Proposal for Dyakonov surface wave excitation using fiber optics

dc.contributor.advisorTorres Trujillo, Pedro Ignacio
dc.contributor.authorGarces Gomez, Jorge David
dc.contributor.researchgroupFotónica y Opto-Electrónicaspa
dc.date.accessioned2024-10-15T16:12:59Z
dc.date.available2024-10-15T16:12:59Z
dc.date.issued2024
dc.descriptionIlustracionesspa
dc.description.abstractThe study of the interaction of light with matter has very important connotations in sensing applications, one of them being the surface waves generated for the propagation of light at the interface of two materials. Recent research has uncovered possibilities for detecting surface waves. A successful research on this topic is the surface plasmon polariton method, which is widely used for sensing purposes. Dyakonov surface wave (DSW) is a new possibility to extend sensing possibilities using dielectric materials. DSW is a phenomenon that depends on both the refractive indices of the interface materials and the surrounding medium, changing its propagation properties, or it is not excited when the propagation angle with respect to the optical axis of the anisotropic material is greater than the maximum angle of the angular existence domain. This sensitive behavior of DSWs opens the door to new alternatives to improve the technological application of surface waves in sensing and scientific research. For this reason, a theoretical and numerical study of optical waveguides involving Dyakonov surface waves at the anisotropic-isotropic interface is presented in this M.Sc. Thesis. The study focuses on DSW in planar waveguides and geometrically modified D-shaped optical fibers, covering a large number of possibilities on the excitation of this type of surface waves and how these waves can be implemented to detect small variations in the refractive index of the surrounding medium. (Tomado de la fuente)eng
dc.description.abstractEl estudio de la interacción de la luz con la materia tiene connotaciones muy importantes en las aplicaciones de sensado, siendo una de ellas las ondas superficiales generadas para la propagación de la luz en la interfaz de dos materiales. Investigaciones recientes han descubierto posibilidades para detectar ondas superficiales. Una investigación exitosa sobre este tema es el método del polariton del plasmón superficial, que es ampliamente utilizado con fines de sensado. La onda superficial de Dyakonov (DSW) es una nueva posibilidad para ampliar las posibilidades de sensado utilizando materiales dieléctricos. DSW es un fenómeno que depende tanto de los índices de refracción de los materiales de la interfaz como del medio circundante, cambiando sus propiedades de propagación, o no se excita cuando el ángulo de propagación con respecto al eje óptico del material anisotrópico es mayor que el ángulo máximo del dominio de existencia angular. Este comportamiento sensible de las ondas DSW abre la puerta a nuevas alternativas para mejorar la aplicación tecnológica de las ondas superficiales en la detección y la investigación científica. Por esta razón, un estudio teórico y numérico de guías de ondas ópticas que involucran ondas de superficie de Dyakonov en la interfaz anisotrópica-isotrópica se presenta en esta tesis M.Sc. El estudio se centra en DSW en guías de onda planas y fibras ópticas en forma de D modificadas geométricamente, cubriendo un gran número de posibilidades en la excitación de este tipo de ondas de superficie y cómo estas ondas se pueden implementar para detectar pequeñas variaciones en el índice de refracción del medio circundante.spa
dc.description.curricularareaFísica.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaPhotonicsspa
dc.format.extent101 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86948
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesOsamu Takayama, Lucian-Cornel Crasovan, Steffen Kjær Johansen, Dumitru Mihalache, David Artigas, Lluis Torner (2008) Dyakonov Surface Waves: A Review, Electromagnetics, 28:3, 126-145, DOI: 10.1080/02726340801921403spa
dc.relation.referencesM. I. Dyakonov (1988) “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714–716spa
dc.relation.referencesKartiek Agarwal, John A. Polo, Akhlesh Lakhtakia (2009) Dyakonov-like surface waves in anisotropic cylindrical waveguides, University, 197101 St. Petersburg, Russiaspa
dc.relation.referencesK. Yu. Golenitskii1, A. A. Bogdanov1 (2022) Theory of Dyakonov–Tamm waves at the planar interface of a sculptured nematic thin film and anisotropic dielectric material, Department of Physics and Technology, Edinboro University of Pennsylvania, Edinboro, PA 16444, USAspa
dc.relation.referencesEvgeny V. Anikin, Sergey A. Dyakov,y and Nikolay A (2021) Dyakonov surface waves in dielectric crystals with negative anisotropy, Gippius Skolkovo Institute of Science and Technology, 143025 Moscow Region, Russiaspa
dc.relation.referencesJohn Polo, Tom Mackay, Akhlesh Lakhtakia (2013) Electromagnetic SurfaceWaves. A Modern Perspectivespa
dc.relation.referencesT. Turbadar (1959) Complete absorption of light by thin metal films. Proc. Phys. Soc, 73(1):40–44spa
dc.relation.referencesY. Fang and M. Sun (2015) Light: Science & Applications 4, e294spa
dc.relation.referencesP. Yeh, A. Yariv, and A. Y. Cho, Appl. Phys. Lett. 32, 104 (1978)spa
dc.relation.referencesEsteban Gonzalez Valencia, Ignacio Del Villar, Pedro Torres, Novel Bloch wave excitation platform based on few layer photonic crystal deposited on D-shaped optical fiber, scientific reportsspa
dc.relation.referencesEsteban Gonzalez Valencia, Ignacio del Villar, Pedro Torres. Bloch waves at the surface of a single-layer coating D-shaped photonic crystal fiber. Optics Letters. Vol. 45, No. 9, 2020spa
dc.relation.referencesEsteban Gonzalez Valencia, Rodrigo Acuna Herrera, Pedro Torres. Bloch surface wave resonance in photonic crystal fibers: towards ultra-wide range refractive index sensors, OPTICS EXPRESS, Vol. 27, No. 6, 2019spa
dc.relation.referencesLu, Jianqing & Chen, Zhenyi & Pang, Fufei &Wang, Tingyun. (2008). Theoretical Analysis of Fiber-Optic EvanescentWave Sensors. Proceedings of 2008 China- Japan Joint Microwave Conference, CJMW 2008. 10.1109/CJMW.2008.4772500spa
dc.relation.referencesTakayama, Osamu & Crasovan, Lucian & Artigas, David & Torner, Lluis (2009) Observation of Dyakonov Surface Waves. Physical review letters. 102. 043903. 10.1103/PhysRevLett.102.043903spa
dc.relation.referencesD. B. Walker, E. N. Glytsis, and T. K. Gaylord (1998) “Surface mode at isotropic– uniaxial and isotropic biaxial interfaces,” J. Opt. Soc. Am. A, vol. 15, no. 1, p. 248spa
dc.relation.referencesMin Cheng, Ping Fu, Shengyu Chen (2021) Tunable Dyakonov surface waves in graphene-hBN hyperstructurespa
dc.relation.referencesA.Lakhtakia and J.A.P olo Jr.,J . Eur. Opt. Soc.–Rapid Publ. 2, 07021 (2007)spa
dc.relation.referencesD. P. Pulsifer, M. Faryad, and A. Lakhtakia, Phys. Rev. Lett. 111, 243902 (2013)spa
dc.relation.referencesFarhat Abbas, Akhlesh Lakhtakia, Qaisar A. Naqvi, and Muhammad Faryad (2015) An optical-sensing modality that exploits Dyakonov–Tamm waves. Photon. Res. 3, 5-8spa
dc.relation.referencesTakayama O, Crasovan L-C, Johansen S K, Mihalache D, Artigas D and Torner Ll (2008) Electromagnetics 28, 126spa
dc.relation.referencesLakhtakia A and Polo J A Jr (2007) J. Eur. Opt. Soc.–Rapid Pub. 2 07021spa
dc.relation.referencesM. N. Polyanskiy. Refractiveindex.info database of optical constants. Sci. Data 11, 94 (2024) https://doi.org/10.1038/s41597-023-02898-2spa
dc.relation.referencesdoi: 0.1103/PhysRevLett.94.013901spa
dc.relation.referencesdoi: 10.7567/APEX.8.072601spa
dc.relation.referencesdoi: 10.1364/OL.30.003075spa
dc.relation.referencesdoi: 10.1103/PhysRevB.74.155120spa
dc.relation.referencesdoi: 10.1364/OL.37.004311spa
dc.relation.referencesI. Abdulhalim, M. Zourob, A. Lakhtakia, Surface plasmon resonance for biosensing: a mini-review, Electromagnetics 28 (2008) 214–242, http://dx.doi.org/10.1080/02726340 801921650spa
dc.relation.referencesJ.S. Sekhon, S.S. Verma (2011) Plasmonics: the future wave of communication, Curr. Sci. India 101, 484–488spa
dc.relation.referencesH.A. Atwater, A. Polman (2010) Plasmonics for improved photovoltaic devices, Nature Mater. 9, 205–213, http://dx.doi.org/10.1038/nmat2629spa
dc.relation.referencesW.Love, L.Button, R.Slovacek (1991) Optical characteristics of fiber optic evanescent wave sensors. In: Wise,Wingard (Eds.), Biosensors with Fiberoptics. Humana Press, Totowa, NJ, p. 139spa
dc.relation.referencesGeorge P. Anderson, Chris Rowe Taitt (2008) Chapter 2 - Evanescent Wave Fiber Optic Biosensor, Editor(s): Frances S. Ligler, Chris Rowe Taitt, Optical Biosensors Second Edition), Elsevier, Pages 83-138spa
dc.relation.referencesRoberto Lo Savio, Sara Piselli, Cinzia Bertelli, Massimo Pizzato, Adolfo Carloni (2022) Viral particles imaging through evanescent wave scattering in a total internal reflection laser microscope, Sensing and Bio-Sensing Research, Volume 37spa
dc.relation.referencesZhenzhe Wei, Xiao Cheng, Jinming Li, Guo Wang, Junzhu Mao, Jiaxing Zhao, Xinhui Lou (2022) Ultrasensitive evanescent wave optical fiber aptasensor for online, continuous, type-specific detection of sulfonamides in environmental water, Analytica Chimica Acta, Volume 1233spa
dc.relation.referencesN. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, Y. Li (2016) A highsensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2, Biosens. Bioelectron. 85 876e882spa
dc.relation.referencesLeizi Jiao, Nianbing Zhong, Xiande Zhao, Shixiang Ma, Xinglan Fu, Daming Dong, (2020) Recent advances in fiber-optic evanescent wave sensors for monitoring organic and inorganic pollutants in water, TrAC Trends in Analytical Chemistry, Volume 127, 115spa
dc.relation.referencesDmitry A. Chermoshentsev, Evgeny V. Anikin, Sergey A. Dyakov, Nikolay A. Gippius (2021) Dyakonov surface waves in dielectric crystals with negative anisotropyspa
dc.relation.referencesYariv Amnon (2006) Photonics: optical electronics in modern communications, 6th edspa
dc.relation.referencesGeorge P. Anderson, Chris Rowe Taitt, (2008) Optical Biosensors (Second Edition)spa
dc.relation.referencesUWiller, D.Scheel, I,Kostjucentko (2002) Fiber-optic evanescent-field laser sensor for in-situ gas diagnostics.Spectrochim. Acta, Part A 58,2427-2422spa
dc.relation.referencesW.Love, L.Button, R.Slovacek (1991) Optical characteristics of fiber optic evanescent wave sensors. In: Wise, Wingard (Eds.), Biosensors with Fiberopticsspa
dc.relation.referencesA.Messia, A.Greenstein, and A.Katzir (1996) Theory of fiber-optic envanescentwave spectroscopy and sensors, Applied optics Vol.35, No. 13spa
dc.relation.referencesG.Z.Wang, K.A.Murphy,R.O.Claus (1995) Effect of external index of refraction on multimode fiber couplers. transmission spectral filters, in Proceedings of the Applied Optics 34(36),8289-8293spa
dc.relation.referencesM. J. Adams, An Introduction to Optical Waveguides, New York, 19812, pp. 228-23spa
dc.relation.referencesJ.P.Golden,G.P.George,P.Anderson (1994) An evanescent wave biosensor. Part2. Fluorescence signal acquisition from tapered fiber optic probes. IEEE Trans. Biomed 41(6),585-591spa
dc.relation.referencesBoardman, A. D. (Ed.) (1982) Electromagnetic surface modes. Chichester, UK: John Wiley & Sonsspa
dc.relation.referencesAverkiev, N. S., & M. I. D’yakonov (1990) Electromagnetic waves localized at the interface of transparent unisotropic media. Opt. Spectrosc. (USSR) 68:653–655spa
dc.relation.referencesArtigas, D., & L. Torner (2005) Dyakonov surface waves in photonic metamaterials. Phys. Rev. Lett. 94:013901spa
dc.relation.referencesCrasovan, L. C., O. Takayama, D. Artigas, S. K. Johansen, D. Mihalache, & L. Torner (2006) Enhanced localization of Dyakonov-like surface waves in lefthanded materials. Phys. Rev. B 74:155120spa
dc.relation.referencesPolo, Jr., J. A., S. Nelatury, & A. Lakhtakia (2007) Propagation of surface waves at the planar interface of a columnar thin film and an isotropic substrate. J. Nanophoton. 1:013501spa
dc.relation.referencesOsamu Takayama, Lucian Crasovan, David Artigas, and Lluis Torner (2009) Observation of dyakonov surface waves. Physical Review Letters, 102(4):043903spa
dc.relation.referencesDrew Patrick Pulsifer, Muhammad Faryad, and Akhlesh Lakhtakia (2013) Observation of the dyakonov–tamm wave. Physical Review Letters, 111(24):243902spa
dc.relation.referencesDrew Patrick Pulsifer, Muhammad Faryad, and Akhlesh Lakhtakia (2013) Parametric investigation of prism-coupled excitation of dyakonov–tamm waves. Journal of Optical Society of America B, 30(8):2081–2089spa
dc.relation.referencesJr. John A. Polo, Tom G. Mackay, and Akhlesh Lakhtakia (2013) Electromagnetic Surface Waves. Elsevierspa
dc.relation.referencesAndreas Otto (1968) Aeitschrift fur Physik, Vol. 216, Issue 4, pp. 398-410spa
dc.relation.referencesZubin Jacob and Evgenii E. Narimanov (2008) Optical hyperspace for plasmons: Dyakonov states in metamaterials, Appl. Phys. Lett. 93, 221109spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.lembOndas de superficie
dc.subject.lembFibra óptica
dc.subject.lembIndice de refracción
dc.subject.lembGuías de ondas ópticas
dc.subject.proposalSurface waveeng
dc.subject.proposalRefractive indexeng
dc.subject.proposalIsotropyeng
dc.subject.proposalAnisotropyeng
dc.subject.proposalAngular existence domaineng
dc.subject.proposalDyakonov waveeng
dc.subject.proposalOnda superficialspa
dc.subject.proposalÍndice de refracciónspa
dc.subject.proposalNúcleospa
dc.subject.proposalIsotropíaspa
dc.subject.proposalAnisotropíaspa
dc.subject.proposalDominio de existencia angularspa
dc.titleProposal for Dyakonov surface wave excitation using fiber opticseng
dc.title.translatedPropuesta para la excitación de ondas de superficie de Dyakonov usando fibra ópticaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1036602328.2024.pdf
Tamaño:
13.87 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de maestría en Ciencias Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: