Frenado de iones en la materia y usos en hadronterapia

dc.contributor.advisorTorres Galindo, Diego Alejandrospa
dc.contributor.authorLagares Casarrubia, Julio Antoniospa
dc.date.accessioned2021-02-05T16:59:08Zspa
dc.date.available2021-02-05T16:59:08Zspa
dc.date.issued2020-11-13spa
dc.description.abstractHadrontherapy is a type of radiotherapy characterized by the use of ion beams for the treatment of oncological diseases (cancer). Due to the nature of the interaction of ions with matter, hadrontherapy has the advantage of delivering treatment doses in a more localized way with respect to how it happens with the use of electron or photon beams. To date, experimental studies with different ions are carried out, however in real treatments only ions of 1H and 12C are used. In this work a set of simulations of the transport and stopping of ions in matter was performed using a software called SRIM. In this simulation, it is considered independently, 1H ions with 9 energies between 70 and 141 MeV and 12C ions with 9 energies between 1.53 and 3.17 GeV. These were first interacted with a medium composed entirely of water and then in a medium that includes a human tissues combination. The obtained results allow to analyze the transferred energy curves produced by the ions in their path through the simulated media and therefore identify the characteristic Bragg peaks for this type of particles and estimate both at which they occur, as well as the values of the maximum energy transferred in said peaks for each case simulated. The study also allows to identify the variation, as much in the distribution of the transferred energy as in the depth of the maximum, caused by the inclusion of the combination of the tissues and also allows to recognize the differences that appear between the use of ions of 1H and ions of 12C. Additionally a relationship between the initial energy of the ion beam and the maximun depth of maximum transferred energy value.spa
dc.description.abstractLa hadronterapia es un tipo de radioterapia que se caracteriza por el uso de haces de iones para el tratamiento de enfermedades oncológicas (cáncer) y que, debido a la naturaleza de la interacción de los iones con la materia, presenta la ventaja de entregar las dosis de tratamiento de manera más localizada respecto a como ocurre con el uso de haces de electrones o fotones. En la actualidad se realizan estudios experimentales con diferentes iones, sin embargo en tratamiento real sólo se utilizan iones de 1H (protones) y de 12C. En este trabajo se realizó un conjunto de simulaciones del transporte y frenado de iones en la materia empleando un software denominado SRIM. En dicha simulación se consideraron, independientemente, iones de 1H con 9 energías comprendidas entre 70 y 141 MeV e iones de 12C con 9 energías comprendidas entre 1.53 y 3.17 GeV. Estos se hicieron interactuar primeramente con un medio compuesto en su totalidad por agua y luego con un medio que incluía cierta porción de una combinación de tejidos humanos. Los resultados obtenidos permiten analizar las curvas de energía transferida producidas por los iones en su recorrido a través de los medios simulados y por tanto identificar los picos de Bragg característicos para este tipo de partículas y estimar tanto la profundidad a la que se dan, como los valores de la máxima energía transferida en dichos picos para cada caso simulado. El estudio realizado permite identificar además la variación, tanto en la distribución de la energía transferida como en la profundidad del máximo, ocasionada por la inclusión de la combinación de tejidos y también permite reconocer las diferencias que se presentan entre el empleo de iones de 1H y 12C. Adicionalmente se pudo establecer una relación funcional entre la energía inicial de los iones y la profundidad del máximo valor de energía transferida.spa
dc.description.degreelevelMaestríaspa
dc.format.extent86spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationLagares Casarrubia, J. A. (2020). Frenado de iones en la materia y usos en hadronterapia [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79093
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.programBogotá - Ciencias - Maestría en Física Médicaspa
dc.relation.referencesWorld Health Organization (2017), http://www.who.int/mediacentre/factsheets/fs297/esspa
dc.relation.referencesInstituto Nacional de Cancerología (2016), http://www.cancer.gov.co/cancer en cifrasspa
dc.relation.referencesR. Schulte, V. Bashkirov, M. Loss Klock, T. Li, A. Wroe, I. Evseev, D. Williams, and T. Satogata, Density Resolution of Proton Computed Tomography, University of Wollongong, Faculty of Engineering - Papers. Australia (2005)spa
dc.relation.referencesM. Solans, C. Almazán, y J. Espinàs, La Protonterapia en el Tratamiento del Cáncer, Agència de Qualitat i Avaluació Sanitàries de Catalunya, Barcelona (2014)spa
dc.relation.referencesD. Cussol, Nuclear Physics and Hadrontherapy, LPC Caen, ENSICAEN, Universitè de Caen Basse-Normandie, IN2P3/CNRSspa
dc.relation.referencesS. Lozares, F. Mañeru, S. Pellejero, Radioterapia con Partículas Pesadas, Servicio de Radiofísica y Protección Radiológica Hospital de Navarra, Pamplona, An. Sist. Sanit. Navar. 2009, Vol. 32, Suplemento 2spa
dc.relation.referencesK. Abdullah, Hadron Therapy for Cancer Using Heavy Ions, Tesis de Maestría. University of Surrey, England, (2011)spa
dc.relation.referencesE. Podgorsak, Radiation Oncology Physics: a Handbook for Teachers and Students, IAEA, Austria (2005)spa
dc.relation.referencesW. Wieszczycka, and W. Scharf, Proton Radiotherapy Acelerators, World Scientific Publishing, Singapur (2001)spa
dc.relation.referencesParticle Therapy Co-Operative Group (2020), http://www.ptcog.chspa
dc.relation.referencesV. Sánchez, Terapia con protones: un plan contra el cáncer en México, Agencia Informativa Conacyt (http://conacytprensa.mx), Puebla. 18 de febrero de 2015spa
dc.relation.referencesL. Ballas, E. Elkin, D. Schrag, B. Minsky, and P. Bach, Radiation therapy facilities in the United States, International Journal of Radiation Oncology-Biology-Physics, Volume 66, Issue 4, 15 November 2006, Pages 1204–1211spa
dc.relation.referencesChakravarti, Ciezki, Dicker, Efstathiou, Enke and Mahajan Proton Beam Therapy Holds Great Promise at a Step Cost, Healio (https://www.healio.com), August 25, 2012spa
dc.relation.referencesM. Schillo, Global Industrial Development of Accelerators for Charged Particle Therapy, WEIB01BH, Proceedings of IPAC, Dresden, Germany (2014)spa
dc.relation.referencesB. Vanderstraeten, J. Verstraete, R. De Croock, W. De Neve, and Y. Lievens, In Search of the Economic Sustainability of Hadron Therapy: The Real Cost of Setting Up and Operating a Hadron Facility, International Journal of Radiation Oncology-Biology-Physics, Volume 89, Issue 1, 1 May 2014, Pages 152–160spa
dc.relation.referencesK. Tadashi, H. Tsujii, E. Blakely, J. Debus, W. De Neve, M. Durante, O. Jäkel, R. Mayer, R. Orecchia, R. Pötter, S. Vatnitsky, and W. Chu, Carbon ion radiotherapy in Japan: an Assessment of 20 Years of Clinical Experience,The Lancet Oncology, Volume 16, Issue 2, February 2015, Pages e93–e100spa
dc.relation.referencesV.Aleksandrov, N. Kazarinov, V. Shevtsov, A. Tuzikov, Axial Injection Beam-line of C400 Cyclotron for Hadron Therapy: Particles Dynamics and Magnetic Field Screening, Cyclotrons and Their Applications 2007, Eighteenth International Conferencespa
dc.relation.referencesY. Jongen, W. Kleeven, S. Zaremba, D. Vandeplassche, W. Beeckman, V. Aleksandrov, G. Karamysheva, N. Kazarinov, I. Kian, S. Kostromin, N. Morozov, E. Samsonov, G. Shirkov, V. Shevtsov, and E. Syresin, Design Studies of the Compact Superconducting Cyclotron for Hadron Therapy, TUPLS078 Proceedings of EPAC 2006, Edinburgh, Scotlandspa
dc.relation.referencesM. Muramatsu and A. Kitagawa, A Review of Ion Sources for Medical Accelerators,Rev. Sci. Instrum. 83, 02B909 (2012)spa
dc.relation.referencesT. Kalvas, O. Tarvainen, J. Komppula, M. Laitinen, T. Sajavaara, H. Koivisto, A. Jokinen and M. P. Dehnel, Recent Negative Ion Source Activity at JYFL,AIP Conf. Proc. 1515, 349 (2013)spa
dc.relation.referencesM. Muramatsu, A. G. Drentje, and A. Kitagawa, Development of Electron Cyclotron Resonance Ion Source for Carbon-Ion Radiotherapy,Proceedings of HIAT (2015), Yokohama, Japan WEPB23spa
dc.relation.referencesM. Abdelrahman, Factors Enhancing Production of Multicharged Ion Sources and Their Applications,Science and Technology, p-ISSN: 2163-2669, e-ISSN: 2163-2677(2012); 2(4):98- 108spa
dc.relation.referencesB. Schlitt, G. Clemente, C.M. Kleffner, M. Maier, A. Reiter, W. Vinzenz and H. Vormann, LINAC Commissioning at the Italian Hadrontherapy Centre CNAO, Proceedings of IPAC’10, Kyoto, Japan, MOPEA003spa
dc.relation.referencesA. Lombardi, The Radio Frequency Quadrupole (RFQ) , CERN European Organization For Nuclear Research CAS - CERN Accelerator School, Small Accelerators, Zeegse, The Netherlands, 24 May - 2 Jun 2005, pp.201-207 Geneva (2006)spa
dc.relation.referencesH. Widemann, D. Brandt, E. Perevedentsev, S. Kurokawa, Physics and Technology of Linear Acelerator Sistems, Proceedings of the 2002 Joint USPAS-CAS-JApan-Rusia Acelerator School, World Scientific Publishing Co., Singapore (2004)spa
dc.relation.referencesW. Burcham, Física Nuclear, Reverté, Barcelona (2003)spa
dc.relation.referencesJ. Staples, RFQ’s- An Introduction, Lawrence Berkeley Laboratory University of California Berkeley, California 94720, (1990)spa
dc.relation.referencesH. Widemann, Particle Accelerator Physics, Graduate Texts in Physics, Springer International Publishing Switzerland (2015)spa
dc.relation.referencesE. Podgorsak, Radiation Physics for Medical Physicists, 2nd Edition, Springer, Berlin, (2010)spa
dc.relation.referencesS. Peggs, T. Satogata, and J. Flanz, A Survey Of Hadrontherapy Acelerator Technologies,Proceedings of PAC07, Albuquerque, New Mexico, USA, MOZAC02spa
dc.relation.referencesA. Green, Nuclear Physics, McGraw Hill Book Co., Inc. (1955)spa
dc.relation.referencesBritannica Kids Students, Nuclear Energy, (2017), https://kids.britannica.com/students /article/nuclear-energy/276131/mediaspa
dc.relation.referencesS. Braccini, Scientific And Technological Development Of Hadrontherapy, Albert Einstein Centre for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerlandspa
dc.relation.referencesU. Weinrich, Gantry Design For Proton And Carbon Hadrontherapy Facilities,Proceedings of EPAC 2006, Edinburgh, Scotlandspa
dc.relation.referencesH. Owen, D. Holder, J. Alonso, R. Mackay Technologies For Delivery Of Proton And Ion Beams For Radiotherapy, Preprint submitted to Int. J. Mod. Phys. A October 2, 2013spa
dc.relation.referencesMEVION Medical Systems, Proton Therapy, (2017), http://www.mevion.com /products/mevions250protontherapysystemspa
dc.relation.referencesUniversitats KliniKum Heidelberg, (2017), https://www.klinikum.uni-heidelberg.de /Treatment-rooms.129457.0.html?&L=1spa
dc.relation.referencesU. Amaldi, Radiotherapy With Beams Of Carbon Ions,Proceedings of EPAC 2006, Edin- burgh, Scotlandspa
dc.relation.referencesM. Jermann, Particle Theraphy Statistics in 2014, Secretary of the Particle Therapy Cooperative Group Paul Scherrer Institute, Villigen, Switzerland. International Journal of Particle Therapy, (2015)spa
dc.relation.referencesM. Rosenchold, S. Engelholm, L. Ohlhues, I. Law, I. Vogelius, S. A. Egelholm, Pho- ton and Proton Therapy Planning Comparison for Malignant Glioma Based on CT, FDG-PET, DTI- MRI and Giber Tracking, Acta Oncologica, 50:6, 777-783, DOI: 10.3109/0284186X.2011.584555spa
dc.relation.referencesM. Jermann, Particle Therapy Patient Statistics (per end of 2015), Data collected by the Particle Therapy Co-Operative Group, November 2016spa
dc.relation.referencesA. Ferrer, E. Ros, Física de Partículas y de Astropartículas, Universitat de Vàlencia, Valencia (2005)spa
dc.relation.referencesT. DeLaney, H. Kooy, Proton and Charged Particle Radiotherapy , Lippincott Williams and Wilkins, Philadelphia (2008)spa
dc.relation.referencesJ. Ziegler, IThe Stopping of Energetic Light Ions in Elemental Matter, J. Appl. Phys / Rev. Appl. Phys., 85, 1249-1272 (1999)spa
dc.relation.referencesF. Attix, Introduction to Radiological Physics and Radiation Dosimetry, WILEY-VHC, Wenhein (2004)spa
dc.relation.referencesJ. Turner, Atoms, Radiation and Radiation Protection, 3th Edition, WILEY-VHC, Wenhein (2007)spa
dc.relation.referencesNational Institud of Standard and Technology, (2020), https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.htmlspa
dc.relation.referencesSRIM - Página Web Oficial, (2015), http://www.srim.org/#SRIMspa
dc.relation.referencesA. Quiroga, Aspectos Físicos de la Hadronterapia, Tesis de Maestría, Universidad Nacional de Colombia, Bogotá (2014)spa
dc.relation.referencesAmerican Assocition of Physicists in Medicine, sTask Group 20 (AAPM): Protocol for heavy-charged particle therapy beam dosimetry. AA-PM Report No. 16 American. Association of Physicists in Medicine, New York (1986)spa
dc.relation.referencesAspectos Físicos de la Garantía de Calidad en Radioterapia: Protocolo de Control de Calidad. Organismo Internacional de Energía Atómica (OIEA). IAEA-TECDOC-1151, Viena (2000)spa
dc.relation.referencesL. Gartner, J. Hiatt, Texto Atlas de Histolog ́ıa, 2da ed. McGraw-Hill Interamerica editores, S.A. Mexico, D.F. (2007)spa
dc.relation.referencesM. Palencia, Diversidad Craneométrica Humana. Estudio del Espesor Craneal en Cadáveres Provenientes de Diversas Regiones Colombianas, Tesis de Maestría. Universidad Nacional de Colombia, Bogotá, DC., (2018)spa
dc.relation.referencesJ. Ziegler, J. Biersack, M. Ziegler. SRIM, The Stopping and Range of Ions in Matter. SRIM Company, (2008)spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc500 - Ciencias naturales y matemáticasspa
dc.subject.ddc530 - Físicaspa
dc.subject.ddc621 - Física aplicadaspa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.proposalHadrontherapyeng
dc.subject.proposalHadronterapiaspa
dc.subject.proposalBragg peakeng
dc.subject.proposalSRIMspa
dc.subject.proposalSRIMeng
dc.subject.proposalIonizaciónspa
dc.subject.proposalPoder de frenadospa
dc.subject.proposalIonizationeng
dc.subject.proposalStopping powereng
dc.subject.proposalIonizaciónspa
dc.subject.proposalPico de Braggspa
dc.subject.proposalTransferred energyeng
dc.subject.proposalEnergía transferidaspa
dc.titleFrenado de iones en la materia y usos en hadronterapiaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1064986501.2020.pdf
Tamaño:
11.37 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: