotions through visualizations in a computer interaction-based environment. Expert Systems with Applications, 40(13), 5093-5100.spa
dc.relation.referencesLockyer, L. & Dawson, S. (2011). Learning Designs and Learning Analytics. Proceedings of the 1st International Conference on Learning Analytics and Knowledge, 153-156.spa
dc.relation.referencesLong, P. & Siemens, G. (2011). Penetrating the Fog: Analytics in Learning and Education. EDUCAUSE Review, 46(5), 31-40.spa
dc.relation.referencesLonn, S., Aguilar, S. J. & Teasley, S. D. (2015). Investigating student motivation in the context of a learning analytics intervention during a summer bridge program. Computers in Human Behavior, 47, 90-97.spa
dc.relation.referencesLu, O. H. T., Huang, J. C. H., Huang, A. Y. Q. & Yang, S. J. H. (2017). Applying learning analytics for improving students engagement and learning outcomes in an MOOCs enabled collaborative programming course. Interactive Learning Environments, 25(2), 220-234.spa
dc.relation.referencesMacfadyen, L. P. & Dawson, S. (2010). Mining LMS data to develop an “early warning system” for educators: A proof of concept. Computers and Education, 54(2), 588-599.spa
dc.relation.referencesMangaroska, K. & Giannakos, M. (2017). Learning Analytics for Learning Design: Towards Evidence- Driven Decisions to Enhance Learning. En É. Lavoué, H. Drachsler, K. Verbert, J. Broisin y M. Pérez-Sanagustín (Eds.), Data Driven Approaches in Digital Education (pp. 428-433). Springer International Publishing.spa
dc.relation.referencesMartin, F. & Whitmer, J. C. (2016). Applying Learning Analytics to Investigate Timed Release in Online Learning. Technology, Knowledge and Learning, 21, 59-74.spa
dc.relation.referencesMonllaó Olivé, D., Huynh, D. Q., Reynolds, M., Dougiamas, M. & Wiese, D. (2020). A supervised learning framework: using assessment to identify students at risk of dropping out of a MOOC. Journal of Computing in Higher Education, 32, 9-26.spa
dc.relation.referencesNajafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R. & Muharemagc, E. (2016). Deep Learning Techniques in Big Data Analytics. Big Data Technologies and Applications (pp. 133-156). Springer International Publishing. https://doi.org/10.1007/978-3-319-44550-2\_5spa
dc.relation.referencesPardo, A. & Siemens, G. (2014). Ethical and privacy principles for learning analytics. British Journal of Educational Technology, 45(3), 438-450.spa
dc.relation.referencesPistilli, M. D., Willis, J. E. & Campbell, J. P. (2014). Analytics Through an Institutional Lens: Definition, Theory, Design, and Impact. Learning Analytics: From Research to Practice (pp. 79-102). Springer New York.spa
dc.relation.referencesRamírez-Echeverry, J. J., Restrepo-Calle, F. & González, F. A. (2022). A case study in technologyenhanced learning in an introductory computer programming course. Global Journal of Engineering Education, 24(1).spa
dc.relation.referencesRestrepo-Calle, F., Ramírez-Echeverry, J. & Gonzalez, F. (2018). UNCODE: INTERACTIVE SYSTEM FOR LEARNING AND AUTOMATIC EVALUATION OF COMPUTER PROGRAMMING SKILLS. EDULEARN18 Proceedings, 6888-6898. https://doi.org/10.21125/edulearn.2018.1632spa
dc.relation.referencesRestrepo-Calle, F., Ramírez Echeverry, J. J. & González, F. A. (2019). Continuous assessment in a computer programming course supported by a software tool. Computer Applications in Engineering Education, 27(1), 80-89. https://doi.org/10.1002/cae.22058spa
dc.relation.referencesRestrepo-Calle, F., Ramírez-Echeverry, J. J. & González, F. A. (2020). Using an Interactive Software Tool for the Formative and Summative Evaluation in a Computer Programming Course: an Experience Report. Global Journal of Engineering Education, 22(3), 174-185.spa
dc.relation.referencesRienties, B. & Toetenel, L. (2016). The Impact of 151 Learning Designs on Student Satisfaction and Performance: Social Learning (Analytics) Matters. Proceedings of the Sixth International Conference on Learning Analytics and Knowledge, 339-343.spa
dc.relation.referencesRobinson, C., Yeomans, M., Reich, J., Hulleman, C. & Gehlbach, H. (2016). Forecasting Student Achievement in MOOCs with Natural Language Processing. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, 383-387.spa
dc.relation.referencesRuipérez-Valiente, J. A., Muñoz-Merino, P. J., Leony, D. & Kloos, C. D. (2015). ALAS-KA: A learning analytics extension for better understanding the learning process in the Khan Academy platform. Computers in Human Behavior, 47, 139-148.spa
dc.relation.referencesScheffel, M., Niemann, K., Leony, D., Pardo, A., Schmitz, H.-C., Wolpers, M. & Delgado Kloos, C. (2012). Key Action Extraction for Learning Analytics. En A. Ravenscroft, S. Lindstaedt, C. D. Kloos y D. Hernández-Leo (Eds.), 21st Century Learning for 21st Century Skills (pp. 320-333). Springer Berlin Heidelberg.spa
dc.relation.referencesSchmitz, M., van Limbeek, E., Greller, W., Sloep, P. & Drachsler, H. (2017). Opportunities and Challenges in Using Learning Analytics in Learning Design. En É. Lavoué, H. Drachsler, K. Verbert, J. Broisin y M. Pérez-Sanagustín (Eds.), Data Driven Approaches in Digital Education (pp. 209-223). Springer International Publishing.spa
dc.relation.referencesSchön, D. A. (1983). The Reflective Practitioner: How professionals think in action. Temple Smith.spa
dc.relation.referencesSchön, D. A. (1991). The Reflective Turn: Case studies in and on educational practice. Teachers College Press.spa
dc.relation.referencesSelwyn, N. (2020). Re-imagining ‘Learning Analytics’ … a case for starting again? The Internet and Higher Education, 46, 100745.spa
dc.relation.referencesSeufert, S. & Meier, C. (2018). Big Data in Education: Supporting Learners in Their Role as Reflective Practitioners. Frontiers of Cyberlearning: Emerging Technologies for Teaching and Learning (pp. 103-123). Springer Singapore.spa
dc.relation.referencesShen, H., Liang, L., Law, N., Hemberg, E. & O’Reilly, U.-M. (2020). Understanding Learner Behavior Through Learning Design Informed Learning Analytics. Proceedings of the Seventh ACM Conference on Learning @ Scale, 135-145.spa
dc.relation.referencesSiemens, G. (2013). Learning Analytics: The Emergence of a Discipline. American Behavioral Scientist, 57(10), 1380-1400.spa
dc.relation.referencesSociety for Learning Analytics Research, S. (2022). What is Learning Analytics? https://www.solaresearch. org/about/what-is-learning-analyticspa
dc.relation.referencesStemler, S. (2000). An overview of content analysis. Practical assessment, research, and evaluation, 7(1),17.spa
dc.relation.referencesTabuenca, B., Kalz, M., Drachsler, H. & Specht, M. (2015). Time will tell: The role of mobile learning analytics in self-regulated learning. Computers and Education, 89, 53-74.spa
dc.relation.referencesTam, V., Lam, E. Y., Huang, Y., Liu, K., Tam, V. & Tse, P. (2016). Developing the Petal E-Learning Platform for Facial Analytics and Personalized Learning. Learning, Design, and Technology: An International Compendium of Theory, Research, Practice, and Policy (pp. 1-17). Springer International Publishing.spa
dc.relation.referencesTempelaar, D. T., Rienties, B. & Giesbers, B. (2016). Verifying the Stability and Sensitivity of Learning Analytics Based Prediction Models: An Extended Case Study. En S. Zvacek, M. T. Restivo, J. Uhomoibhi y M. Helfert (Eds.), Computer Supported Education (pp. 256-273). Springer International Publishing.spa
dc.relation.referencesTrætteberg, H., Mavroudi, A., Sharma, K. & Giannakos, M. (2017). Utilizing Real-Time Descriptive Learning Analytics to Enhance Learning Programming. Learning, Design, and Technology: An International Compendium of Theory, Research, Practice, and Policy (pp. 1-22). Springer International Publishing.spa
dc.relation.referencesVahdat, M., Oneto, L., Anguita, D., Funk, M. & Rauterberg, M. (2015). A Learning Analytics Approach to Correlate the Academic Achievements of Students with Interaction Data from an Educational Simulator. En G. Conole, T. Klobučar, C. Rensing, J. Konert y E. Lavoué (Eds.), Design for Teaching and Learning in a Networked World (pp. 352-366). Springer International Publishing.spa
dc.relation.referencesWong, B. T.-m. & Li, K. C. (2020). A review of learning analytics intervention in higher education (2011–2018). Journal of Computers in Education, 7, 7-28.spa
dc.relation.referencesWu, Y. & Wu, W. (2018). A Learning Analytics System for Cognition Analysis in Online Learning Community. En L. H. U y H. Xie (Eds.), Web and Big Data (pp. 243-258). Springer International Publishing.spa
dc.relation.referencesZacharis, N. Z. (2015). A multivariate approach to predicting student outcomes in web-enabled blended learning courses. The Internet and Higher Education, 27, 44-53.spa
dc.relation.referencesZikopoulos, P., Eaton, C. & IBM. (2011). Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data (1st). McGraw-Hill Osborne Media.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalAnálisis de contenidospa
dc.subject.proposalAnálisis de correlacionesspa
dc.subject.proposalLearning analyticseng
dc.subject.proposalMixed methodseng
dc.subject.proposalComputer programmingeng
dc.subject.proposalCorrelation analysiseng
dc.subject.proposalContent analysiseng
dc.subject.proposalAnalítica del aprendizajespa
dc.subject.proposalMétodos mixtosspa
dc.subject.proposalProgramación de computadoresspa
dc.subject.unescoAnálisis de datosspa
dc.subject.unescoData analysiseng
dc.subject.unescoProgramación informáticaspa
dc.subject.unescoComputer programmingeng
dc.subject.unescoEvaluación de la educaciónspa
dc.subject.unescoEducational evaluationeng
dc.titleAnalítica de aprendizaje en la asignatura Programación de Computadores: una investigación basada en métodos mixtosspa
dc.title.translatedLearning analytics in Computer Programming: a mixed-methods investigationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032456294.2022.pdf
Tamaño:
2.73 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: