Estudio ab-initio de las propiedades topológicas de Antiperovskitas A3BO
| dc.contributor.advisor | Roa Rojas, Jairo | |
| dc.contributor.advisor | González, Rafael J. | |
| dc.contributor.author | Ibañez Sotelo, Joan Sebastian | |
| dc.contributor.orcid | Ibañez Sotelo, Joan Sebastian [0009-0005-4787-7381] | |
| dc.contributor.orcid | Roa Rojas, Jairo [0000-0002-5080-8492] | |
| dc.contributor.researchgroup | Grupo de Física de Nuevos Materiales | |
| dc.date.accessioned | 2025-08-28T16:24:20Z | |
| dc.date.available | 2025-08-28T16:24:20Z | |
| dc.date.issued | 2025-08-27 | |
| dc.description | Ilustraciones | spa |
| dc.description.abstract | Se presenta un estudio teórico y computacional ab-initio de la familia de antiperovskitas cúbicas A3BO, caracterizadas por su grupo espacial Pm¯3m, con A = Ca, Ba y B = Sn, Pb, Ge. Mediante cálculos basados en la Teoría del Funcional de la Densidad (DFT), implementados en el paquete Vienna Ab-initio Simulation Package (VASP), se determinó la estructura electrónica de estos materiales, incluyendo efectos de acoplamiento espín-órbita (SOC). Los resultados revelan la existencia de inversiones de bandas inducidas por SOC, junto con brechas energéticas compatibles con valores reportados en la literatura. A partir de las bandas calculadas y sus correspondientes representaciones irreducibles en los puntos de alta simetría de la zona de Brillouin, se realizó una clasificación topológica utilizando los invariantes Z2 y Z4. Este análisis permitió identificar cuatro de estos compuestos como aislantes topológicos de orden superior (HOTIs), y se discute su potencial para albergar modos de conducción unidimensionales en bisagras protegidos por simetrías cristalinas, en ausencia de conducción superficial o volumétrica. Los resultados consolidan a las antiperovskitas como una familia prometedora de materiales funcionales con aplicaciones emergentes en transporte topológicamente protegido. (Tomado de la fuente) | spa |
| dc.description.abstract | A theoretical and ab-initio computational study is presented for the family of cubic antiperovskites A3BO, characterized by the Pm¯3m space group, with A = Ca, Ba and B = Sn, Pb, Ge. Using Density Functional Theory (DFT) calculations implemented in the Vienna Ab-initio Simulation Package (VASP), the electronic structure of these materials was determined, including spin-orbit coupling (SOC) effects. The results reveal band inversions induced by SOC, together with energy gaps consistent with values reported in the literature. Based on the calculated band structures and their corresponding irreducible representations at the high-symmetry points of the Brillouin zone, a topological classification was carried out through the evaluation of the Z2 and Z4 invariants. This analysis identifies four of these compounds as higher-order topological insulators (HOTIs), and discusses their potential to host one-dimensional hinge conduction modes protected by crystalline symmetries, in the absence of surface or bulk conduction. These results establish antiperovskites as a promising material family for emerging applications in topologically protected electronic transport. | eng |
| dc.description.curriculararea | Física.Sede Bogotá | |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magíster en Ciencias - Física | |
| dc.format.extent | 85 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88499 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
| dc.publisher.faculty | Facultad de Ciencias | |
| dc.publisher.place | Bogotá, Colombia | |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Física | |
| dc.relation.indexed | LaReferencia | |
| dc.relation.references | P.E.S. Wormer and A.V.D. Avoird. Forty years of ab initio calculations on intermolecular forces. In Theory and Applications of Computational Chemistry, pages 1047–1077. 2005. | |
| dc.relation.references | Y.-B. Yang, J.-H.Wang, K. Li, and Y. Xu. Higher-order topological phases in crystalline and non-crystalline systems: a review. Journal of Physics Condensed Matter, 36(28), 2024. | |
| dc.relation.references | G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals. Physical Review B, 47(1):558–561, January 1993. Publisher: American Physical Society. | |
| dc.relation.references | G. Kresse and J. Furthm¨uller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1):15–50, July 1996. | |
| dc.relation.references | G. Kresse and J. Furthm¨uller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16):11169–11186, October 1996. Publisher: American Physical Society. | |
| dc.relation.references | Mikel Iraola, Juan L. Ma˜nes, Barry Bradlyn, Matthew K. Horton, Titus Neupert, Maia G. Vergniory, and Stepan S. Tsirkin. IrRep: Symmetry eigenvalues and irreducible representations of ab initio band structures. Computer Physics Communications, 272:108226, March 2022. | |
| dc.relation.references | B.J. Wieder, B. Bradlyn, J. Cano, Z. Wang, M.G. Vergniory, L. Elcoro, A.A. Soluyanov, C. Felser, T. Neupert, N. Regnault, and B.A. Bernevig. Topological materials discovery from crystal symmetry. Nature Reviews Materials, 7(3):196–216, 2022. | |
| dc.relation.references | K.P. Lindquist, J.A. Vigil, A.C. Su, and H.I. Karunadasa. A practical guide to Threedimensional halide perovskites: Structure, synthesis, and measurement. In Comprehensive Inorganic Chemistry III, Third Edition, volume 1-10, pages 499–559. 2023. | |
| dc.relation.references | Sergey V. Krivovichev. Structural diversity and complexity of antiperovskites. Coordination Chemistry Reviews, 498:215484, January 2024. | |
| dc.relation.references | K. Momma and F. Izumi. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6):1272–1276, December 2011. Publisher: International Union of Crystallography. | |
| dc.relation.references | Chonghe Li, Kitty Chi Kwan Soh, and Ping Wu. Formability of ABO3 perovskites. Journal of Alloys and Compounds, 372(1):40–48, June 2004. | |
| dc.relation.references | C. Cherian Lukose, G. Zoppi, and M. Birkett. Emergence of near-zero temperature coefficient of resistance in the Mn3CuN antiperovskite thin film structure. Applied Surface Science, 688, 2025. | |
| dc.relation.references | Christopher J. Bartel, Christopher Sutton, Bryan R. Goldsmith, Runhai Ouyang, Charles B. Musgrave, Luca M. Ghiringhelli, and Matthias Scheffler. New tolerance factor to predict the stability of perovskite oxides and halides. Science Advances, 5(2):eaav0693, February 2019. Publisher: American Association for the Advancement of Science. | |
| dc.relation.references | Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, and Kristin A. Persson. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1(1):011002, July 2013. | |
| dc.relation.references | M. W. Lufaso and P. M. Woodward. Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Crystallographica Section B: Structural Science, 57(6):725–738, December 2001. Publisher: International Union of Crystallography. | |
| dc.relation.references | H.D. Megaw. G. Solids. Crystal structure of barium titanium oxide and other double oxides of the perovskite type. Transactions of the Faraday Society, 42:A224–A231, 1946. | |
| dc.relation.references | A.P. Menushenkov, A. Ivanov, V. Neverov, A. Lukyanov, A. Krasavin, A.A. Yastrebtsev, I.A. Kovalev, Y. Zhumagulov, A.V. Kuznetsov, V. Popov, G. Tselikov, I. Shchetinin, O. Krymskaya, A. Yaroslavtsev, R. Carley, L. Mercadier, Z. Yin, S. Parchenko, L.P. Hoang, N. Ghodrati, Y.Y. Kim, J. Schlappa, M. Izquierdo, S. Molodtsov, and A. Scherz. Direct evidence of real-space pairing in BaBiO3. Physical Review Research, 6(2), 2024. | |
| dc.relation.references | H.Wang, F. Dong, B. Zhao, W. Tan, S. Huang, K. Su, L. Yang, and H.Wang. The colossal magnetoresistance within wide temperature range in LaMnO3 compound. Journal of Materials Science: Materials in Electronics, 35(27), 2024. | |
| dc.relation.references | L. Sanga, C. Lalengmawia, Z. Renthlei, S.T. Chanu, L. Hima, N.S. Singh, A. Yvaz, S. Bhattarai, and D.P. Rai. A review on perovskite materials for photovoltaic applications. Next Materials, 7, 2025. | |
| dc.relation.references | A. M. Glazer. Simple ways of determining perovskite structures. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 31(6):756–762, November 1975. Publisher: International Union of Crystallography. | |
| dc.relation.references | M.S.M. Rafie, A.M. Mahat, N. Ibrahim, and Z. Mohamed. Structural and Dielectric Properties of Alkaline Earth Metal-Doped Double Perovskite Materials: A Review. Malaysian Journal of Chemistry, 26(5):262–272, 2024. | |
| dc.relation.references | Nguyen Tuan Hung, Ahmad R. T. Nugraha, and Riichiro Saito. Quantum ESPRESSO Course for Solid-State Physics. Jenny Stanford Publishing, New York, December 2022. | |
| dc.relation.references | E.S. Kryachko. On the proof by reductio ad absurdum of the Hohenberg - Kohn theorem for ensembles of fractionally occupied states of Coulomb systems. International Journal of Quantum Chemistry, 106(8):1795–1798, 2006. | |
| dc.relation.references | L.G. Ferreira, R.R. Pel´a, L.K. Teles, M. Marques, M. Ribeiro Jr., and J. Furthm¨uller. The LDA-1/2 technique: Recent developments. volume 1566, pages 27–28, 2013. | |
| dc.relation.references | J. Kapil, P. Shukla, and A. Pathak. Review Article on Density Functional Theory. volume 256, pages 211–220, 2020. | |
| dc.relation.references | W. Kohn and L.J. Sham. Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A):A1133–A1138, 1965. | |
| dc.relation.references | E. Runge and E.K.U. Gross. Density-functional theory for time-dependent systems. Physical Review Letters, 52(12):997–1000, 1984. | |
| dc.relation.references | S. Maintz, V.L. Deringer, A.L. Tchougr´eeff, and R. Dronskowski. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. Journal of Computational Chemistry, 34(29):2557–2567, 2013. | |
| dc.relation.references | A. Pelissetto and E. Vicari. Critical phenomena and renormalization-group theory. Physics Report, 368(6):549–727, 2002. | |
| dc.relation.references | A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim. The electronic properties of graphene. Reviews of Modern Physics, 81(1):109–162, 2009. | |
| dc.relation.references | Frank Schindler, Ashley M. Cook, Maia G. Vergniory, Zhijun Wang, Stuart S. P. Parkin, B. Andrei Bernevig, and Titus Neupert. Higher-order topological insulators. Science Advances, 4(6):eaat0346, June 2018. Publisher: American Association for the Advancement of Science. | |
| dc.relation.references | David Vanderbilt. Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators. Cambridge University Press, Cambridge, 2018. | |
| dc.relation.references | Eslam Khalaf, Hoi Chun Po, Ashvin Vishwanath, and Haruki Watanabe. Symmetry Indicators and Anomalous Surface States of Topological Crystalline Insulators. Physical Review X, 8(3):031070, September 2018. Publisher: American Physical Society. | |
| dc.relation.references | F. Tang and X. Wan. Exhaustive construction of effective models in 1651 magnetic space groups. Physical Review B, 104(8), 2021. | |
| dc.relation.references | G. Kresse and J. Hafner. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. Journal of Physics: Condensed Matter, 6(40):8245, October 1994. | |
| dc.relation.references | G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector augmentedwave method. Physical Review B, 59(3):1758–1775, January 1999. Publisher: American Physical Society. | |
| dc.relation.references | J. Hafner. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. Journal of Computational Chemistry, 29(13):2044–2078, 2008. | |
| dc.relation.references | J.R. MacDonald. Review of some experimental and analytical equations of state. Reviews of Modern Physics, 41(2):316–349, 1969. | |
| dc.relation.references | Space Group 221: Pm-3m; P m -3 m. | |
| dc.relation.references | Y. Okamoto, A. Sakamaki, and K. Takenaka. Thermoelectric properties of antiperovskite calcium oxides Ca3PbO and Ca3SnO. Journal of Applied Physics, 119(20):205106, May 2016. | |
| dc.relation.references | Yukiko Obata, Ryu Yukawa, Koji Horiba, Hiroshi Kumigashira, Yoshitake Toda, Satoru Matsuishi, and Hideo Hosono. ARPES studies of the inverse perovskite ${\mathrm{Ca}} {3}\mathrm{PbO}$: Experimental confirmation of a candidate 3D Dirac fermion system. Physical Review B, 96(15):155109, October 2017. Publisher: American Physical Society. | |
| dc.relation.references | J. Nuss, C. M¨uhle, K. Hayama, V. Abdolazimi, and H. Takagi. Tilting structures in inverse perovskites, M3TtO (M = Ca, Sr, Ba, Eu; Tt = Si, Ge, Sn, Pb). Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 71(3):300– 312, June 2015. Publisher: International Union of Crystallography. | |
| dc.relation.references | A Widera and H Sch¨afer. ¨ubergangsformen zwischen zintlphasen und echten salzen: Die verbindungen A3BO (MIT A = Ca, Sr, Ba und B = Sn, Pb). Materials Research Bulletin, 15(12):1805–1809, December 1980. | |
| dc.relation.references | Xinyi He, Shigeru Kimura, Takayoshi Katase, Terumasa Tadano, Satoru Matsuishi, Makoto Minohara, Hidenori Hiramatsu, Hiroshi Kumigashira, Hideo Hosono, and Toshio Kamiya. Inverse-Perovskite Ba3BO (B = Si and Ge) as a High Performance Environmentally Benign Thermoelectric Material with Low Lattice Thermal Conductivity. Advanced Science, 11(10):2307058, 2024. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/advs.202307058. | |
| dc.relation.references | I. ˚A½uti¨A‡, J. Fabian, and S.D. Sarma. Spintronics: Fundamentals and applications. Reviews of Modern Physics, 76(2):323–410, 2004. | |
| dc.relation.references | A Pankratova, Petr Igoshev, and Valentin Irkhin. Incommensurate magnetic order in rare earth and transition metal compounds with local moments. Journal of Physics: Condensed Matter, 33, July 2021. | |
| dc.relation.references | Toshikaze Kariyado and Masao Ogata. Three-Dimensional Dirac Electrons at the Fermi Energy in Cubic Inverse Perovskites: Ca3PbO and Its Family. Journal of the Physical Society of Japan, 80(8):083704, August 2011. Publisher: The Physical Society of Japan. | |
| dc.relation.references | Tavneet Kaur and M. M. Sinha. An Ab Initio study of electronic, mechanical, thermoelectric and vibrational properties of Dirac Semimetals Ca3PbO and Ca3SnO. Materials Today Communications, 26:101741, March 2021. | |
| dc.relation.references | M.Z. Hasan and C.L. Kane. Colloquium: Topological insulators. Reviews of Modern Physics, 82(4):3045–3067, 2010. | |
| dc.relation.references | Yuan Fang and Jennifer Cano. Higher-order topological insulators in antiperovskites. Physical Review B, 101(24):245110, June 2020. Publisher: American Physical Society. | |
| dc.relation.references | Liang Fu and C. L. Kane. Topological insulators with inversion symmetry. Physical Review B, 76(4):045302, July 2007. Publisher: American Physical Society. | |
| dc.relation.references | M. G. Vergniory, L. Elcoro, Claudia Felser, Nicolas Regnault, B. Andrei Bernevig, and Zhijun Wang. A complete catalogue of high-quality topological materials. Nature, 566(7745):480–485, February 2019. Publisher: Nature Publishing Group. | |
| dc.relation.references | Muhammad Bilal, Syed Muhammad Alay-e Abbas, Ghulam Abbas, Farrukh Javed, Waqas Zulfiqar, and Nasir Amin. Elucidating the Surface Properties of Sr3PbO Inverse-Perovskite Topological Insulator: A First- Principles Study. physica status solidi (b), 261(2):2300373, 2024. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/pssb.202300373. | |
| dc.relation.references | Djamel Rached, M. Hichour, S. Benalia, Habib RACHED, and Rabah Khenata. Prediction study of the structural, elastic, electronic and optical properties of the antiperovskite BiNBa 3. Solid State Communications - SOLID STATE COMMUN, 149:2002–2006, December 2009. | |
| dc.relation.references | A.A. Mostofi, J.R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari. wannier90: A tool for obtaining maximally-localised Wannier functions. Computer Physics Communications, 178(9):685–699, 2008. | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Reconocimiento 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.lemb | Aislantes topológicos | |
| dc.subject.lemb | Física del estado sólido | |
| dc.subject.proposal | Antiperovskitas | spa |
| dc.subject.proposal | DFT | spa |
| dc.subject.proposal | Aislantes topológicos cristalinos | spa |
| dc.subject.proposal | HOTI | spa |
| dc.subject.proposal | Antiperovskites | eng |
| dc.subject.proposal | DFT | eng |
| dc.subject.proposal | Topological Crystalline Insulators | eng |
| dc.subject.proposal | HOTI | eng |
| dc.title | Estudio ab-initio de las propiedades topológicas de Antiperovskitas A3BO | spa |
| dc.title.translated | Ab-initio study of topological properties of A3BO Antiperovskites | eng |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |

