Proposal for Dyakonov surface wave excitation using fiber optics
dc.contributor.advisor | Torres Trujillo, Pedro Ignacio | |
dc.contributor.author | Garces Gomez, Jorge David | |
dc.contributor.researchgroup | Fotónica y Opto-Electrónica | spa |
dc.date.accessioned | 2024-10-15T16:12:59Z | |
dc.date.available | 2024-10-15T16:12:59Z | |
dc.date.issued | 2024 | |
dc.description | Ilustraciones | spa |
dc.description.abstract | The study of the interaction of light with matter has very important connotations in sensing applications, one of them being the surface waves generated for the propagation of light at the interface of two materials. Recent research has uncovered possibilities for detecting surface waves. A successful research on this topic is the surface plasmon polariton method, which is widely used for sensing purposes. Dyakonov surface wave (DSW) is a new possibility to extend sensing possibilities using dielectric materials. DSW is a phenomenon that depends on both the refractive indices of the interface materials and the surrounding medium, changing its propagation properties, or it is not excited when the propagation angle with respect to the optical axis of the anisotropic material is greater than the maximum angle of the angular existence domain. This sensitive behavior of DSWs opens the door to new alternatives to improve the technological application of surface waves in sensing and scientific research. For this reason, a theoretical and numerical study of optical waveguides involving Dyakonov surface waves at the anisotropic-isotropic interface is presented in this M.Sc. Thesis. The study focuses on DSW in planar waveguides and geometrically modified D-shaped optical fibers, covering a large number of possibilities on the excitation of this type of surface waves and how these waves can be implemented to detect small variations in the refractive index of the surrounding medium. (Tomado de la fuente) | eng |
dc.description.abstract | El estudio de la interacción de la luz con la materia tiene connotaciones muy importantes en las aplicaciones de sensado, siendo una de ellas las ondas superficiales generadas para la propagación de la luz en la interfaz de dos materiales. Investigaciones recientes han descubierto posibilidades para detectar ondas superficiales. Una investigación exitosa sobre este tema es el método del polariton del plasmón superficial, que es ampliamente utilizado con fines de sensado. La onda superficial de Dyakonov (DSW) es una nueva posibilidad para ampliar las posibilidades de sensado utilizando materiales dieléctricos. DSW es un fenómeno que depende tanto de los índices de refracción de los materiales de la interfaz como del medio circundante, cambiando sus propiedades de propagación, o no se excita cuando el ángulo de propagación con respecto al eje óptico del material anisotrópico es mayor que el ángulo máximo del dominio de existencia angular. Este comportamiento sensible de las ondas DSW abre la puerta a nuevas alternativas para mejorar la aplicación tecnológica de las ondas superficiales en la detección y la investigación científica. Por esta razón, un estudio teórico y numérico de guías de ondas ópticas que involucran ondas de superficie de Dyakonov en la interfaz anisotrópica-isotrópica se presenta en esta tesis M.Sc. El estudio se centra en DSW en guías de onda planas y fibras ópticas en forma de D modificadas geométricamente, cubriendo un gran número de posibilidades en la excitación de este tipo de ondas de superficie y cómo estas ondas se pueden implementar para detectar pequeñas variaciones en el índice de refracción del medio circundante. | spa |
dc.description.curriculararea | Física.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Física | spa |
dc.description.researcharea | Photonics | spa |
dc.format.extent | 101 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86948 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Ciencias - Maestría en Ciencias - Física | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Osamu Takayama, Lucian-Cornel Crasovan, Steffen Kjær Johansen, Dumitru Mihalache, David Artigas, Lluis Torner (2008) Dyakonov Surface Waves: A Review, Electromagnetics, 28:3, 126-145, DOI: 10.1080/02726340801921403 | spa |
dc.relation.references | M. I. Dyakonov (1988) “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714–716 | spa |
dc.relation.references | Kartiek Agarwal, John A. Polo, Akhlesh Lakhtakia (2009) Dyakonov-like surface waves in anisotropic cylindrical waveguides, University, 197101 St. Petersburg, Russia | spa |
dc.relation.references | K. Yu. Golenitskii1, A. A. Bogdanov1 (2022) Theory of Dyakonov–Tamm waves at the planar interface of a sculptured nematic thin film and anisotropic dielectric material, Department of Physics and Technology, Edinboro University of Pennsylvania, Edinboro, PA 16444, USA | spa |
dc.relation.references | Evgeny V. Anikin, Sergey A. Dyakov,y and Nikolay A (2021) Dyakonov surface waves in dielectric crystals with negative anisotropy, Gippius Skolkovo Institute of Science and Technology, 143025 Moscow Region, Russia | spa |
dc.relation.references | John Polo, Tom Mackay, Akhlesh Lakhtakia (2013) Electromagnetic SurfaceWaves. A Modern Perspective | spa |
dc.relation.references | T. Turbadar (1959) Complete absorption of light by thin metal films. Proc. Phys. Soc, 73(1):40–44 | spa |
dc.relation.references | Y. Fang and M. Sun (2015) Light: Science & Applications 4, e294 | spa |
dc.relation.references | P. Yeh, A. Yariv, and A. Y. Cho, Appl. Phys. Lett. 32, 104 (1978) | spa |
dc.relation.references | Esteban Gonzalez Valencia, Ignacio Del Villar, Pedro Torres, Novel Bloch wave excitation platform based on few layer photonic crystal deposited on D-shaped optical fiber, scientific reports | spa |
dc.relation.references | Esteban Gonzalez Valencia, Ignacio del Villar, Pedro Torres. Bloch waves at the surface of a single-layer coating D-shaped photonic crystal fiber. Optics Letters. Vol. 45, No. 9, 2020 | spa |
dc.relation.references | Esteban Gonzalez Valencia, Rodrigo Acuna Herrera, Pedro Torres. Bloch surface wave resonance in photonic crystal fibers: towards ultra-wide range refractive index sensors, OPTICS EXPRESS, Vol. 27, No. 6, 2019 | spa |
dc.relation.references | Lu, Jianqing & Chen, Zhenyi & Pang, Fufei &Wang, Tingyun. (2008). Theoretical Analysis of Fiber-Optic EvanescentWave Sensors. Proceedings of 2008 China- Japan Joint Microwave Conference, CJMW 2008. 10.1109/CJMW.2008.4772500 | spa |
dc.relation.references | Takayama, Osamu & Crasovan, Lucian & Artigas, David & Torner, Lluis (2009) Observation of Dyakonov Surface Waves. Physical review letters. 102. 043903. 10.1103/PhysRevLett.102.043903 | spa |
dc.relation.references | D. B. Walker, E. N. Glytsis, and T. K. Gaylord (1998) “Surface mode at isotropic– uniaxial and isotropic biaxial interfaces,” J. Opt. Soc. Am. A, vol. 15, no. 1, p. 248 | spa |
dc.relation.references | Min Cheng, Ping Fu, Shengyu Chen (2021) Tunable Dyakonov surface waves in graphene-hBN hyperstructure | spa |
dc.relation.references | A.Lakhtakia and J.A.P olo Jr.,J . Eur. Opt. Soc.–Rapid Publ. 2, 07021 (2007) | spa |
dc.relation.references | D. P. Pulsifer, M. Faryad, and A. Lakhtakia, Phys. Rev. Lett. 111, 243902 (2013) | spa |
dc.relation.references | Farhat Abbas, Akhlesh Lakhtakia, Qaisar A. Naqvi, and Muhammad Faryad (2015) An optical-sensing modality that exploits Dyakonov–Tamm waves. Photon. Res. 3, 5-8 | spa |
dc.relation.references | Takayama O, Crasovan L-C, Johansen S K, Mihalache D, Artigas D and Torner Ll (2008) Electromagnetics 28, 126 | spa |
dc.relation.references | Lakhtakia A and Polo J A Jr (2007) J. Eur. Opt. Soc.–Rapid Pub. 2 07021 | spa |
dc.relation.references | M. N. Polyanskiy. Refractiveindex.info database of optical constants. Sci. Data 11, 94 (2024) https://doi.org/10.1038/s41597-023-02898-2 | spa |
dc.relation.references | doi: 0.1103/PhysRevLett.94.013901 | spa |
dc.relation.references | doi: 10.7567/APEX.8.072601 | spa |
dc.relation.references | doi: 10.1364/OL.30.003075 | spa |
dc.relation.references | doi: 10.1103/PhysRevB.74.155120 | spa |
dc.relation.references | doi: 10.1364/OL.37.004311 | spa |
dc.relation.references | I. Abdulhalim, M. Zourob, A. Lakhtakia, Surface plasmon resonance for biosensing: a mini-review, Electromagnetics 28 (2008) 214–242, http://dx.doi.org/10.1080/02726340 801921650 | spa |
dc.relation.references | J.S. Sekhon, S.S. Verma (2011) Plasmonics: the future wave of communication, Curr. Sci. India 101, 484–488 | spa |
dc.relation.references | H.A. Atwater, A. Polman (2010) Plasmonics for improved photovoltaic devices, Nature Mater. 9, 205–213, http://dx.doi.org/10.1038/nmat2629 | spa |
dc.relation.references | W.Love, L.Button, R.Slovacek (1991) Optical characteristics of fiber optic evanescent wave sensors. In: Wise,Wingard (Eds.), Biosensors with Fiberoptics. Humana Press, Totowa, NJ, p. 139 | spa |
dc.relation.references | George P. Anderson, Chris Rowe Taitt (2008) Chapter 2 - Evanescent Wave Fiber Optic Biosensor, Editor(s): Frances S. Ligler, Chris Rowe Taitt, Optical Biosensors Second Edition), Elsevier, Pages 83-138 | spa |
dc.relation.references | Roberto Lo Savio, Sara Piselli, Cinzia Bertelli, Massimo Pizzato, Adolfo Carloni (2022) Viral particles imaging through evanescent wave scattering in a total internal reflection laser microscope, Sensing and Bio-Sensing Research, Volume 37 | spa |
dc.relation.references | Zhenzhe Wei, Xiao Cheng, Jinming Li, Guo Wang, Junzhu Mao, Jiaxing Zhao, Xinhui Lou (2022) Ultrasensitive evanescent wave optical fiber aptasensor for online, continuous, type-specific detection of sulfonamides in environmental water, Analytica Chimica Acta, Volume 1233 | spa |
dc.relation.references | N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, Y. Li (2016) A highsensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2, Biosens. Bioelectron. 85 876e882 | spa |
dc.relation.references | Leizi Jiao, Nianbing Zhong, Xiande Zhao, Shixiang Ma, Xinglan Fu, Daming Dong, (2020) Recent advances in fiber-optic evanescent wave sensors for monitoring organic and inorganic pollutants in water, TrAC Trends in Analytical Chemistry, Volume 127, 115 | spa |
dc.relation.references | Dmitry A. Chermoshentsev, Evgeny V. Anikin, Sergey A. Dyakov, Nikolay A. Gippius (2021) Dyakonov surface waves in dielectric crystals with negative anisotropy | spa |
dc.relation.references | Yariv Amnon (2006) Photonics: optical electronics in modern communications, 6th ed | spa |
dc.relation.references | George P. Anderson, Chris Rowe Taitt, (2008) Optical Biosensors (Second Edition) | spa |
dc.relation.references | UWiller, D.Scheel, I,Kostjucentko (2002) Fiber-optic evanescent-field laser sensor for in-situ gas diagnostics.Spectrochim. Acta, Part A 58,2427-2422 | spa |
dc.relation.references | W.Love, L.Button, R.Slovacek (1991) Optical characteristics of fiber optic evanescent wave sensors. In: Wise, Wingard (Eds.), Biosensors with Fiberoptics | spa |
dc.relation.references | A.Messia, A.Greenstein, and A.Katzir (1996) Theory of fiber-optic envanescentwave spectroscopy and sensors, Applied optics Vol.35, No. 13 | spa |
dc.relation.references | G.Z.Wang, K.A.Murphy,R.O.Claus (1995) Effect of external index of refraction on multimode fiber couplers. transmission spectral filters, in Proceedings of the Applied Optics 34(36),8289-8293 | spa |
dc.relation.references | M. J. Adams, An Introduction to Optical Waveguides, New York, 19812, pp. 228-23 | spa |
dc.relation.references | J.P.Golden,G.P.George,P.Anderson (1994) An evanescent wave biosensor. Part2. Fluorescence signal acquisition from tapered fiber optic probes. IEEE Trans. Biomed 41(6),585-591 | spa |
dc.relation.references | Boardman, A. D. (Ed.) (1982) Electromagnetic surface modes. Chichester, UK: John Wiley & Sons | spa |
dc.relation.references | Averkiev, N. S., & M. I. D’yakonov (1990) Electromagnetic waves localized at the interface of transparent unisotropic media. Opt. Spectrosc. (USSR) 68:653–655 | spa |
dc.relation.references | Artigas, D., & L. Torner (2005) Dyakonov surface waves in photonic metamaterials. Phys. Rev. Lett. 94:013901 | spa |
dc.relation.references | Crasovan, L. C., O. Takayama, D. Artigas, S. K. Johansen, D. Mihalache, & L. Torner (2006) Enhanced localization of Dyakonov-like surface waves in lefthanded materials. Phys. Rev. B 74:155120 | spa |
dc.relation.references | Polo, Jr., J. A., S. Nelatury, & A. Lakhtakia (2007) Propagation of surface waves at the planar interface of a columnar thin film and an isotropic substrate. J. Nanophoton. 1:013501 | spa |
dc.relation.references | Osamu Takayama, Lucian Crasovan, David Artigas, and Lluis Torner (2009) Observation of dyakonov surface waves. Physical Review Letters, 102(4):043903 | spa |
dc.relation.references | Drew Patrick Pulsifer, Muhammad Faryad, and Akhlesh Lakhtakia (2013) Observation of the dyakonov–tamm wave. Physical Review Letters, 111(24):243902 | spa |
dc.relation.references | Drew Patrick Pulsifer, Muhammad Faryad, and Akhlesh Lakhtakia (2013) Parametric investigation of prism-coupled excitation of dyakonov–tamm waves. Journal of Optical Society of America B, 30(8):2081–2089 | spa |
dc.relation.references | Jr. John A. Polo, Tom G. Mackay, and Akhlesh Lakhtakia (2013) Electromagnetic Surface Waves. Elsevier | spa |
dc.relation.references | Andreas Otto (1968) Aeitschrift fur Physik, Vol. 216, Issue 4, pp. 398-410 | spa |
dc.relation.references | Zubin Jacob and Evgenii E. Narimanov (2008) Optical hyperspace for plasmons: Dyakonov states in metamaterials, Appl. Phys. Lett. 93, 221109 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 530 - Física | spa |
dc.subject.lemb | Ondas de superficie | |
dc.subject.lemb | Fibra óptica | |
dc.subject.lemb | Indice de refracción | |
dc.subject.lemb | Guías de ondas ópticas | |
dc.subject.proposal | Surface wave | eng |
dc.subject.proposal | Refractive index | eng |
dc.subject.proposal | Isotropy | eng |
dc.subject.proposal | Anisotropy | eng |
dc.subject.proposal | Angular existence domain | eng |
dc.subject.proposal | Dyakonov wave | eng |
dc.subject.proposal | Onda superficial | spa |
dc.subject.proposal | Índice de refracción | spa |
dc.subject.proposal | Núcleo | spa |
dc.subject.proposal | Isotropía | spa |
dc.subject.proposal | Anisotropía | spa |
dc.subject.proposal | Dominio de existencia angular | spa |
dc.title | Proposal for Dyakonov surface wave excitation using fiber optics | eng |
dc.title.translated | Propuesta para la excitación de ondas de superficie de Dyakonov usando fibra óptica | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1036602328.2024.pdf
- Tamaño:
- 13.87 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de maestría en Ciencias Física
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: