Producción masiva de óxidos multicomponentes de alta entropía con enfoque en el estudio de vacancias de oxígeno

dc.contributor.advisorOlaya Flores, Jhon Jairo
dc.contributor.advisorVelasco Estrada, Leonardo
dc.contributor.authorCastillo Figueroa, Juan Sebastian
dc.contributor.researchgroupGrupo de investigación en corrosión, tribología y energíaspa
dc.date.accessioned2022-08-23T14:51:06Z
dc.date.available2022-08-23T14:51:06Z
dc.date.issued2021
dc.descriptionfotografías a color, gráficas, tablasspa
dc.description.abstractLos proyectos de diseño y fabricación de materiales requieren muchos esfuerzos de tiempo y dinero. Por este motivo, el desarrollo de nuevas tecnologías para la investigación es imperativo y será de gran utilidad para el aumento en la probabilidad de descubrimiento en el campo de los nuevos materiales. Por ejemplo, con la metodología de alto rendimiento, soportado por el aprendizaje autónomo, es posible hacer predicciones teóricas que facilitará la formulación de nuevas combinaciones de componentes químicos. En este estudio, se presenta el desarrollo de una librería de materiales multicomponentes de alta entropía basada en tierras raras como cerio, praseodimio, lantano, samario e itrio. Se exploró el espacio composicional de estos materiales variando en 5 at.% la composición química de cada uno de los elementos hasta el óxido de alta entropía equiatómico que corresponde al 20 at.% de cada uno de los elementos y en consecuencia se generaron 106 muestras. La síntesis se llevó a cabo por medio de la técnica de pipeteo automatizada con el equipo Opentrons OT-2, el cual tiene diferentes aplicaciones investigativas en el sector de la biología, la farmacéutica y en este trabajo se extendió a la ciencia de los materiales. Este equipo presenta gran versatilidad en los procesos investigativos, alta precisión en la toma de muestras (±1µL) y el espacio físico requerido por la máquina es pequeño, gracias a esto se implementó una metodología de alto rendimiento y de bajo costo. Posterior a la fabricación, se realizó la caracterización de 5 óxidos simples, 10 óxidos binarios, 10 óxidos ternarios, 5 cuaternarios y 76 óxidos de alta entropía, mediante difracción de rayos X automatizado (XRD) con ayuda de una mesa XY, espectroscopia Raman automatizada, espectroscopia de rayos X de energía dispersiva (EDS) con mapas de composición química sobre los materiales producidos y espectroscopia de reflectancia difusa automatizada (Uv-Vis) con ayuda de una mesa XYZ. La visualización de los resultados se realizó mediante diagramas de fase-propiedad multidimensionales, donde se relaciona la estructura cristalina de los materiales producidos con la composición química, brecha de energía prohibida (BG) y concentración de vacancias de oxígeno (OVC). Se pudo observar que tanto el cerio como el praseodimio pueden estabilizar los óxidos de tierras raras multicomponentes en una estructura cristalina monofásica. En este estudio, al menos 78 de las muestras producidas no han sido reportadas antes en la literatura, incluso 2 ternarios no fueron reportados posiblemente porque no forman estructuras cristalinas monofásicas. Además, el valor del band gap varió entre ~1,86 eV y ~2,26 eV dentro de los sistemas quinarios. Se ha demostrado que el band gap del óxido de alta entropía equiatómico puede ajustarse aún más, desde ~2 eV hasta ~3,21 eV. Además, al menos 10 de los materiales fabricados son posibles candidatos para celdas de combustible de óxido sólido. Con esta investigación se pretende dar un primer paso para establecer librerías de materiales de sistemas multicomponentes integrando las estructuras cristalinas y propiedades, junto con el análisis de datos y los enfoques teóricos, lo cual abre caminos hacia el desarrollo virtual de nuevos materiales para aplicaciones tanto funcionales como estructurales. (Texto tomado de la fuente)spa
dc.description.abstractMaterials design and fabrication projects require a lot of time and money; for this reason, the development of new technologies for research is imperative and will be used for increasing the probability of discovery in the field of new materials. For example, the highthroughput methodology, supported by artificial intelligence, allows making theoretical predictions, thus facilitating the formulation of new combinations of chemical components. This study presents the development of a material library of high entropy oxides based on rare earths such as cerium, praseodymium, lanthanum, samarium and yttrium. The compositional space of these materials was explored by varying the chemical composition of each of the elements in 5 at. % up to the equiatomic high entropy oxide that corresponds to 20 at.% of each element, which generated 106 samples. The synthesis was carried out by an automated pipetting technique with the Opentrons OT-2 liquid handler, which has different research applications in biology, pharmaceutics and, in this work, it was extended to materials science. This equipment presents high versatility in the research processes, high precision in liquid handling (±1µL) and the physical space required by the machine is small. Thanks to these advantages, a high throughput methodology was implemented with high performance and low cost. After synthesis, the characterization was performed of 5 single oxides, 10 binary oxides, 10 ternary oxides, 5 quaternary oxides and 76 high entropy oxides by automated X-ray diffraction (XRD) using a XY table, automated Raman spectroscopy, energy dispersive Xray spectroscopy (EDS) with chemical composition maps on the materials produced and automated diffuse reflectance spectroscopy with a XYZ table. The results were depicted by means of multidimensional phase-property diagrams, where the crystalline structure of the produced materials is related to chemical composition, band gap (BG) and oxygen vacancy concentration (OVC). Cerium and praseodymium proved to be able to stabilize multicomponent rare earth oxides in a single-phase crystal structure. In this study, at least 78 of the produced samples had not been reported before in the literature, even 2 ternaries had not been reported as they form no single-phase crystal structures. The band gap value ranged from ~1.86 eV to ~2.26 eV within quinary systems. The band gap of the equiatomic high entropy oxide can be tuned from ~2 eV to ~3.21 eV. Additionally, at least 10 of the fabricated materials are possible candidates for solid oxide fuel cells due to their high oxygen vacancies concentration. Finally, this research aims to be a first step toward establishing material libraries of multicomponent systems by integrating crystal structures and properties, together with data analysis and theoretical approaches, which opens paths for the virtual development of new materials for both functional and structural applicationseng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Materiales y Procesosspa
dc.description.researchareaMateriales y Procesos de Manufacturaspa
dc.format.extentxix, 103 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82017
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesB. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, “Microstructural development in equiatomic multicomponent alloys,” Mater. Sci. Eng. A, vol. 375– 377, no. 1-2 SPEC. ISS., pp. 213–218, 2004, doi: 10.1016/j.msea.2003.10.257.spa
dc.relation.referencesJ. W. Yeh et al., “Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes,” Adv. Eng. Mater., vol. 6, no. 5, pp. 299-303+274, 2004, doi: 10.1002/adem.200300567.spa
dc.relation.referencesA. Sarkar et al., “High-Entropy Oxides: Fundamental Aspects and Electrochemical Properties,” Adv. Mater., vol. 31, no. 26, 2019, doi: 10.1002/adma.201806236.spa
dc.relation.referencesJ. W. Yeh and S. J. Lin, “Breakthrough applications of high-entropy materials,” J. Mater. Res., vol. 33, no. 19, pp. 3129–3137, 2018, doi: 10.1557/jmr.2018.283.spa
dc.relation.referencesT. Gebhardt, D. Music, T. Takahashi, and J. M. Schneider, “Combinatorial thin film materials science: From alloy discovery and optimization to alloy design,” Thin Solid Films, vol. 520, no. 17, pp. 5491–5499, 2012, doi: 10.1016/j.tsf.2012.04.062.spa
dc.relation.referencesR. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, and H. Lam, “Combinatorial and high-throughput screening of materials libraries: Review of state of the art,” ACS Combinatorial Science, vol. 13, no. 6. American Chemical Society, pp. 579–633, Nov. 14, 2011, doi: 10.1021/co200007w.spa
dc.relation.referencesD. P. Tabor et al., “Accelerating the discovery of materials for clean energy in the era of smart automation,” Nature Reviews Materials, vol. 3, no. 5. Nature Publishing Group, pp. 5–20, Apr. 26, 2018, doi: 10.1038/s41578-018-0005-z.spa
dc.relation.referencesC. M. Rost et al., “Entropy-stabilized oxides,” Nat. Commun., vol. 6, pp. 1–8, 2015, doi: 10.1038/ncomms9485.spa
dc.relation.referencesE. Castle, T. Csanádi, S. Grasso, J. Dusza, and M. Reece, “Processing and Properties of High-Entropy Ultra-High Temperature Carbides,” Sci. Rep., vol. 8, no. 1, pp. 1–12, 2018, doi: 10.1038/s41598-018-26827-1.spa
dc.relation.referencesJ. Gild et al., “High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics,” Sci. Rep., vol. 6, no. October, pp. 2–11, 2016, doi: 10.1038/srep37946.spa
dc.relation.referencesT. Jin et al., “Mechanochemical-Assisted Synthesis of High-Entropy Metal Nitride via a Soft Urea Strategy,” Adv. Mater., vol. 30, no. 23, pp. 1–5, 2018, doi: 10.1002/adma.201707512.spa
dc.relation.referencesR. Z. Zhang, F. Gucci, H. Zhu, K. Chen, and M. J. Reece, “Data-Driven Design of Ecofriendly Thermoelectric High-Entropy Sulfides,” Inorg. Chem., vol. 57, no. 20, pp. 13027–13033, 2018, doi: 10.1021/acs.inorgchem.8b02379.spa
dc.relation.referencesQ. Wang et al., “High entropy oxides as anode material for Li-ion battery applications: A practical approach,” Electrochem. commun., vol. 100, no. January, pp. 121–125, 2019, doi: 10.1016/j.elecom.2019.02.001.spa
dc.relation.referencesX. Yan and Y. Zhang, “Functional properties and promising applications of high entropy alloys,” Scr. Mater., vol. 187, pp. 188–193, 2020, doi: 10.1016/j.scriptamat.2020.06.017.spa
dc.relation.referencesF. Zhang, C. Zhang, S. L. Chen, J. Zhu, W. S. Cao, and U. R. Kattner, “An understanding of high entropy alloys from phase diagram calculations,” Calphad Comput. Coupling Phase Diagrams Thermochem., vol. 45, pp. 1–10, 2014, doi: 10.1016/j.calphad.2013.10.006.spa
dc.relation.referencesY. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, “Solid-solution phase formation rules for multi-component alloys,” Adv. Eng. Mater., vol. 10, no. 6, pp. 534–538, Jun. 2008, doi: 10.1002/adem.200700240.spa
dc.relation.referencesB. Burger et al., “A mobile robotic chemist,” Nature, 2020, doi: 10.1038/s41586- 020-2442-2.spa
dc.relation.referencesZ. Li et al., “Robot-Accelerated Perovskite Investigation and Discovery,” Chem. Mater., vol. 32, no. 13, pp. 5650–5663, Jul. 2020, doi: 10.1021/acs.chemmater.0c01153.spa
dc.relation.referencesS. Sun et al., “A data fusion approach to optimize compositional stability of halide perovskites,” Matter, vol. 4, no. 4, pp. 1305–1322, Apr. 2021, doi: 10.1016/j.matt.2021.01.008.spa
dc.relation.referencesK. Higgins, S. M. Valleti, M. Ziatdinov, S. V. Kalinin, and M. Ahmadi, “Chemical Robotics Enabled Exploration of Stability in Multicomponent Lead Halide Perovskites via Machine Learning,” ACS Energy Lett., vol. 5, no. 11, pp. 3426– 3436, Nov. 2020, doi: 10.1021/acsenergylett.0c01749.spa
dc.relation.referencesP. Nikolaev et al., “Autonomy in materials research: A case study in carbon nanotube growth,” npj Comput. Mater., vol. 2, no. 1, pp. 1–6, Oct. 2016, doi: 10.1038/npjcompumats.2016.31.spa
dc.relation.referencesS. Noda, Y. Tsuji, Y. Murakami, and S. Maruyama, “Combinatorial method to prepare metal nanoparticles that catalyze the growth of single-walled carbon nanotubes,” Appl. Phys. Lett., vol. 86, no. 17, pp. 1–3, Apr. 2005, doi: 10.1063/1.1920417.spa
dc.relation.referencesA. M. Cassell, S. Verma, L. Delzeit, M. Meyyappan, and J. Han, “Combinatorial optimization of heterogeneous catalysts used in the growth of carbon nanotubes,” Langmuir, vol. 17, no. 2, pp. 260–264, Jan. 2001, doi: 10.1021/la001273a.spa
dc.relation.referencesA. Rar et al., “PVD synthesis and high-throughput property characterization of NiFe-Cr alloy libraries,” Meas. Sci. Technol., vol. 16, no. 1, pp. 46–53, Dec. 2005, doi: 10.1088/0957-0233/16/1/007.spa
dc.relation.referencesJ. J. Hanak, “The ‘multiple-sample concept’ in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems,” J. Mater. Sci., vol. 5, no. 11, pp. 964–971, Nov. 1970, doi: 10.1007/BF00558177.spa
dc.relation.referencesK. Kennedy, T. Stefansky, G. Davy, V. F. Zackay, and E. R. Parker, “Rapid method for determining ternary-alloy phase diagrams,” J. Appl. Phys., vol. 36, no. 12, pp. 3808–3810, 1965, doi: 10.1063/1.1713952.spa
dc.relation.referencesH. Knoll, S. Ocylok, A. Weisheit, H. Springer, E. Jägle, and D. Raabe, “Combinatorial Alloy Design by Laser Additive Manufacturing,” steel Res. Int., vol. 88, no. 8, p. 1600416, Aug. 2017, doi: 10.1002/SRIN.201600416.spa
dc.relation.referencesP. Wilson, R. Field, and M. Kaufman, “The use of diffusion multiples to examine the compositional dependence of phase stability and hardness of the Co-Cr-Fe-Mn-Ni high entropy alloy system,” Intermetallics, vol. 75, pp. 15–24, 2016, doi: 10.1016/j.intermet.2016.04.007.spa
dc.relation.referencesT. Borkar et al., “A Combinatorial Approach for Assessing the Magnetic Properties of High Entropy Alloys: Role of Cr in AlCoxCr1–xFeNi,” Adv. Eng. Mater., vol. 19, no. 8, p. 1700048, Aug. 2017, doi: 10.1002/adem.201700048.spa
dc.relation.referencesK. G. Pradeep, C. C. Tasan, M. J. Yao, Y. Deng, H. Springer, and D. Raabe, “Nonequiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design,” Mater. Sci. Eng. A, vol. 648, pp. 183–192, Nov. 2015, doi: 10.1016/j.msea.2015.09.010.spa
dc.relation.referencesA. Sarkar et al., “Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency,” Dalt. Trans., vol. 46, no. 36, pp. 12167–12176, Sep. 2017, doi: 10.1039/c7dt02077e.spa
dc.relation.referencesH. Xu et al., “Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports,” Nat. Commun., vol. 11, no. 1, pp. 1–9, Aug. 2020, doi: 10.1038/s41467-020-17738-9.spa
dc.relation.referencesA. Sarkar et al., “Nanocrystalline multicomponent entropy stabilised transition metal oxides,” J. Eur. Ceram. Soc., vol. 37, no. 2, pp. 747–754, Feb. 2017, doi: 10.1016/j.jeurceramsoc.2016.09.018.spa
dc.relation.referencesM. Biesuz, L. Spiridigliozzi, G. Dell’Agli, M. Bortolotti, and V. M. Sglavo, “Synthesis and sintering of (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods,” J. Mater. Sci., vol. 53, no. 11, pp. 8074–8085, 2018, doi: 10.1007/s10853-018-2168-9.spa
dc.relation.referencesD. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater., vol. 122, pp. 448–511, 2017, doi: 10.1016/j.actamat.2016.08.081.spa
dc.relation.referencesO. N. Senkov, S. V. Senkova, C. Woodward, and D. B. Miracle, “Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis,” Acta Mater., vol. 61, no. 5, pp. 1545–1557, Mar. 2013, doi: 10.1016/j.actamat.2012.11.032.spa
dc.relation.referencesC. Zhang, F. Zhang, S. Chen, and W. Cao, “Computational thermodynamics aided high-entropy alloy design,” JOM, vol. 64, no. 7, pp. 839–845, Jun. 2012, doi: 10.1007/s11837-012-0365-6.spa
dc.relation.referencesS. Kirklin et al., “The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies,” npj Comput. Mater., vol. 1, no. 1, pp. 1–15, Dec. 2015, doi: 10.1038/npjcompumats.2015.10.spa
dc.relation.referencesA. Sarkar et al., “Role of intermediate 4 f states in tuning the band structure of high entropy oxides,” APL Mater., vol. 8, no. 5, p. 051111, May 2020, doi: 10.1063/5.0007944.spa
dc.relation.referencesE. M. Chan et al., “Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space,” Nano Lett., vol. 10, no. 5, pp. 1874–1885, May 2010, doi: 10.1021/nl100669s.spa
dc.relation.referencesH. Fleischer et al., “Analytical measurements and efficient process generation using a dual–arm robot equipped with electronic pipettes,” Energies, vol. 11, no. 10, p. 2567, Sep. 2018, doi: 10.3390/en11102567.spa
dc.relation.referencesL. Velasco, J. S. Castillo, M. V. Kante, J. J. Olaya, P. Friederich, and H. Hahn, “Phase–Property Diagrams for Multicomponent Oxide Systems toward Materials Libraries,” Adv. Mater., vol. 33, no. 43, p. 2102301, Oct. 2021, doi: 10.1002/adma.202102301.spa
dc.relation.referencesB. L. Musicó et al., “The emergent field of high entropy oxides: Design, prospects, challenges, and opportunities for tailoring material properties,” APL Mater., vol. 8, no. 4, p. 040912, Apr. 2020, doi: 10.1063/5.0003149.spa
dc.relation.referencesZ. Wang, S. Guo, and C. T. Liu, “Phase Selection in High-Entropy Alloys: From Nonequilibrium to Equilibrium,” Jom, vol. 66, no. 10, pp. 1966–1972, 2014, doi: 10.1007/s11837-014-0953-8.spa
dc.relation.referencesS. J. McCormack and A. Navrotsky, “Thermodynamics of high entropy oxides,” Acta Mater., vol. 202, pp. 1–21, Jan. 2021, doi: 10.1016/J.ACTAMAT.2020.10.043.spa
dc.relation.referencesW. Hume Rothery and R. G.V., The Structure of Metals and Alloys Institute of Metals. 1962.spa
dc.relation.referencesM. B.S., J. W. Yeh, S. Ranganathan, and B. P. P., High-entropy alloys, second Volume, ASMT Handbook. 2019.spa
dc.relation.referencesJ. W. Yeh, Overview of high-entropy alloys. 2016spa
dc.relation.referencesR. A. Swalin, “Thermodynamics of Solids.” p. 386, 1972.spa
dc.relation.referencesRafael Schmitt et al., “A review of defect structure and chemistry in ceria and its solid solutions,” Chem. Soc. Rev., vol. 49, no. 2, pp. 554–592, Jan. 2020, doi: 10.1039/C9CS00588A.spa
dc.relation.referencesChangjie Mao, Yixin Zhao, Xiaofeng Qiu, Junjie Zhu, and Clemens Burda, “Synthesis, characterization and computational study of nitrogen -doped CeO 2 nanoparticles with visible-light activity,” Phys. Chem. Chem. Phys., vol. 10, no. 36, pp. 5633–5638, Sep. 2008, doi: 10.1039/B805915B.spa
dc.relation.referencesG. R. Bamwenda and H. Arakawa, “Cerium dioxide as a photocatalyst for water decomposition to O2 in the presence of Ceaq4+ and Feaq3+ species,” J. Mol. Catal. A Chem., vol. 161, no. 1–2, pp. 105–113, Nov. 2000, doi: 10.1016/S1381- 1169(00)00270-3.spa
dc.relation.referencesA. Corma, P. Atienzar, H. García, and J.-Y. Chane-Ching, “Hierarchically mesostructured doped CeO2 with potential for solar-cell use,” Nat. Mater. 2004 36, vol. 3, no. 6, pp. 394–397, May 2004, doi: 10.1038/nmat1129.spa
dc.relation.referencesR. Djenadic et al., “Nebulized spray pyrolysis of Al-doped Li7La3Zr 2O12 solid electrolyte for battery applications,” Solid State Ionics, vol. 263, pp. 49–56, 2014, doi: 10.1016/j.ssi.2014.05.007.spa
dc.relation.referencesA. Sarkar, R. Djenadic, N. J. Usharani, and K. P. Sanghvi, “Nanocrystalline multicomponent entropy stabilised transition metal oxides Journal of the European Ceramic Society Nanocrystalline multicomponent entropy stabilised transition metal oxides,” J. Eur. Ceram. Soc., vol. 37, no. 2, pp. 747–754, 2016, doi: 10.1016/j.jeurceramsoc.2016.09.018.spa
dc.relation.referencesE.-E. M. Sherif, Mechanical Alloying, vol. 53, no. 9. 2019spa
dc.relation.referencesA. J. Lynch and C. A. Rowland, The History of Grinding. 2015.spa
dc.relation.referencesH. Aono, T. Nagamachi, T. Naohara, Y. Itagaki, T. Maehara, and H. Hirazawa, “Synthesis conditions of nano-sized magnetite powder using reverse coprecipitation method for thermal coagulation therapy,” J. Ceram. Soc. Japan, vol. 124, no. 1, pp. 23–28, 2016, doi: 10.2109/jcersj2.15183.spa
dc.relation.referencesH. KAZEMZADEH, A. ATAIE, and F. RASHCHI, “ Synthesis of Magnetite Nano-Particles By Reverse Co -Precipitation ,” Int. J. Mod. Phys. Conf. Ser., vol. 05, pp. 160–167, 2012, doi: 10.1142/s2010194512001973.spa
dc.relation.referencesJ. M. Morales Tatay, “Modulación de la mesoestructura y composición en sílices nanoparticuladas con porosidad jerárquica,” 2014.spa
dc.relation.referencesJ. Livage, “Sol±gel synthesis of heterogeneous catalysts from aqueous solutions.”spa
dc.relation.referencesM. Henry, J. P. Jolivet, and J. Livage, “Aqueous chemistry of metal cations: Hydrolysis, condensation and complexation,” Chem. Spectrosc. Appl. Sol-Gel Glas., pp. 153–206, 2006, doi: 10.1007/bfb0036968.spa
dc.relation.referencesG. Y. Adachi and N. Imanaka, “The binary rare earth oxides,” Chem. Rev., vol. 98, no. 4, pp. 1479–1514, 1998, doi: 10.1021/cr940055h.spa
dc.relation.references“Un nuevo tipo de manipulador de líquidos | Opentrons OT-2.” https://www.opentrons.com/ot-2 (accessed Oct. 29, 2019)spa
dc.relation.referencesA. Ludwig, “Discovery of new materials using combinatorial synthesis and highthroughput characterization of thin-film materials libraries combined with computational methods,” npj Comput. Mater., vol. 5, no. 1, 2019, doi: 10.1038/s41524-019-0205-0spa
dc.relation.referencesD. König, J. Pfetzing-Micklich, J. Frenzel, and A. Ludwig, “Investigation of ternary subsystems of superalloys by thin-film combinatorial synthesis and high-throughput analysis,” MATEC Web Conf., vol. 14, pp. 4–7, 2014, doi: 10.1051/matecconf/20141418002.spa
dc.relation.referencesA. Ludwig, R. Zarnetta, S. Hamann, A. Savan, and S. Thienhaus, “HighThroughput Experimentation Methods,” Int. J. Mat. Res., vol. 99, no. NOVEMBER, pp. 1144–1149, 2008.spa
dc.relation.referencesY. Lederer, C. Toher, K. S. Vecchio, and S. Curtarolo, “The search for high entropy alloys: A high-throughput ab-initio approach,” Acta Mater., vol. 159, pp. 364–383, 2018, doi: 10.1016/j.actamat.2018.07.042.spa
dc.relation.referencesS. Guerin and B. E. Hayden, “Physical vapor deposition method for the highthroughput synthesis of solid-state material libraries,” J. Comb. Chem., vol. 8, no. 1, pp. 66–73, 2006, doi: 10.1021/cc050117pspa
dc.relation.referencesS. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, “The high-throughput highway to computational materials design,” Nat. Mater., vol. 12, no. 3, pp. 191–201, 2013, doi: 10.1038/nmat3568.spa
dc.relation.referencesJ. G. de Vries and A. H. M. de Vries, “The Power of High‐Throughput Experimentation in Homogeneous Catalysis Research for Fine Chemicals,” European J. Org. Chem., vol. 2003, no. 5, pp. 799–811, Mar. 2003, doi: 10.1002/ejoc.200390122.spa
dc.relation.referencesK. Burgess, H. J. Lim, A. M. Porte, and G. A. Sulikowski, “New Catalysts and Conditions for a C-H Insertion Reaction Identified by High Throughput Catalyst Screening,” Angew. Chemie (International Ed. English), vol. 35, no. 2, pp. 220– 222, 1996, doi: 10.1002/anie.199602201.spa
dc.relation.referencesW. Setyawan and S. Curtarolo, “High-throughput electronic band structure calculations: Challenges and tools,” Comput. Mater. Sci., vol. 49, no. 2, pp. 299– 312, 2010, doi: 10.1016/j.commatsci.2010.05.010.spa
dc.relation.referencesS. Salomon, F. Wöhrle, P. Hübner, P. Decker, and A. Ludwig, “Influences of Si Substitution on Existence, Structural and Magnetic Properties of the CoMnGe Phase Investigated in a Co–Mn–Ge–Si Thin-Film Materials Library,” ACS Comb. Sci., 2019, doi: 10.1021/acscombsci.9b00107.spa
dc.relation.referencesM. Faraldos and C. Goberna, Técnicas de análisis y caracterización de materiales. 2011.spa
dc.relation.referencesS. Kundu, “Synthesis and Characterizations of Some Nanocrystalline Metal Oxide Semiconductors and Composites With Different Morphologies Dissertation Submitted To the University of Burdwan in Partial Fulfillment of the Requirements for the Degree of Doctor of,” UNIVERSITY OF BURDWAN WEST BENGAL713104 INDIA, 2018.spa
dc.relation.referencesB. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction. Pearson Education Limited, 2014spa
dc.relation.referencesJ. R. Ferraro, K. Nakamoto, and C. W. Brown, Introductory Raman Spectroscopy: Second Edition. 2003.spa
dc.relation.referencesT. Schmid and P. Dariz, “Raman microspectroscopic imaging of binder remnants in historical mortars reveals processing conditions,” Heritage, vol. 2, no. 2, pp. 1662– 1683, Jun. 2019, doi: 10.3390/heritage2020102.spa
dc.relation.referencesZ. Y. Pu, J. Q. Lu, M. F. Luo, and Y. L. Xie, “Study of oxygen vacancies in Ce0.9Pr0.1O 2-δ solid solution by in situ X-ray diffraction and in situ raman spectroscopy,” J. Phys. Chem. C, vol. 111, no. 50, pp. 18695–18702, Dec. 2007, doi: 10.1021/jp0759776.spa
dc.relation.referencesA. Townshen, Principles of Instrumental Analysis, vol. 152. 1983spa
dc.relation.referencesT. Vickers, “Modern Techniques in Applied Molecular Spectroscopy,” Appl. Spectrosc., vol. 52, pp. 330A-331A, 1998.spa
dc.relation.referencesJ. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. status solidi, vol. 15, no. 2, pp. 627–637, Jan. 1966, doi: 10.1002/pssb.19660150224.spa
dc.relation.referencesA. Escobedo-Morales, I. I. Ruiz-López, M. de L. Ruiz-Peralta, L. Tepech-Carrillo, M. Sánchez-Cantú, and J. E. Moreno-Orea, “Automated method for the determination of the band gap energy of pure and mixed powder samples using diffuse reflectance spectroscopy,” Heliyon, vol. 5, no. 4, Apr. 2019, doi: 10.1016/j.heliyon.2019.e01505.spa
dc.relation.references“Origin Help - Creating Contour Graphs.” https://www.originlab.com/doc/OriginHelp/Create-Contour-Graph (accessed Sep. 04, 2020).spa
dc.relation.references“Opentrons Protocol Designer BETA.” https://designer.opentrons.com/ (accessed Feb. 03, 2022).spa
dc.relation.referencesPerkinElmer, “OptiPlate-96, White Opaque 96-well Microplate, Case 50.” https://www.perkinelmer.com/product/optiplate-96-50w-6005290 (accessed Oct. 06, 2021).spa
dc.relation.referencesZ. Y. Pu, J. Q. Lu, M. F. Luo, and Y. L. Xie, “Study of oxygen vacancies in Ce0.9Pr0.1O 2-δ solid solution by in situ X-ray diffraction and in situ raman spectroscopy,” J. Phys. Chem. C, vol. 111, no. 50, pp. 18695–18702, Dec. 2007, doi: 10.1021/jp0759776.spa
dc.relation.referencesJ. J. Kim, S. R. Bishop, D. Chen, and H. L. Tuller, “Defect Chemistry of Pr Doped Ceria Thin Films Investigated by in Situ Optical and Impedance Measurements,” Chem. Mater., vol. 29, no. 5, pp. 1999–2007, Mar. 2017, doi: 10.1021/ACS.CHEMMATER.6B03307.spa
dc.relation.referencesM. Singh, M. Goyal, and K. Devlal, “Size and shape effects on the band gap of semiconductor compound nanomaterials,” J. Taibah Univ. Sci., vol. 12, no. 4, pp. 470–475, Jul. 2018, doi: 10.1080/16583655.2018.1473946.spa
dc.relation.referencesG. Ramalingam et al., “Quantum Confinement Effect of 2D Nanomaterials,” in Quantum Dots - Fundamental and Applications, IntechOpen, 2020.spa
dc.relation.referencesM. Mishra, P. Kuppusami, T. N. Sairam, A. Singh, and E. Mohandas, “Effect of substrate temperature and oxygen partial pressure on microstructure and optical properties of pulsed laser deposited yttrium oxide thin films,” Appl. Surf. Sci., vol. 257, no. 17, pp. 7665–7670, Jun. 2011, doi: 10.1016/j.apsusc.2011.03.156.spa
dc.relation.referencesM. G. Paton and E. N. Maslen, “A refinement of the crystal structure of yttria,” Acta Crystallogr., vol. 19, no. 3, pp. 307–310, Sep. 1965, doi: 10.1107/s0365110x65003365.spa
dc.relation.referencesS. V. Ushakov, S. Hayun, W. Gong, and A. Navrotsky, “Thermal analysis of high entropy rare earth oxides,” Materials (Basel)., vol. 13, no. 14, Jul. 2020, doi: 10.3390/ma13143141.spa
dc.relation.referencesH. Kohlmann, “The crystal structure of cubic C-type samarium sesquioxide, Sm2O3,” Zeitschrift für Naturforsch. B, vol. 74, no. 5, pp. 433–435, May 2019, doi: 10.1515/ZNB-2019-0042.spa
dc.relation.referencesA. V. Prokofiev, A. I. Shelykh, and B. T. Melekh, “Periodicity in the band gap variation of Ln2X3 (X = O, S, Se) in the lanthanide series,” J. Alloys Compd., vol. 242, no. 1–2, pp. 41–44, Sep. 1996, doi: 10.1016/0925-8388(96)02293-1.spa
dc.relation.referencesMasatomo Yashima, Syuuhei Kobayashi, and Tadashi Yasui, “Positional disorder and diffusion path of oxide ions in the yttria-doped ceria Ce 0.93 Y 0.07 O 1.96,” Faraday Discuss., vol. 134, no. 0, pp. 369–376, Dec. 2006, doi: 10.1039/B601806H.spa
dc.relation.referencesH. J. Osten, J. P. Liu, and H. J. Müssig, “Band gap and band discontinuities at crystalline Pr2O3/Si(001) heterojunctions,” Appl. Phys. Lett., vol. 80, no. 2, p. 297, Jan. 2002, doi: 10.1063/1.1433909.spa
dc.relation.referencesC. H. Gardiner, A. T. Boothroyd, S. J. S. Lister, M. J. McKelvy, S. Hull, and B. H. Larsen, “An investigation of the magnetic structure of PrO2,” Appl. Phys. A Mater. Sci. Process., vol. 74, no. SUPPL.II, 2002, doi: 10.1007/S003390201847.spa
dc.relation.referencesR. Srinivasan, R. Yogamalar, A. Vinu, K. Ariga, and A. C. Bose, “Structural and optical characterization of samarium doped yttrium oxide nanoparticles,” J. Nanosci. Nanotechnol., vol. 9, no. 11, pp. 6747–6752, Nov. 2009, doi: 10.1166/JNN.2009.1467.spa
dc.relation.referencesM. Mitric, J. Blanusa, T. Barudzija, Z. Jaglicic, V. Kusigerski, and V. Spasojevic, “Magnetic properties of trivalent Sm ions in SmxY2-xO3,” J. Alloys Compd., vol. 485, no. 1–2, pp. 473–477, Oct. 2009, doi: 10.1016/J.JALLCOM.2009.05.142.spa
dc.relation.referencesR. C. Deus et al., “Photoluminescence properties of cerium oxide nanoparticles as a function of lanthanum content,” Mater. Res. Bull., vol. C, no. 70, pp. 416–423, Oct. 2015, doi: 10.1016/J.MATERRESBULL.2015.05.006.spa
dc.relation.referencesX. Cao, R. Vassen, W. Fischer, F. Tietz, W. Jungen, and D. Stöver, “Lanthanum– Cerium Oxide as a Thermal Barrier-Coating Material for High-Temperature Applications,” Adv. Mater., vol. 15, no. 17, pp. 1438–1442, Sep. 2003, doi: 10.1002/ADMA.200304132.spa
dc.relation.referencesV. Besikiotis, C. S. Knee, I. Ahmed, R. Haugsrud, and T. Norby, “Crystal structure, hydration and ionic conductivity of the inherently oxygen-deficient La2Ce2O7,” Solid State Ionics, vol. 228, pp. 1–7, Nov. 2012, doi: 10.1016/J.SSI.2012.08.023.spa
dc.relation.referencesA. C. Cabral, L. S. Cavalcante, R. C. Deus, E. Longo, A. Z. Simões, and F. Moura, “Photoluminescence properties of praseodymium doped cerium oxide nanocrystals,” Ceram. Int., vol. 3, no. 40, pp. 4445–4453, Apr. 2014, doi: 10.1016/J.CERAMINT.2013.08.117.spa
dc.relation.referencesR. Chiba, H. Taguchi, T. Komatsu, H. Orui, K. Nozawa, and H. Arai, “High temperature properties of Ce1-xPrxO2-δ as an active layer material for SOFC cathodes,” Solid State Ionics, vol. 197, no. 1, pp. 42–48, Aug. 2011, doi: 10.1016/J.SSI.2011.03.022.spa
dc.relation.referencesL. H. Reddy, G. K. Reddy, D. Devaiah, and B. M. Reddy, “A rapid microwaveassisted solution combustion synthesis of CuO promoted CeO2-MxOy (M = Zr, La, Pr and Sm) catalysts for CO oxidation,” Appl. Catal. A Gen., vol. 445–446, pp. 297–305, Nov. 2012, doi: 10.1016/J.APCATA.2012.08.024.spa
dc.relation.referencesV. Vibhu et al., “Electrochemical ageing study of mixed lanthanum/praseodymium nickelates La2-PrNiO4+δ as oxygen electrodes for solid oxide fuel or electrolysis cells Electrochemical ageing study of mixed lanthanum/praseodymium nickelates La 2-x Pr x NiO 4+δ as oxygen electrodes for solid oxide fuel or electrolysis cells,” doi: 10.1016/j.jechem.2019.10.012ï.spa
dc.relation.referencesY. Zhao, K. Kita, K. Kyuno, and A. Toriumi, “Band gap enhancement and electrical properties of La2O3 films doped with Y2O3 as high-k gate insulators,” Appl. Phys. Lett., vol. 94, no. 4, p. 042901, Jan. 2009, doi: 10.1063/1.3075954.spa
dc.relation.referencesM. Bharathy, A. H. Fox, S. J. Mugavero, and H. C. zur Loye, “Crystal growth of inter-lanthanide LaLn′O3 (Ln′ = Y, Ho-Lu) perovskites from hydroxide fluxes,” Solid State Sci., vol. 11, no. 3, pp. 651–654, Mar. 2009, doi: 10.1016/J.SOLIDSTATESCIENCES.2008.10.005.spa
dc.relation.referencesJ. A. Lussier, K. M. Szkop, A. Z. Sharma, C. R. Wiebe, and M. Bieringer, “Order/Disorder and in Situ Oxide Defect Control in the Bixbyite Phase YPrO3+δ(0≤δ<0.5),” Inorg. Chem., vol. 55, no. 5, pp. 2381–2389, Mar. 2016, doi: 10.1021/acs.inorgchem.5b02746.spa
dc.relation.referencesM. S. Anwar et al., “Structural and optical study of samarium doped cerium oxide thin films prepared by electron beam evaporation,” J. Alloys Compd., vol. 509, no. 13, pp. 4525–4529, Mar. 2011, doi: 10.1016/j.jallcom.2011.01.067.spa
dc.relation.referencesJ. Zhang, C. Ke, H. Wu, J. Yu, J. Wang, and Y. Wang, “Solubility limits, crystal structure and lattice thermal expansion of Ln2O3 (Ln=Sm, Eu, Gd) doped CeO2,” J. Alloys Compd., vol. 718, pp. 85–91, Sep. 2017, doi: 10.1016/J.JALLCOM.2017.05.073spa
dc.relation.referencesV. Sarasamma Vishnu and M. Lakshmipathi Reddy, “Near-infrared reflecting inorganic pigments based on molybdenum and praseodymium doped yttrium cerate: Synthesis, characterization and optical properties,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 9, pp. 2685–2692, Sep. 2011, doi: 10.1016/J.SOLMAT.2011.05.042.spa
dc.relation.referencesA. I. Ivanov, I. I. Zver’kova, E. V. Tsipis, S. I. Bredikhin, and V. V. Kharton, “Stability and Functional Properties of Fluorite-Like Ce0.6 –xLa0.4PrxO2 – δ as Electrode Components for Solid Oxide Fuel Cells,” Russ. J. Electrochem. 2020 562, vol. 56, no. 2, pp. 139–146, Mar. 2020, doi: 10.1134/S1023193520020056.spa
dc.relation.referencesM. Basavad, H. Shokrollahi, H. Ahmadvand, and S. M. Arab, “Structural, magnetic and magneto-optical properties of the bulk and thin film synthesized cerium- and praseodymium-doped yttrium iron garnet,” Ceram. Int., vol. 46, no. 8, pp. 12015– 12022, Jun. 2020, doi: 10.1016/J.CERAMINT.2020.01.242.spa
dc.relation.referencesY. Qiu-Hong, Z. Hong-Xu, and L. Shen-Zhou, “Spectral properties of Ce3+ doped yttrium lanthanum oxide transparent ceramics,” Chinese Phys. B, vol. 19, no. 2, p. 020701, Feb. 2010, doi: 10.1088/1674-1056/19/2/020701.spa
dc.relation.referencesN. Poovarawan et al., “Second metals (Lanthanum, Cerium, and Yttrium) modified W/SiO2 catalysts for metathesis of ethylene and 2-butene,” Catal. Today, vol. 309, pp. 43–50, Jul. 2018, doi: 10.1016/J.CATTOD.2017.11.012.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.lembTecnología químicaspa
dc.subject.lembChemistry, Technicaleng
dc.subject.lembEstructura Químicaspa
dc.subject.lembChemical structureeng
dc.subject.proposalProducción de alto rendimientospa
dc.subject.proposalMateriales de alta entropíaspa
dc.subject.proposalDiagrama de fase-propiedadspa
dc.subject.proposalLibrerías de materialesspa
dc.subject.proposalHigh throughputeng
dc.subject.proposalHigh entropy materialseng
dc.subject.proposalPhase diagrameng
dc.subject.proposalMaterials librarieseng
dc.titleProducción masiva de óxidos multicomponentes de alta entropía con enfoque en el estudio de vacancias de oxígenospa
dc.title.translatedHigh throughput production of high entropy multicomponent oxides with focus on oxygen vacancy studieseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.contentDatasetspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleProducción masiva de óxidos multicomponentes de alta entropía con enfoque en el estudio de vacancias de oxígenospa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013649099-2022.pdf
Tamaño:
27.54 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: