Migración reversa en el tiempo para medios acústicos y visco acústicos, por métodos pseudo espectrales de la ecuación de onda y la ecuación de onda fraccional en dos dimensiones

dc.contributor.advisorMontes Vides, Luis Alfredospa
dc.contributor.authorSánchez Vásquez, José Leonardospa
dc.date.accessioned2022-02-10T22:00:47Z
dc.date.available2022-02-10T22:00:47Z
dc.date.issued2021-12-08
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractLa Migración RTM o migración reversa en el tiempo es un método en el cual, se utiliza la ecuación de onda completa y no aproximaciones. En esta tesis se desarrolla un enfoque matemático unificado y se implementan los algoritmos numéricos para el correcto entendimiento del método pseudo espectral de Fourier generalizado, la simulación de fuentes y receptores para la onda acústica y visco acústica, la correcta implementación de la condición de imagen o “imaging”, además se implementan las fronteras absorbentes ABC hibrido, PML y NPML, donde la primera trabaja con una aproximación paraxial de la onda acústica y las dos siguientes con un “estreching” de las coordenadas. En el proceso de la migración RTM se utilizan dos condiciones de “imagin”, aplicándose a varios modelos sintéticos la migración, tanto para la onda acústica como visco acústico. Lo anterior permite contar con una herramienta de uso libre para migración RTM, dado que las herramientas comerciales son de costo elevado lo que dificulta el acceso a estudiantes de geociencias. (Texto tomado de la fuente).spa
dc.description.abstractRTM migration or reverse time migration is a method in which the complete wave equation is used rather than approximations. In this thesis, a unified mathematical approach is developed and numerical algorithms are implemented for the correct understanding of the generalized pseudo-spectral Fourier method, simulation of sources and receivers for acoustic wave and visco-acoustic, the correct implementation of the image condition, in addition, the absorbent borders ABC hybrid, PML and NPML are implemented, where the first works with a paraxial approximation of the acoustic wave and the next two with a of the coordinates estreching. In the RTM migration process, two “image” conditions are used, applying migration to various synthetic models, both for the acoustic wave and viscoacoustic. This allows us to have a free-to-use tool for RTM migration, since commercial tools are expensive, which makes it difficult for geoscience students to access.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Geofísicaspa
dc.description.notesIncluye anexosspa
dc.description.researchareaProspección sísmicaspa
dc.format.extentxix, 128 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80940
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Geocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geofísicaspa
dc.relation.referencesAmidror, I. (2014). Mastering the discrete Fourier transform in one, two or several dimensions: pitfalls and artifacts (T. N. MAX VIERGEVER Utrecht University, Utrecht & Series (eds.); 1st ed.). https://doi.org/10.5860/choice.51-5066spa
dc.relation.referencesBasu, U. (2008). Perfectly Matched Layers for Acoustic and Elastic Waves. In Report DSO-07-02 (Issue October).spa
dc.relation.referencesBaysal, E., Kosloff, D. D., & Sherwood, J. W. C. (1983). Reverse time migration. Geophysics, 48(11), 1514–1524. https://doi.org/10.1190/1.1441434spa
dc.relation.referencesBerenger, J. P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185–200. https://doi.org/10.1006/jcph.1994.1159spa
dc.relation.referencesBiondi, B., & Shan, G. (2002). Prestack imagingg of overturned reflections by reverse time migration SEG Int ’ l Exposition and 72nd Annual Meeting * Salt Lake City , Utah * October 6-11 , 2002. October, 171–174. http://sepwww.stanford.edu/sep/biondo/PDF/Abs/SEG2002/biondoreverse. pdfspa
dc.relation.referencesCarcione, J. M. (1999). Staggered mesh for the anisotropic and viscoelastic wave equation. Geophysics, 64(6), 1863–1866. https://doi.org/10.1190/1.1444692spa
dc.relation.referencesCarcione, J. M. (2010). A generalization of the Fourier pseudospectral method. Geophysics, 75(6), 53–56. https://doi.org/10.1190/1.3509472spa
dc.relation.referencesCarcione, M. (2009). Theory and modeling of constant-Q P- and S-waves using fractional time derivatives. 74(1). http://dx.doi.org/10.1190/1.3008548spa
dc.relation.referencesChang W.F, McMechan, G. . (1989). 3d acoustic reverse-time migration’. Geophycal Prospecting, September 1988, 243–256. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2478.1989.tb02205.xspa
dc.relation.referencesChica, E. J. (2016). Reverse Time Migration) en zonas Obtención de imágenes RTM estructuralmente complejas [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/56134spa
dc.relation.referencesClayton, R., & Engquist, B. (1977). Absorbing boundary conditions for acoustic and elastic wave equations. Bulletin of the Seismological Society of Americ, 67(6), 1529–1540. https://doi.org/10.1016/0096-3003(88)90130-0spa
dc.relation.referencesGazdag, J. (1981). Modeling of the acoustic wave equation with transform methods. Geophysics, 46(6), 854–859. https://doi.org/10.1190/1.1441223spa
dc.relation.referencesGuan, H., Kim Y., Yoon W, Wang, B, Xu, W., Li, Z. (2007). Multistep reverse time migration. SPECIAL SECTION: Off Shore Technology. https://doi.org/10.1190/1.3112762spa
dc.relation.referencesGuddati, M. N. (2006). Arbitrarily wide-angle wave equations for complex media. Computer Methods in Applied Mechanics and Engineering, 195(1–3), 65–93. https://doi.org/10.1016/j.cma.2005.01.006spa
dc.relation.referencesHu, W., & Cummer, S. A. (2004). The nearly perfectly matched layer is a perfectly matched layer. IEEE Antennas and Wireless Propagation Letters, 3(1), 137– 140. https://doi.org/10.1109/LAWP.2004.831077spa
dc.relation.referencesJingyi Chen, G. M. (2012). Application of Nearly Perfectly Matched Layer with Second-order Acoustic Equations in Seismic Numerical Modeling. Journal of Geology & Geosciences, 02(02). https://doi.org/10.4172/2329-6755.1000120spa
dc.relation.referencesKaelin, B., & Guitton, A. (2006). Imagingg condition for reverse time migration. SEG Technical Program Expanded Abstracts, 25(1), 2594–2598. https://doi.org/10.1190/1.2370059spa
dc.relation.referencesKelly , K.R., et al. (1976). Synthetic Seismograms: A Finite-Difference Approach. Geophysics, 41(I), 2–27. https://doi.org/10.1190/1.1440605spa
dc.relation.referencesKjartansson, E. (1979). Constant Q-Wave Propagation and Attenuation The constant Q theory fits both sets of data. JOURNAL OF GEOPHYSICAL RESEARCH, 84. http://sep.stanford.edu/data/media/public/oldsep/einar/Einar1979.pdfspa
dc.relation.referencesKomatitsch, D., & Vilotte, J. P. (1998). The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 88(2), 368–392. https://www.researchgate.net/publication/232707622_The_Spectral_Element _method_an_efficient_tool_to_simulate_the_seismic_response_of_2D_and_3 D_geological_structuresspa
dc.relation.referencesKun, T., Zhen‐chun, L., & Jian‐ping, H. (2011). An improved perfectly matched layer absorbing boundary condition. 138 SPG/SEG Shenzhen 2011 International Geophysical Conference Technical Program Expanded Abstracts, 1997, 49– 49. https://doi.org/10.1190/1.4705034spa
dc.relation.referencesLevin, A. (1984). Principle of reverse-time migration. Geophysics, 49(5), 581–583. https://doi.org/10.1190/1.1441693spa
dc.relation.referencesLiu, F., Zhang, G., Morton, S. A., & Leveille, J. P. (2011). An effective imagingg condition for reverse-time migration using wavefield decomposition. Geophysics, 76(1). https://doi.org/10.1190/1.3533914spa
dc.relation.referencesLiu, Q., & Tao, J. (1997). The perfectly matched layer for acoustic waves. Acoustical Society of America, 102(4), 2072–2082. https://www.researchgate.net/publication/243521262_The_perfectly_matched _layer_for_acoustic_waves_in_absorptive_mediaspa
dc.relation.referencesLiu, Y., Ding, L., & Sen, M. K. (2011). Comparisons between the hybrid ABC and the PML method for 2D high-order finite-difference acoustic modeling. SEG San Antonio 2011 Annual Meeting 2952, 1, 2952–2956. https://doi.org/10.1190/1.3627807spa
dc.relation.referencesLiu, Y., & Sen, M. K. (2010). A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation. Geophysics, 75(2). https://www.researchgate.net/publication/228978155_A_hybrid_scheme_for_ absorbing_edge_reflections_in_numerical_modeling_of_wave_propagationspa
dc.relation.referencesMcGarry, R., & Moghaddam, P. (2009). NPML boundary conditions for secondorder wave equations. 79th Society of Exploration Geophysicists International Exposition and Annual Meeting 2009, SEG 2009, 5, 3590–3594. https://doi.org/10.1190/1.3255611 Ospina, B. (2011). Propagación de ondasspa
dc.relation.referencesOspina, B. (2011). Propagación de ondas sísmicas y migración [Universidad Nacional de Colombia]. In Tesis. https://repositorio.unal.edu.co/handle/unal/8575spa
dc.relation.referencesSava, P., & Vlad, I. (2011). Wide-azimuth angle gathers for wave-equation migration. Geophysics, 76(3). https://doi.org/10.1190/1.3560519 Tessmer, E. (2011). Using the rapid expansion method for accurate time-stepping in modeling and reverse-time migration. Geophysics, 76(4). https://doi.org/10.1190/1.3587217spa
dc.relation.referencesTrefethen, L. N. (1996). Finite Difference And Spectal Methods for Ordinary and Partial Differential Equations. In Cornell University. https://people.maths.ox.ac.uk/trefethen/pdefront.pdfspa
dc.relation.referencesWhitmore, N. D. (1993). Iterative depth migration by backward time propagation. 1983 SEG Annual Meeting, SEG 1983, 382–385. https://doi.org/10.1190/1.1893867spa
dc.relation.referencesZhu, T., & Carcione, J. M. (2014). Theory and modelling of constant-q p- and swaves using fractional spatial derivatives. Geophysical Journal International, 196(3), 1787–1795. https://doi.org/10.1093/gji/ggt483spa
dc.relation.referencesZhu, T., & Harris, J. M. (2014). Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians. Geophysics, 79(3), T105–T116. https://doi.org/10.1190/GEO2013-0245.1spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.lembOndasspa
dc.subject.lembWaveseng
dc.subject.lembSpectrum analysiseng
dc.subject.lembAnálisis espectralspa
dc.subject.lembImage processingeng
dc.subject.lembProcesamiento de imágenesspa
dc.subject.proposalMigration RTMeng
dc.subject.proposalMigración RTMspa
dc.subject.proposalAcústicospa
dc.subject.proposalVisco acústicospa
dc.subject.proposalAbsorbentespa
dc.subject.proposalImagenspa
dc.subject.proposalAcousticeng
dc.subject.proposalVisco-acousticeng
dc.subject.proposalAbsorbingeng
dc.subject.proposalImagingeng
dc.titleMigración reversa en el tiempo para medios acústicos y visco acústicos, por métodos pseudo espectrales de la ecuación de onda y la ecuación de onda fraccional en dos dimensionesspa
dc.title.translatedReverse migration in time for acoustic and viscoacoustic media, by pseudo spectral methods of the wave equation and the equation of fractional wave in two dimensionseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79792724.2021.pdf
Tamaño:
24.43 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Geofísica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: