Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia

dc.contributor.advisorMontenegro Ruíz, Luis Carlosspa
dc.contributor.advisorPinilla Agudelo, Gabriel Antoniospa
dc.contributor.authorForero Cujiño, Mario Andrésspa
dc.contributor.corporatenameUniversidad Nacional de Colombiaspa
dc.contributor.researchgroupFisiología del estrés y biodiversidad en plantas y microorganismos - Biodiversidad, biotecnología y conservación de ecosistemasspa
dc.date.accessioned2020-08-06T17:41:32Zspa
dc.date.available2020-08-06T17:41:32Zspa
dc.date.issued2019-12-19spa
dc.description.abstractEl objetivo de este estudio fue determinar las especies de cyanoprokaryotes planctónicas potencialmente productoras de cianotoxinas presentes en el embalse La Regadera (ubicado en la parte sur oriental de la ciudad de Bogotá), y la variación temporal de la comunidad de cyanoprokaryotes en un periodo de 9 meses. Para tal fin se efectuaron muestreos mensuales en dos fases. La primera fase se realizó entre los meses de octubre y noviembre de 2015; y la segunda fase se realizó entre el periodo de enero a julio de 2016. Se realizó el análisis cualitativo y cuantitativo de la comunidad de cyanoprokaryotes presentes en el embalse, así como el montaje de cultivos in vitro utilizando principalmente medio de cultivo BG-11 líquido y sólido (agar). Posteriormente se procedió al aislamiento e identificación de las cepas de cyanoprokaryotes. Además, se caracterizaron molecularmente las especies de cyanoprokaryotes potencialmente toxicas, así como los tipos de cianotoxinas expresadas por las mismas. Los resultados evidenciaron un total de 30 cepas de cyanoprokaryotes aisladas presentes en el embalse La Regadera, las cuales corresponden principalmente a cyanoprokaryotes filamentosas de los géneros Leptolyngbya sp., Lyngbya sp., Phormidium sp. y Planktolyngbya sp. Por otro lado, se evidenció el florecimiento algal (FA) de Aphanizomenon gracile durante el mes de marzo de 2016 (quinto muestreo), el cual presentó el pool genético capaz de expresar la neurotoxina Saxitoxina (STX) que comprende los genes sxtI, sxtA y sxtG. Ninguna de las cepas de cyanoprokaryotes cultivadas in vitro contenía las regiones génicas capaces de expresar las cianotoxinas, microcistina (mcyA, mcyB, mcyC, mcyD, mcyE, mcyG), cilindrospermopsina (AMT, PS, PKS) y anatoxina-a (ANAC-GENF/ANAC-GENR). Estos resultados le permitirán a la Empresa de Acueducto y Alcantarillado de Bogotá reconocer el riesgo de la proliferación de cyanoprokaryotes potencialmente toxicas, con el propósito de activar protocolos preventivos de identificación y cuantificación de cianotoxinas que le garanticen a la población humana el consumo de agua potable libre de estas sustancias (Texto tomado de la fuente).spa
dc.description.abstractThe aim of this study was to identify planktonic cyanoprokaryotic species potential producers of cyanotoxins in La Regadera dam (located at south eastern of Bogotá city) and their temporary variation for 9 months period. To accomplish the target a monthly two-phase sampling was performed; first phase took place between October and November 2015 and second phase was developed between January and July 2016. At the same time, qualitative and quantitative analysis of cyanobacterial community were developed, as well as in vitro culture of strains in BG-11 liquid and solid (agar) culture medium. Subsequently, the isolation and identification of cyanobacteria strains was carried out, as well as the molecular characterization of toxic cyanobacteria and the types of cyanotoxins expressed by them. The results showed a total of 30 isolated strains of cyanobacteria present in the dam which correspond mainly to filamentous cyanobacteria of the genus Leptolyngbya sp., Lyngbya sp., Phormidium sp., and Planktolyngbya sp. On the other hand, in March 2016 (fifth sampling) it was evidenced a Aphanizomenon gracile, algal bloom, which contains a genetic pool able to express the neutrotoxin Saxitoxine (STX), which includes the genes sxtI, sxtA and sxtG. However, none of the cyanobacterial strains in vitro cultured showed the gene regions capable of expressing the cyanotoxins, microcystin (mcyA, mcyB, mcyC, mcyD, mcyE, mcyG); cylinrospermopsin (AMT, PS, PKS), and anatoxin-a (ANAC-GENF / ANAC-GENR). These results are useful to monitoring the potential risk of toxic cyanoprokaryotic proliferation by the Water and Sewerage Company of Bogotá city and to allow implementing preventive identification and quantification protocols in order to guaranty potable water availability for human population.eng
dc.description.degreelevelMaestríaspa
dc.format.extent213spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationForero, M. (2019). Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia. (tesis de maestría). Universidad Nacional de Colombia.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77965
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.referencesAllen, M. M. (1973). Methods for Cyanophyceae. En: Stein, J. R. (ed). Handbook of physiological methods: culture methods and growth measurements. Cambridge University Press. 127 – 138 pp.spa
dc.relation.referencesAnagnostidis, K. & Komárek, J. (1985). Modern approach to the classification system of cyanophytes. 1-Introduction. Archiv für Hydrobiologie – Supplement. 71, 1-2.spa
dc.relation.referencesAnagnostidis, K. & Komárek, J. (1988). Modern approach to the classification system of cyanophytes. 3- Oscillatoriales. Archiv für Hydrobiologie. 80, 1-4.spa
dc.relation.referencesAndersen, R. (2005). Algal Culturing Techniques. 1st Edition. USA: Elsevier Academic Press. 596 p.spa
dc.relation.referencesAranguren, N., Bolívar, A., Canosa, A., Galvis, G., Mojica, J. I., Donato, J. C., Rueda, G. & Ruiz, E. (2002). Manual de Métodos en Limnología. Asociación Colombiana de Limnología, v.1, 76 p.spa
dc.relation.referencesBaker, P. D., & Humpage, A. R. (1994). Toxicity associated with commonly occurring cyanobacteria in surface waters of the murray-darling basin, australia. Marine and Freshwater Research, 45(5), 773–786. https://doi.org/10.1071/MF9940773spa
dc.relation.referencesBernard, C., Ballot, A., Thomazeau, S., Maloufi, S., Furey, A., Mankiewicz-Boczek, J., Pawlik-Skowronska, B., Capelli, C. & Salmaso, N. (2017). Appendix 2. Cyanobacteria associated with the production of cyanotoxins. 503-527. In: J. Meriluoto, L. Spoof and G.A. Codd (eds.), Handbook on cyanobacterial monitoring and cyanotoxin analysis. J. Wiley & Sons, Chichester.spa
dc.relation.referencesBest, J. H., Eddy, F. B., & Codd, G. A. (2003). Effects of Microcystis cells, cell extracts and lipopolysaccharide on drinking and liver function in rainbow trout Oncorhynchus mykiss Walbaum. Aquatic Toxicology, 64(4), 419–426. https://doi.org/10.1016/S0166-445X(03)00105-Xspa
dc.relation.referencesBriand, J., Jacquet, S., Bernard, C., & Humbert, J. (2003). Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Vet. Res. 34 (2003) 361–377. DOI: 10.1051/vetres:2003019.spa
dc.relation.referencesBotero, L., Mancera-Pineda, J. E., Vidal, L. A., Santos-Martínez, A., Ramirez, G., Fontalvo, M. L., Espinosa, L. F., Troncoso, W., Viloria, E., & Salazar, J. G. (1995). Informe sobre la mortandad masiva de peces ocurrida en el complejo lagunar Ciénaga Grande de Santa Marta - Caribe colombiano, en junio de 1995. Progr. Lagunas Costeras, INVEMAR, Santa Marta, 13 p.spa
dc.relation.referencesBuitenhuis, E., Li, W., Vaulot, D., Lomas, M., Landry, M., Partensky, F., Karl, D., Ulloa, O., Campbell, L., Jacquet, S., Lantoine, F., Chavez, F., Macias, D., Gosselin, M. & McManus, G. 2012. Picophytoplankton biomass distribution in the global ocean. Earth System Science Data Discussions 5: 221-242.spa
dc.relation.referencesBula-Meyer, G. (1985). Un núcleo nuevo de surgencia en el Caribe colombiano detectado en correlación con las distribuciones de las algas. Bol. Ecotrópica, 12: 3–25.spa
dc.relation.referencesBurja, A., Banaigs, B., Abou-Mansour E., Grant Burgess, J., Wright P. 2001. Marine cyanobacteria a prolific source of natural products. Tetrahedron. 57: 9347- 9377.spa
dc.relation.referencesCamacho, A., Wurtsbaugth, W. A., Miracle, M. R., Armengol, X. & Vicente, E. (2003). Nitrogen limitation of phytoplankton in a spanish karst lake with a deep chlorophyll maximum: a nutrient enrichment bioassay approach. Journal of Plankton Research, 25(4), 397–404.spa
dc.relation.referencesCarmichael, W. W. (1992). Cyanobacteria secondary metabolites—the cyanotoxins. Journal of Applied Bacteriology, 72(6), 445–459. https://doi.org/10.1111/j.1365-2672.1992.tb01858.xspa
dc.relation.referencesCasco, M. A. & Toja, J. (2003). Efecto de la fluctuación de nivel del agua en la biomasa, la diversidad y las estrategias del perifiton de los embalses. Limnetica. 22(1-2), 115-134.spa
dc.relation.referencesCasey, J., Lomas, M., Mandecki, J. & Walker, D. (2007). Prochlorococcus contributes to new production in the Sargasso Sea deep chlorophyll maximum. Geophysical Research Letters 34: L10604.spa
dc.relation.referencesChen, W., Peng, L., Wan, N., & Song, L. (2009). Mechanism study on the frequent variations of cell-bound microcystins in cyanobacterial blooms in Lake Taihu: Implications for water quality monitoring and assessments. Chemosphere, 77(11), 1585–1593. https://doi.org/10.1016/j.chemosphere.2009.09.037spa
dc.relation.referencesChorus, I. & Bartram, J. 1999. Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. World Health Organization.spa
dc.relation.referencesCodd, G. A., Morrison, L. F., & Metcalf, J. S. (2005). Cyanobacterial toxins: Risk management for health protection. Toxicology and Applied Pharmacology, 203(3 SPEC. ISS.), 264–272. https://doi.org/10.1016/j.taap.2004.02.016spa
dc.relation.referencesComba, N. (2009). Las cyanoprokaryotes como indicadoras de la calidad del agua en el Embalse de Betania (Cuenca alta del Río Magdalena). Universidad de Bogotá Jorge Tadeo Lozano, Facultad de Ciencias Naturales - Programa de Biología Marina., 110.spa
dc.relation.referencesCorrales, M., Villalobos, K., Rodríguez, A., Muñoz, N. & Umaña, R. (2017). Identificación y caracterización molecular de cianobacterias tropicales de los géneros Nostoc, Calothrix, Tolypothrix y Scytonema (Nostocales: Nostocaceae), con posible potencial biotecnológico. UNED Research Journal. 9(2): 280-288.spa
dc.relation.referencesDawes, C. J. (1981). Marine Botany. John Wiley & Sons. E. U. A., 628 pp.spa
dc.relation.referencesDias, E., Pereira, P., & Franca, S. (2002). Production of paralytic shellfish toxins by Aphanizomenon sp. LMECAY31 (Cyanobacteria). J. Phycol. 38, 705-712.spa
dc.relation.referencesDolman, A. M., Rücker, J., Pick, F. R., Fastner, J., Rohrlack, T., Mischke, U., & Wiedner, C. (2012). Cyanobacteria and cyanotoxins: The influence of nitrogen versus phosphorus. PLoS ONE, 7(6). https://doi.org/10.1371/journal.pone.0038757spa
dc.relation.referencesDonato, J. (2001). Fitoplancton de los lagos andinos del norte de Sudamérica (Colombia). Bogotá, D.C.: Academia Colombiana de Ciencias Exactas, Físicas y Naturales. Colección Jorge Álvarez Lleras, No. 19.spa
dc.relation.referencesDowning, J. A., Watson, S. B., & McCauley, E. (2001). Predicting Cyanobacteria dominance in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 58(10), 1905–1908. https://doi.org/10.1139/f01-143.spa
dc.relation.referencesFabre, A., Carballo, C., Hernández, E., Piriz, P., Bergamino, L., Mello, L. et al., 2010. El nitrógeno y la relación zona eufótica/zona de mezcla explican la presencia de cianobacterias en pequeños lagos subtropicales, artificiales de Uruguay. Pan-American Journal of Aquatic Sciences. 5(1), 112-125.spa
dc.relation.referencesFergusson, K. M. & Saint, P. C. (2003). Multiplex PCR assay for Cylindrospermopsis raciborskii and cylindrospermopsin-producing cyanobacteria. Environ. Toxicol. 18, 120–125.spa
dc.relation.referencesFerrao, A., Herrera, N. & Echeverri, L. 2014. Microcystin accumulation in cladocerans: First evidence of MC uptake from aqueous extracts of a natural bloom sample. Toxicon. 87: 26 – 31.spa
dc.relation.referencesFerreira, F., Soler, J., Fidalgo, L., & Fernadez, P. (2000). PSP toxins from Aphanizomenon flos-aquae (cyanobacteria) collected in the Crestuma reservoir (Douro river, Northern Portugal). Toxicon, 39, 757-761.spa
dc.relation.referencesFerris, M. & Hirsch, C. (1991). Method for isolation and purification of cyanobacteria. Applied and Environmental Microbiology. 57(5), 1448 - 1452.spa
dc.relation.referencesFrazão, B., Martins, R., & Vasconcelos, V. (2010). Are known cyanotoxins involved in the toxicity of picoplanktonic and filamentous north atlantic marine cyanobacteria? Marine Drugs, 8(6), 1908–1919. https://doi.org/10.3390/md8061908spa
dc.relation.referencesFunari, E., & Testai, E. (2008). Human health risk assessment related to cyanotoxins exposure. Critical Reviews in Toxicology, 38(2), 97–125. https://doi.org/10.1080/10408440701749454spa
dc.relation.referencesFunasa. (2003). Cianobactérias Tóxicas na Água para Consumo Humano na Sáude Pública e Processos de Remoção em Água para Consumo Humano. Brasília: Ministério Da Saúde: Fundação Nacional de Saúde, 1–56.spa
dc.relation.referencesGalhano, V., De Figueiredo, D., Alves, A., Correia, A., Pereira, M., Gomes, J. & Peixoto, F. (2011). Morphological, biochemical and molecular characterization of Anabaena, Aphanizomenon and Nostoc strains (Cyanobacteria, Nostocales) isolated from Portuguese freshwater habitats. Hydrobiología. 663(1), 187-203. Doi:10.1007/s10750-010-0572-5.spa
dc.relation.referencesGaleano, J., & Villalobos, J. (2011). Cyanoprokaryotes y cicrocistinas en el Caribe Colombiano: identificación de cyanoprokaryotes y detección de microcistinas en el antiguo delta del río Sinú Córdoba – Colombia. Editorial Académica Española, 96p.spa
dc.relation.referencesGarcia Nieto, P. J., Sánchez Lasheras, F., de Cos Juez, F. J., & Alonso Fernández, J. R. (2011). Study of cyanotoxins presence from experimental cyanobacteria concentrations using a new data mining methodology based on multivariate adaptive regression splines in Trasona reservoir (Northern Spain). Journal of Hazardous Materials, 195, 414–421. https://doi.org/10.1016/j.jhazmat.2011.08.061spa
dc.relation.referencesGarcía-Pichel, F., López-Cortes, A. & Nübel, U. (2001). Phylogenetic and morphological diversity of cyanobacteria in soil desert crust from the Colorado plateau. Appl. Environ. Microbiol., 67: 1902-1910.spa
dc.relation.referencesGenuário, D. B., Silva-Stenico, M. E., Welker, M., Beraldo Moraes, L. A., & Fiore, M. F. (2010). Characterization of a microcystin and detection of microcystin synthetase genes from a Brazilian isolate of Nostoc. Toxicon, 55, 846–854.spa
dc.relation.referencesGil, C.B., Restrepo, J.J.R., Boltovskoy, A. & Vallejo, A. (2012). Spatial and temporal change characterization of Ceratium furcoides (Dinophyta) in the equatorial reservoir Riogrande II, Colombia. Acta Limnologica Brasiliensia, 24(2), 207-219. http://dx.doi.org/10.1590/S2179-975X2012005000039.spa
dc.relation.referencesGómez, F., Moreira, D. & López-García, P. (2010). Neoceratium gen. nov., a new genus for all marine species currently assigned to Ceratium (Dinophyceae). Protist, 161(1), 35-54. http://dx.doi.org/10.1016/j.protis.2009.06.004. PMid:19665427.spa
dc.relation.referencesGrigorszky, I., Borics, G., Padisák, J., Tótmérész, B., Vasas, G., Nagy, S. & Borbély, G. (2003). Factors controlling the occurrence of Dinophyta species in Hungary. Hydrobiologia, 506-509(1-3), 203-207. http://dx.doi.org/10.1023/B:HYDR.0000008552.60232.68.spa
dc.relation.referencesGrilli, M. (1992). Cianobacterian in symbioses with bryophytes and tracheophytes, In: W. Reisser (ed) Algae and Symbioses: Plants, Animals, Fungi, Viruses Interactions Explores. Biopress Limited, Bristol. 231-254.spa
dc.relation.referencesGonzález, M. Parra O & Cifuentes A. (1995). Técnicas de cultivo de microalgas en laboratorio. En: Manual de metidos ficológicos. Universidad de Concepción. Chile: Editora Aníbal Pinto, 220 - 249.spa
dc.relation.referencesGonzález-Gil, S, Aguilera, A. López-Rodas, V. & Costas, E. (1999). Characterization of morphospeciesGonzalez and strains of Pseudoanabaena (Cyanophyceae) from laboratory cultures using antibodies and lectins. Eur. J. Phycol., 34: 27 - 33.spa
dc.relation.referencesHavens, K. E. (2008). Cyanobacteria blooms: effects on aquatic ecosystems. Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs, 1(2004), 733–747. https://doi.org/10.1007/978-0-387-75865-7_33spa
dc.relation.referencesHåkanson, L. (1977). The influence of wind, fetch, and water depth on the distribution of sediments in Lake Vänern, Sweden. Can. J. Earth Sci. 14, 397–412.spa
dc.relation.referencesHarper, D.M., Morrison, E.H.J., Macharia, M.M., Mavuti, K.M. & Upton, C. (2011). Lake Naivasha, Kenya: ecology, society and future. Freshwater Reviews. 4, 89–114.spa
dc.relation.referencesHeisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C., … Suddleson, M. (2008). Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae, 8(1), 3–13. https://doi.org/10.1016/j.hal.2008.08.006spa
dc.relation.referencesHeresztyn, T. & Nicholson, B. (2001). Determination of cyanobacterial hepatotoxins directly in water using a protein phosphatase inhibition assay. Water Res. 35:3049-56.spa
dc.relation.referencesHerrera, N. A., Flórez, M. T. & Echeverri, L. F. (2015). Evaluación preliminar de la reducción de Microcistina-LR en muestras de florecimientos a través de sistemas sedimentarios. Rev. Int. Contam. Ambie. 31(4), 405-414.spa
dc.relation.referencesHerrera N, Echeverri L & Ferrao A. (2015). Effects of phytoplankton extracts containing the toxin microcystin-LR on the survival and reproduction of cladocerans. Toxicon. 95: 38 – 45.spa
dc.relation.referencesHerrera, N., Flórez, M. T., Velásquez, J. P. & Echeverri, F. (2019). Effect of Phenyl-Acyl Compounds on the Growth, Morphology, and Toxin Production of Microcystis aeruginosa Kützing. Water, 11, 236.spa
dc.relation.referencesHerrera, N., Herrera, C., Ortíz, I., Orozco, L., Robledo, S., Agudelo, D. & Echeverri, F. (2018). Genotoxicity and cytotoxicity of three microcystin-LR containing cyanobacterial samples from Antioquia, Colombia. Toxicon 154: 50 – 59.spa
dc.relation.referencesHerrera, N., Palacio, J., Echeverri, L. & Ferrao, A. (2014). Effects of a cyanobacterial bloom sample containing microcystin-LR on the ecophysiology of Daphnia similis. Toxicology Reports. 1: 909 – 914.spa
dc.relation.referencesHisbergues, M., Christiansen, G., Rouhiainen, L., Sivonen, K. & Börner, T. (2003). PCR-based identification of microcystin producing genotypes of different cyanobacterial genera. Arch. Microbiol. 180, 402–410.spa
dc.relation.referencesHotto, A. M., Satchwell, M. F., & Boyer, G. L. (2007). Molecular characterization of potential microcystinproducing cyanobacteria in Lake Ontario embayments and nearshore waters. Applied and Environmental Microbiology, 73:(14), 4570 - 4578.spa
dc.relation.referencesHumpage, A. R., Rositano, J., Bretag, A.H., Brown, R., Baker, P.D., Nicholson, B. C. & Steffensen, D.A. (1994). Paralytic shellfish poisons from Australian cyanobacterial blooms. Aust. J. Mar. Freshwater Res., 45(5), 761-771.spa
dc.relation.referencesHurtado, J. & Polania, J. (2014). Molecular techniques for cyanobacteria detection at Riogrande II and La Fe water reservoirs, Colombia. Revista de biología tropical. Vol. 62 (1): 403-419.spa
dc.relation.referencesIDEAM. (2016). Impacto del Fenómeno “El Niño” 2015-2016 en los Nevados y Alta Montaña en Colombia.spa
dc.relation.referencesIkawa, M., Auger, K., Mosley, S.P., Sasner, J.J., Noguchi, T. & Hashimoto, K. (1985). Toxin profiles of the blue-green alga Aphanizomenon flos-aquae. In: Toxic Dinoflagellates, Anderson, D.M., White, A.W. & Baden, D.G. (eds.), Elsevier, New York. 299-304.spa
dc.relation.referencesJohnson, Z., Zinser, E., Coe, A., Mcnulty, N., Woodward, E. & Chisholm, S. (2006). Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311: 1737-1740.spa
dc.relation.referencesKaiser, H. F. (1974). An index of factorial simplicity. Psychometrika. 34, 31-36.spa
dc.relation.referencesKaya, K., Sano, T., Inoue, H., & Takagi, H. (2001). Selective determination of total normal microcystin by colorimetry, LC/UV detection and/or LC/MS. Anal. Chim. Acta 450, 73–80.spa
dc.relation.referencesKellmann, R., Mills, T., Neilan, B. A. (2006). Functional modeling and phylogenetic distribution of putative cylindrospermopsin biosynthesis enzymes. J. Mol. Evol. 62, 267–280.spa
dc.relation.referencesKellmann R., T. K. Mihali, Y. J. Jeon, R. Pickford, F. Pomati & B. A. Neilan. (2008). Biosynthetic intermediate analysis and the functional homology reveal a saxitoxin gene cluster in cyanobacteria. Appl. Environ. Microb. 74, 4044-4053.spa
dc.relation.referencesKim, J. H., Choi, W., Jeon, S.-M. et al. (2015). Isolation and characterization of Leptolyngbya sp. KIOST-1, a basophilic and euryhaline filamentous cyanobacterium from an open paddle-wheel raceway Arthrospira culture pond in Korea. J Appl Microbiol, 119(6):1597-1612.spa
dc.relation.referencesKrienitz, L., Dadheech, P. K., Fastner, J. & Kotut, K. (2013). The rise of potentially toxin producing cyanobacteria in Lake Naivasha, Great African Rift Valley, Kenya. Harmful Algae. 27, 42 - 51.spa
dc.relation.referencesKomárek, J. & Anagnostidis, K. (1998) Cyanoprokaryota. I. Chroococcales. In: Ettl, H., Gärtner, G., Heynig, H. and Mollenhauer, D., Eds., Süsswasserflora von Mitteleuropa, Begründet von A. PascherBd. 19/3 Cyanoprokaryota. 1. Teil Chroococcales, Spektrum, Akademischer Verlag, Heidelberg & Berlin, 1-548.spa
dc.relation.referencesKomárek, J. & Anagnostidis, K. (2005). Cyanoprokaryota II. Teil Oscillatoriales. Jena, Alemania: Elsevier/Spektrum Gmbh.spa
dc.relation.referencesKotai, J. (1972). Instruction for Preparation of Modified Nutrient Solution Z8 for Algae. Norwegian Intitute for Water Research (NIVA), B-11/69.spa
dc.relation.referencesKumar, H. D., & Singh, H. N. (1979). A texbook on algae. Hong Kong: MacMillan Press LTD.spa
dc.relation.referencesKuiper-Goodman, T., Falconer, I., & Fitzgerald, J. (1999). Human health aspects. In: Chorus I, Bartram J, editors. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. London, UK: E & FN Spon. p. 113–53.spa
dc.relation.referencesKumari, N., Srivastava, A. & Bhargava, P. (2009). Molecular approaches towards assessment of cyanobacterial biodiversity. African Journal of Biotechnology. 8(18): 4284-4298.spa
dc.relation.referencesKutschera, U., & Niklas, K. J. (2005). Endosymbiosis, cell evolution, and speciation. Theory in Biosciences, 124(1), 1–24. https://doi.org/10.1016/j.thbio.2005.04.001spa
dc.relation.referencesLajeunesse. A., Segura, P. A., Gélinas, M., Hudon, C., Thomas, K., Quilliam, M. A. et al., 2012. Detection and confirmation of saxitoxin analogues in freshwater benthic Lyngbya wollei algae collected in the St. Lawrence River (Canada) by liquid chromatography–tandem mass spectrometry. J Chromatogr A. 1219, 93–103.spa
dc.relation.referencesLeão, P. N., Ramos, V., Vale, M., Machado, J. P. & Vasconcelos, V. M. (2012). Microbial community changes elicited by exposure to cyanobacterial allelochemicals. Microb. Ecol. 63, 85–95.spa
dc.relation.referencesLeão, P. N., Engene, N., Antunes, A., Gerwick, W. & Vasconcelos, V. (2012). The chemical ecology of cyanobacteria. Nat. Prod. Rep. 29, 372 - 391.spa
dc.relation.referencesLewis, W. M. (2002). Causes for the high frequency of nitrogen limitation in tropical lakes. Verhandlungen der Internationalen Vereinigung der Limnologie, 28, 210–213.spa
dc.relation.referencesLopes, V. R., Ramos, V., Martins, A., Sousa, M., Welker, M., Antunes, A. & Vasconcelos, V. (2012). Phylogenetic, chemical and morphological diversity of cianobacteria from Portuguese temperate estuaries. Mar. Environ. Res. 73, 7–16.spa
dc.relation.referencesLund JW., Kipling C., & Le Creen ED. (1958). The inverted microscope method of estimating algal number and the statistical basis of estimations by counting. Hydrobiologia, 11, 143-170.spa
dc.relation.referencesMahmood, N.A. & Carmichael, W.W. (1986b) Paralytic shellfish poisons produced by the freshwater cyanobacterium Aphanizomenon flos-aquae nh-5. Toxicon, 24(2), 175- 186.spa
dc.relation.referencesMcGregor, A. & Ramussen, J. P. (2007). FEMS Microbiological Ecology, 6, 23.spa
dc.relation.referencesMeichtry De Zaburlín, N., Garrido, G.G., Peso, J.G. & Llano, V.M. (2013). Programa calidad de agua del Embalse Yacyretá. Informe anual de evaluación 2012–2013. Convenio Entidad Binacional Yacyretá – Facultad de Ciencias Exactas, Químicas y Naturales. Posadas: Universidad Nacional de Misiones.spa
dc.relation.referencesMendoza, A. (2018). Transferencia horizontal de genes como el origen de la biosíntesis de saxitoxina en Gymnodinium catenatum (Dinophyceae). Tesis Doctorado en Ciencias Marinas. Instituto Politécnico Nacional. Centro Interdisciplinario de Ciencias Marinas. La Paz. 121 p.spa
dc.relation.referencesMerel, S., Villarín, M. C., Chung, K., & Snyder, S. (2013). Spatial and thematic distribution of research on cyanotoxins. Toxicon, 76, 118–131. https://doi.org/10.1016/j.toxicon.2013.09.008spa
dc.relation.referencesMerel, S., Walker, D., Chicana, R., Snyder, S., Baurès, E., & Thomas, O. (2013). State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environment International. https://doi.org/10.1016/j.envint.2013.06.013spa
dc.relation.referencesMetcalf, J., Hyenstrand, P., Beattie, K. & Codd, G. (2000. Effects of physicochemical variables and cyanobacterial extracts on the immune assay of microcystin-LR by two ELISA kits. Journal of Applied Microbiology 89: 532-538.spa
dc.relation.referencesMikalsen, B., Boison, G., Skulberg, O. M., Fastner, J., et al. 2003. Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in microcystis strains. J. Bacteriol. 185, 2774–2785.spa
dc.relation.referencesMiles, C.O., Sandvik, M., Nonga, H.E., Rundberget, T., Wilkins, A.L., Rise, F. & Ballot, A. (2012). Thiol derivatization for LC–MS identification of microcystins in complex matrices. Environmental Science & Technology. 46, 8937–8944.spa
dc.relation.referencesMirkin, B. G., Fenner, T. I., Galperin, M. Y., & Koonin, E. V. (2003). Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evolutionary Biology. 3(2). doi: 10.1186/1471-2148-3-2spa
dc.relation.referencesMisson, B., & Latour, D. (2013). Vertical Heterogeneity of Genotypic Structure and Toxic Potential within Populations of the Harmful Cyanobacterium Microcystis aeruginosa. Advances in Microbiology, 3(October), 27–37.spa
dc.relation.referencesMoffitt, M., Blackburn, S. & Neilan, B. (2001). rRNA sequences reflect the ecophysiology and define the toxic cyanobacteria of the genus Nodularia. International Journal of Systematic and Evolutionary Microbiology. 51, 505-512.spa
dc.relation.referencesMoollan, R., Rae, B. & Verbeek, A. (1996). Some comments on the determination of microcystin toxins in waters by high-performance liquid chromatography. Analyst 121: 233– 238.spa
dc.relation.referencesMoore, L., Post, A., Rocap, G. & Chisholm, S. (2002). Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnology and Oceanography 47: 989-996.spa
dc.relation.referencesMorais, J., Martins, A., Vale, M., & Vasconcelos, V. (2014). Assessment of cyanobacterial toxinogenic genotypes and estimation of toxin content in urban lakes. Fresenius Environmental Bulletin, 23(8), 1867–1873.spa
dc.relation.referencesMoreira, C., Ramos, V., Azevedo, J., & Vasconcelos V. (2014). Methods to detect cyanobacteria and their toxins in the environment. Appl Microbiol Biotechnol, 98, 8073 – 8082.spa
dc.relation.referencesMur, L. R., Skulberg M. O., Utkilen, H. (1999). Cyanobacteria in the environment. In: Chorus I, Bartram J, editors. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. London, UK: E & FN Spon. p. 15–40.spa
dc.relation.referencesMuyzer, G., De Waal, E. C. & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700.spa
dc.relation.referencesNeilan, B. A., Jacobs, D. & Del Dot, T. (1997). RNA sequences and evolutionary relationships among toxic and non-toxic cianobacteria of the genus microcystis. Int. J. Syst. Bacteriol. 47, 693–697.spa
dc.relation.referencesNicholson, BC., Shaw, GR., Morrall, J., Senogles, PJ., Woods TA, Papageorgiou, J., Kapralos, C., Wickramasinghe, W., Davis, B. C., Eaglesham, G. K., & Moore M. R. (2003). Chlorination for degrading saxitoxins (paralytic shellfish poisons) in water. Environ Technol, 24, 1341-1348.spa
dc.relation.referencesNimptsch, J., Woelfl, S., Osorio, S., Valenzuela, J., Moreira, C., Ramos, V., Castelo-Branco, R., Nuno, P. & Vasconcelos, V. (2015). First record of toxins associated with cyanobacterial blooms in oligotrophic North Patagonian lakes of Chile—a genomic approach. International Review of Hydrobiology. 100, 1-12.spa
dc.relation.referencesNübel, U., Garcia-Pichel, F., Muyzer, G. (1997). PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63, 3327–3332.spa
dc.relation.referencesOberholster, P. J., Botha A. -M. & Cloete, T. E. (2006). Toxic cyanobacterial blooms in a shallow, artificially mixed urban lake in Colorado, USA. Lakes & Reservoirs: Research and Management. 11, 111- 123.spa
dc.relation.referencesOliva, M. G., & Garduño G. (2017). Cyanoprokaryotes Cyanobacteria, Cyanoprokaryota. Tlalnepantla, Edo. de Mexico: Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 246 pp.spa
dc.relation.referencesO’Neil, J. M., Davis, T. W., Burford, M. A., & Gobler, C. J. (2012). The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae, 14, 313–334. https://doi.org/10.1016/j.hal.2011.10.027spa
dc.relation.referencesOrr R. J. S., A. Stüken, S. A. Murray & K. S. Jakobsen. (2013). Evolution and distribution of saxitoxin biosynthesis in dinoflagellates. Marine Drugs. 11, 2814-2828.spa
dc.relation.referencesO’Sullivan, PE. & Reynolds, CS. (2004). The Lakes Handbook. Oxford: Blackwell Science Ltd. vol. 1, Limnology and limnetic ecology. 699 p.spa
dc.relation.referencesOuahid, Y. (2005). Identification of potentially toxic environmental Microcystis by individual and multiple PCR amplification of specific microcystin synthetase gene regions. Environ. Toxic. Water. 20, 235–242.spa
dc.relation.referencesPalacio, H. M., Palacio, J. A., Echenique, R. O., Sant'Anna, C. L. & Ramírez J. J. (2015a). Dolichospermum lemmermannii (Cyanobacteria): a temperate species in a neotropical, eutrophic reservoir. Bol. Soc. Argent. Bot. 50(3), 309-321.spa
dc.relation.referencesPalacio, H. M., Ramírez J. J., Echenique, R. O., Palacio, J. A. & Sant'Anna, C. L. (2015b). Floristic composition of cyanobacteria in a neotropical, eutrophic reservoir. Brazilian Journal of Botany, 38(4), 865–876.spa
dc.relation.referencesPaerl, H. W., Huisman, J. (2008). Climate: Blooms like it hot. Science, 4, 57–58.spa
dc.relation.referencesPaerl, H. W. & Paul, V. J. (2012). Climate change: links to global expansion of harmful cyanobacteria. Water Res. 46, 1349–1363.spa
dc.relation.referencesPartensky F, Blanchot J, Lantoine F, Neveux J & Marie D. (1996). Vertical structure of picophytoplankton at different trophic sites of the tropical northeastern Atlantic Ocean. Deep-Sea Research 43: 1191–1213.spa
dc.relation.referencesPearson, L. A. & Neilan, B. A. (2008). The molecular genetics of cyanobacterial toxicity as a basis for monitoring water quality and public health risk. Current Opinion in Biotechnology,19, 281-288.spa
dc.relation.referencesPereira, P., Onodera, H., Andrinolo, D., Franca S., Araújo, F., Lagos, N. & Y. Oshima, Y. (2000). Paralytic shellfish poisoning toxins in the freshwater cyanobacterium Aphanizomenon flos-aquae, isolated from Montargil reservoir, Portugal. Toxicon, 38, 1689-1702.spa
dc.relation.referencesPérez, J. (2003). Caracterización de las secuencias ribosomales 16s (ADNr) de cianobacterias asociadas a eventos de toxicidad. Tesis de grado para obtener el grado de Maestro en ciencias. Centro de investigaciones biológicas del Noreste, S. C.spa
dc.relation.referencesPettersson, L. H., & Pozdnyakov, D. (2013). Monitoring of Harmful Algal Blooms. New York, EU: Springer-Verlag Berlin Heidelberg.spa
dc.relation.referencesPettersson, L. H., & Pozdnyakov, D. (2013). Monitoring of Harmful Algal Blooms. Norfolk, UK: Springer-Verlag Berlin Heidelberg.spa
dc.relation.referencesPeterson S. A., Miller W. E., Greene J. C. & Callahan C. A. (1985) Use of bioassays to determine potential toxicity effects of environmental pollutants. In: Perspectives on Nonpoint Source Pollution. Environmental Protection Agency, EPA 440/5-85-001, pp. 38–45, Washington DC, USA.spa
dc.relation.referencesPinheiro, C., Azevedo, J., Campos, A., Loureiro, S., & Vasconcelos, V. (2013). Absence of negative allelopathic effects of cylindrospermopsin and microcystin-LR on selected marine and freshwater phytoplankton species. Hydrobiologia, 705(1), 27–42. https://doi.org/10.1007/s10750-012-1372-xspa
dc.relation.referencesPontificia Universidad Javeriana. (2015). Seguimiento limnológico de las fuentes de agua captadas para el suministro realizado por el acueducto de Bogotá. Séptimo Informe, embalses San Rafael, Chisacá y Regadera y fuentes superficiales. Dirección de ingeniería especializada aguas y saneamiento básico. Empresa de acueducto y alcantarillado de Bogotá (EAAB).spa
dc.relation.referencesPrasanna, R., Sood, A., Jaiswal, P., Nayak, S., Gupta, V., Chaudhary, V., Natarajan, C. (2010). Rediscovering cyanobacteria as valuable sources of bioactive compounds (Review). Applied Biochemistry and Microbiology, 46(2), 119–134. https://doi.org/10.1134/S0003683810020018.spa
dc.relation.referencesPuglisi, M., Sneed, J., Sharp, K., Ritson, R & Paul, V. (2014). Marine chemical ecology in benthic environments. Natural Product Reports. 31:1510–1553.spa
dc.relation.referencesRantala, A., Känä, S., Wang, H., Rouhiainen, L., Wahlsten, M., Rizzi, E., Berg, K., Gugger, M. & Sivonen, K. (2011). Anatoxin-a Synthetase Gene Cluster of the Cyanobacterium Anabaena sp. Strain 37 and Molecular Methods to Detect Potential Producers. Applied and Environmental Microbiology. Vol. 77: (20), 7271 – 7278.spa
dc.relation.referencesRajaniemi, P., Hrouzek, P., Kaštovská, K., Willame, R., Rantala, A., Hoffmann, L., Komárek, J. & Sivonen, K. (2005). Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). International Journal of Systematic and Evolutionary Microbiology. 55, 11-26.spa
dc.relation.referencesRantala-Ylinen, A., Känä, S., Wang, H., Rouhiainen, L., et al., 2011. Anatoxin-a synthetase gene cluster of the cyanobacterium Anabaena sp. strain 37 and molecular methods to detect potential producers. Appl. Environ. Microbiol. 77, 7271–7278.spa
dc.relation.referencesRedfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist, 46, 205–222.spa
dc.relation.referencesReichwaldt, ES. & Ghadouani, A. (2012). Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: between simplistic scenarios and complex dynamics. Water Res, 46, 1372–1393.spa
dc.relation.referencesRippka, R., Deruelles, J., Waterbury, B., Herdman, M. & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61.spa
dc.relation.referencesRippka, R. (1988). Isolation and purification of cyanobacteria. 3–27. L. Packer and A. N. Glazer (ed.) Methods in enzymology. 167. Academic Press, Inc. New York.spa
dc.relation.referencesReynolds, C.S. (1997). Vegetation processes in the pelagic: a model for ecosystem theory. Ecology Institute. Oldendorf/Luhe, 371 pp.spa
dc.relation.referencesReynolds, C.S. (2006). The Ecology of phytoplankton. Cambridge University, Cambridge.spa
dc.relation.referencesRoldan, G. & Ramírez, J. J. (2008). Fundamentos de limnología neotropical. -2.ª edición-. Medellín: Editorial Universidad de Antioquia.spa
dc.relation.referencesRosales, N., Guevara, M., Lodeiros, C. & Morales, E. (2008). Crecimiento y producción de metabolitos de la cianobacteria marina Synechococcus sp. (Chroococcales) en función de la irradiancia. Revista de Biología Tropical. 56 (2), 421- 429.spa
dc.relation.referencesRueter, J. G., McCarthy, J. J., Carpenter, E. J. (1979). The toxic effect of copper on Oscillatoria (Trichodesmium) thiebautii. Limnol. Oceanogr. 24, 558–562.spa
dc.relation.referencesSaker, M. L., Jungblut, A. D., Neilan, B. A., Rawn, D. F. K., & Vasconcelos, V. M. (2005). Detection of microcystin synthetase genes in health food supplements containing the freshwater cyanobacterium Aphanizomenon flos-aquae. Toxicon, 46(5), 555–562. https://doi.org/10.1016/j.toxicon.2005.06.021spa
dc.relation.referencesSalas, H. J. & Martino, P. (2001). Metodologías simplificadas para la evaluación de eutroficación en lagos cálidos tropicales. OMS-Cepis.spa
dc.relation.referencesSavela, H., Spoof, L., Perälä, N., Preede, M., Lamminmäki, U., Nybom, S., Häggqvist, K., Meriluoto, J., Vehniäinen, M. (2015). Detection of cyanobacterial sxt genes and paralytic shellfish toxins in freshwater lakes and brackish waters on Åland Islands, Finland. Harmful Algae. 46, 1-10.spa
dc.relation.referencesSavela, H., Spoof, L., Höysniemi, N., Vehniäinen, M., Mankiewicz-Boczek, J., Jurczak, T., Kokociński, M. & Meriluoto, J. (2017). First report of cyanobacterial paralytic shellfish toxin biosynthesis genes and paralytic shellfish toxin production in Polish freshwater lakes. Advances in Oceanography and Limnology. 8(1), 61-70.spa
dc.relation.referencesScanlan, J. (2003). Physiological diversity and niche adaptations in marine Synechococcus Advances in Microbial Physiology 47: 1-64.spa
dc.relation.referencesShapiro, J. (1990). Current beliefs regarding dominance by blue-greens: The case for the importance of CO2 and pH. Verh. Intern. Verein. Limnol. 24:38-54.spa
dc.relation.referencesSchembri, M. A., Neilan, B. A. & Saint, C. P. (2001). Identification of genes implicated in toxin productioninthe cyanobacterium Cylindrospermopsis raciborskii. Environ. Toxicol. 16, 413–421.spa
dc.relation.referencesSeifert, M., McGregor, G., Eaglesham, G., Wickramasinghe, W. & Shaw, G. First evidence for the production of cylindrospermopsin and deoxy cylindrospermopsin by the freshwater benthic cyanobacterium, Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck. Harmful Algae. 6, 73–80.spa
dc.relation.referencesSeo, P. & Yokota, A. (2003). The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, gyrB, rpoC1 and rpoD1 gene sequences. The Journal of general and applied microbiology. 49(3): 191-203.spa
dc.relation.referencesShih, P., Wu, D., Latifi, A., Axen, S., Fewer, D., Talla, E., Calteau, A., Cai, F., Tandeau de Marsac, N. & Rippka. R. (2012). Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proceedings of the National Academy of Sciences of the United States of America. 110:1053–1058.spa
dc.relation.referencesSmienk, F., Sevilla, E., Peleato, M., Razquin, P. & Mata, L. (2007). Validación de un kit para la detección de microcistinas en agua. Artículos Técnicos. 100 – 111spa
dc.relation.referencesStewart, I., Carmichael, W. W., Sadler, R., McGregor, G. B., Reardon, K., Eaglesham, G. K., Shaw, G. R. (2009). Occupational and environmental hazard assessments for the isolation, purification and toxicity testing of cyanobacterial toxins. Environmental Health, 8(1), 52. https://doi.org/10.1186/1476-069X-8-52spa
dc.relation.referencesSukenik, A., Rosin, C., Porat, R., Teltsch, B., Banker, R., & Carmeli, S. (1998). Toxins from cyanobacteria and their potential impact on water quality of lake kinneret, Israel. Israel Journal of Plant Sciences, 46(2), 109–115. https://doi.org/10.1080/07929978.1998.10676717spa
dc.relation.referencesTell, G. (1985). Catálogo de las algas de agua dulce de la República Argentina. Biblioteca Ficológica. 70 [i-vi], 1-283.spa
dc.relation.referencesThajuddin, N. & Subramanian, G. (2005). Cyanobacterial biodiversity and potential applications in biotechnology. Current Science. 89: 50-57.spa
dc.relation.referencesTidgewell, K., Engene, N., Byrum, T., Media, J., Doi, T., Valeriote, F. & Gerwick, W. (2010). Evolved diversification of a modular natural product pathway: apratoxins F and G, two cytotoxic cyclic depsipeptides from a Palmyra collection of Lyngbya bouillonii. Chembiochem 11:1458 –1466.spa
dc.relation.referencesTing, C., Rocap, G., King, J. & Chisholm, S. (2002). Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends in Microbiology 10: 134-142.spa
dc.relation.referencesTorres Quintero, E., & Velásquez, M. C. (2009). Diagnóstico ambiental de las cuencas hidrográficas de embalses en Colombia, análisis hidrológico para el embalse de La Regadera. Avances, Investigación En Ingeniería, (10), 65–78. Retrieved from http://www.unilibre.edu.co/revistaavances/avances_10/r10_art10.pdfspa
dc.relation.referencesTundisi, J. G. (1990). Perspectives for ecological modeling of tropical and subtropical reservoirs in Soth America. Ecol. Modell, 52:7-20.spa
dc.relation.referencesTundisi J. G. (1999). Reservatórios como sistemas complexos: Teoria, aplicações e perspectivas para usos múltiplos. In: Ecologia de Reservatórios (ed. R. Henry) pp. 19–38. FUNDIBIO FAPESP, Botucatu, SP, Brazil.spa
dc.relation.referencesVaara, T., Vaara, M., & Niemela, S. (1979). Two improved methods for obtaining axenic cultures of cyanobacteria. Applied and Environmental Microbiology, 38(5), 1011–1014.spa
dc.relation.referencesValencia H. 2004. Manual de prácticas de microbiología básica. Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Biología, Bogotá, Colombia.spa
dc.relation.referencesVan Apeldoorn, ME., van Egmond, HP., Speijers, GJA, & Bakker, GJI. (2007). Toxins of cyanobacteria. Mol Nutr Food Res, 51, 7–60.spa
dc.relation.referencesVasconcelos, V. (1999). Cyanobacterial toxins in Portugal: effects on aquatic animals and risk for human health. Braz J Med Biol Res, 32(3), 249-254.spa
dc.relation.referencesVasconcelos, V. (2006). Eutrophicatton, toxic cyanobacteria and cyanotoxins: When ecosystems cry for help. Limnetica, 25(1–2), 425–432.spa
dc.relation.referencesVasconcelos, V. M., Sivonen, K., Evans, W. R., Carmichael, W. W., & Namikoshi, M. (1996). Hepatotoxic microcystin diversity in cyanobacterial blooms collected in Portuguese freshwaters. Water Research, 30(10), 2377–2384. https://doi.org/10.1016/0043-1354(96)00152-2spa
dc.relation.referencesVasconcelos, V., Morais, J., & Vale, M. (2011). Microcystins and cyanobacteria trends in a 14 year monitoring of a temperate eutrophic reservoir (Aguieira, Portugal). Journal of Environmental Monitoring : JEM, 13(3), 668–672. https://doi.org/10.1039/c0em00671hspa
dc.relation.referencesVillabona-González, S.L., Buitrago-Amariles, R.F., Ramírez-Restrepo, J.J. & Palacio-Baena, J.A. (2014). Biomasa de rotíferos de dos embalses con diferentes estados tróficos (Antioquia, Colombia) y su relación con algunas variables limnológicas. Actualidades Biológicas, 36(101), 149-162.spa
dc.relation.referencesWard, C. Beattie, K. Lee, E. & Codd, G. (1997). Colorimetric protein phosphatase inhibition assay of laboratory strains and natural blooms of cyanobacteria: comparisons with high-performance liquid chromatographic analysis for microcystins. FEMS Microbiology Letters 153:465-73.spa
dc.relation.referencesWaterbury, J. B. (2006). The Cyanobacteria—Isolation, Purification and Identification.Chapter 2.1. Prokaryotes. 4, 1053–1073. Prokaryotes (2006) 4:1053–1073spa
dc.relation.referencesWatanabe, M. F., & Oishi S. (1980). Toxicities of Microcystis aeruginosa Collected from Some Lakes, Reservoirs, Ponds and Moat in tokyo and adjacent regions. Japanese Journal of limnology (rikusuigaku zasshi), 41(1), 5-9.spa
dc.relation.referencesWerner, V.R. (2010). Cyanophyceae. In: Catálogo de plantas e fungos do Brasil. Vol. 1. (Forzza, R.C. Eds), pp. 356-366. Rio de Janeiro: Andrea Jakobsson Estúdio; Instituto de Pesquisas Jardim Botânico do Rio de Janeiro.spa
dc.relation.referencesWetzel, R. G. (1983) Limnology. 2nd Edition, Saunders College Publishing, Philadelphia, USA. 858 p.spa
dc.relation.referencesWetzel, R. G. (2001). Limnology. Lake and River Ecosystems. Third Edition. Academic Press, USA. 1006 p.spa
dc.relation.referencesWhitton, B. & Potts, M. (2000). The Ecology of cyanobacteria. Kluwer Academic, Dordrecht, Paises Bajos. 1-19.spa
dc.relation.referencesWorld Health Organization. (1999). Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. Retrieved March. https://doi.org/10.1046/j.1365-2427.2003.01107.xspa
dc.relation.referencesYilmaz, M., Foss, A. J., Selwood, A. I., Özen, M. & Boundy, M. (2018). Paralytic shellfish toxin producing Aphanizomenon gracile strains isolated from Lake Iznik, Turkey. Toxicon. 148, 132 - 142.spa
dc.relation.referencesŽegura, B., Straser, A., & Filipič, M. (2012). Erratum to: Genotoxicity and potential carcinogenicity of cyanobacterial toxins-A review [Mutat Res 727 (2011) 16-41]. Mutation Research - Reviews in Mutation Research, 750(1), 83. https://doi.org/10.1016/j.mrrev.2011.10.001spa
dc.relation.referencesZhang, Q. ‐X, Yu, M. ‐J, Li, S. ‐H, & Carmichael, W. W. (1991). Cyclic peptide hepatotoxins from freshwater cyanobacterial (blue‐green algae) waterblooms collected in Central China. Environmental Toxicology and Chemistry, 10(3), 313–321. https://doi.org/10.1002/etc.5620100303spa
dc.relation.referencesZhang Y., S. F. Zhang, L. Lin & D. Z. Wang. (2014). Comparative transcriptome analysis of a toxin-producing dinoflagellate Alexandrium catenella and its non-toxic mutant. Mar. Drugs. 12, 5698-5718.spa
dc.relation.referencesZhen, Z., Liu, J., Rensing, C., Yan, C. & Zhang, Y. (2017). Effects of two different high-fidelity DNA polymerases on genetic analysis of the cyanobacterial community structure in a subtropical deep freshwater reservoir. Archives of Microbiology.199(1): 125-134.spa
dc.relation.referencesZurawell, R. W., Chen, H., Burke, J. M., & Prepas, E. E. (2005). Hepatotoxic cyanobacteria: A review of the biological importance of microcystins in freshwater environments. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 8(1), 1–37. https://doi.org/10.1080/10937400590889412spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biologíaspa
dc.subject.ddc577 - Ecologíaspa
dc.subject.ddc628 - Ingeniería sanitariaspa
dc.subject.proposalCyanoprokaryotesspa
dc.subject.proposalCyanoprokaryoticeng
dc.subject.proposalCyanotoxinseng
dc.subject.proposalCianotoxinasspa
dc.subject.proposalSaxitoxina (STX)spa
dc.subject.proposalSaxitoxine (STX)eng
dc.subject.proposalMicrocistina (MC)spa
dc.subject.proposalMicrocystine (MC)eng
dc.subject.proposalEmbalse La Regaderaspa
dc.subject.proposalLa Regadera dameng
dc.subject.proposalAgua potablespa
dc.subject.proposalPotable Watereng
dc.subject.proposalHuman healtheng
dc.subject.proposalSalud humanaspa
dc.titleDeterminación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombiaspa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80723576.2019..pdf
Tamaño:
4.1 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: