Estabilidad de albúmina sérica bovina en solución acuosa en presencia de sales de tetraalquilamonio

dc.contributor.advisorCarmen María, Romero Isaza
dc.contributor.authorSanabria Montealegre, Juan Carlos
dc.contributor.cvlacSanabria Montealegre, Juan Carlos [0001378521]spa
dc.contributor.googlescholarJuan Carlos Sanabria Montealegre [jJKPrYMAAAAJ]spa
dc.contributor.orcidSanabria Montealegre, Juan Carlos [0000-0003-0913-0744]spa
dc.contributor.researchgateJuan Carlos Sanabria [Juan-Sanabria-10]spa
dc.contributor.researchgroupGrupo de Termodinámica Clásicaspa
dc.contributor.scopusSanabria, Juan Carlos [7006262910]spa
dc.date.accessioned2023-06-05T16:08:22Z
dc.date.available2023-06-05T16:08:22Z
dc.date.issued2022-10-07
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractSe ha determinado que la estabilidad y, por tanto, la funcionalidad de las proteínas en solución depende de delicados equilibrios, los cuales son fácilmente perturbables por cambios en el entorno proteico. Dicha estabilidad reducida limita su posible uso en diversas aplicaciones, por ejemplo, en la industria farmacéutica y de alimentos. Los estudios termodinámicos son una herramienta fundamental para caracterizar tanto al proceso de plegamiento como a los cambios generados por factores externos cuantificables. Dentro de este contexto, se analiza en este trabajo una de las proteínas más usadas y conocidas en el ámbito general de la bioquímica, la albúmina sérica bovina (BSA). Se analiza el efecto que tiene sobre el sistema la adición de sales de tetraalquilamonio, teniendo en cuenta y aprovechando que se puede elegir aumentar el tamaño de su región alifática para realizar un estudio sistemático. Inicialmente se evaluó la estabilidad térmica de la BSA en solución acuosa usando la calorimetría diferencial de barrido y evaluando el efecto de la adición de: bromuro de tetrametilamonio (Me4NBr), bromuro de hexiltrimetilamonio (Met3HexNBr), bromuro de octiltrimetilamonio (Met3OctNBr), bromuro de deciltrimetilamonio (Met3DecNBr) y bromuro de dodeciltrimetilamonio (Met3DodecNBr), determinando que el Me4NBr actúa como un estabilizador, mientras que las demás sales generan un efecto desestabilizante sobre la proteína, el cual crece con el aumento de la región alifática y la concentración de las sales. Ahora bien, utilizando medidas de tensión superficial se determinaron los regímenes cinéticos del proceso de adsorción de la BSA en la interfase líquido-aire, encontrando que se puede modelar el proceso a través de tres etapas consecutivas de difusión, penetración y reordenamiento. Estas dos últimas se caracterizaron usando constantes cinéticas asociadas al proceso y encontrando que la etapa determinante del proceso corresponde a la de penetración y adsorción en la interfase, caracterizada con la constate cinética k1. Al evaluar el efecto de la adición de las sales se encuentra también que las moléculas con colas hidrofóbicas más largas ejercen un mayor aumento de la constante k1, debido a la adsorción competitiva entre la proteína y los tensoactivos sobre la interfase. Finalmente, a partir de determinaciones densitométricas se calcularon los parámetros de interacción preferencial, los cuales permiten decir que el Me4NBr es excluido de la vecindad de la superficie proteica debido a una hidratación preferencial, que aumenta la estabilidad de la estructura nativa de la BSA y que concuerda con la tendencia obtenida por las medidas con DSC. Por su parte el Met3OctNBr, Met3DecNBr y Met3DodecNBr muestran una interacción preferencial con la proteína que genera un efecto desestabilizante, siendo más pronunciado este efecto a medida que se aumenta la cadena alifática de la sal, siendo el Met3DodecNBr la sal de tetraalquilamonio más desestabilizante. (Texto tomado de la fuente)spa
dc.description.abstractIt has been determined that the stability and, therefore, the functionality of proteins in solution depends on delicate equilibrium, which are easily modified by changes in their environment. The reduced stability limits their possible use in various applications, for example, in the pharmaceutical and food industry. Thermodynamic studies are a fundamental tool to characterize the folding process and its changes due to external quantifiable factors. Within this context, one of the most used and well-known proteins in the general field of biochemistry, bovine serum albumin (BSA), is analyzed in this study. The addition of tetraalkylammonium salts were analyzed considering, and taking advantage of the fact that it is possible to choose to increase the size of their aliphatic region in order to perform a systematic study. Initially, the thermal stability of BSA in aqueous solution was evaluated using differential scanning calorimetry and assessing the effect of the addition of: tetramethylammonium bromide (Me4NBr), hexyltrimethylammonium bromide (Met3HexNBr), octyltrimethylammonium bromide (Met3OctNBr), decyltrimethylammonium bromide (Met3DecNBr) and dodecyltrimethylammonium bromide (Met3DodecNBr), determining that Me4NBr acts as a stabilizer, while the other salts generate a destabilizing effect on the protein, which grows with the increase of the aliphatic region and the concentration of the salts. Now, using surface tension measurements, the kinetic regimes of the adsorption process of BSA at the liquid-air interface were determined, finding that the process can be modeled through three consecutive stages of diffusion, penetration and rearrangement. These last two were characterized using kinetic constants associated to the process and finding that the stage that controls the process corresponds to the penetration and adsorption at the interface, with kinetic constant k1. When evaluating the effect of the addition of salts, it is also found that molecules with longer hydrophobic tails exert a greater increase of the k1 constant, due to competitive adsorption at the interface between the protein and surfactants. Finally, from densitometric determinations the preferential interaction parameters were calculated, which allow us to say that Me4NBr is excluded from the vicinity of the protein surface due to preferential hydration, which increases the stability of the native structure of BSA and is in agreement with the trend obtained by DSC measurements. On the other hand, Met3OctNBr, Met3DecNBr and Met3DodecNBr show a preferential interaction with the protein that generates a destabilizing effect, this effect being more pronounced as the aliphatic chain of the salt increases, with Met3DodecNBr being the most destabilizing tetraalkylammonium salt.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Químicaspa
dc.description.researchareaEstudio fisicoquímico de interacciones en soluciónspa
dc.format.extentxxv, 161 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83964
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.referencesC. Cantor and P. Schimmel, Biophysical Chemistry: Part I: The Conformation of Biological Macromolecules. W. H. Freeman, 1980. ISBN: 978-0716711889.spa
dc.relation.referencesC. Dobson and M. Karplus, ‘The fundamentals of protein folding: bringing together theory and experiment.’, Curr Opin Struct Biol, vol. 9, no. 1, pp. 92–101, Feb. 1999. https://doi.org/10.1016/S0959-440X(99)80012-8.spa
dc.relation.referencesD. Sidransky and M. Hollstein, ‘Clinical implications of the p53 gene’, Annu Rev Med, vol. 47, pp. 285–301, 1996. https://doi.org/10.1146/annurev.med.47.1.285.spa
dc.relation.referencesU. Kragh-Hansen, ‘Molecular aspects of ligand binding to serum albumin’, Pharmacol Rev, vol. 33, no. 1, pp. 17–53, Mar. 1981. ISSN: 0031-6997. Pubmed: 7027277.spa
dc.relation.referencesK. Majorek, P. Porebski, A. Dayal, M. Zimmerman, K. Jablonska, A. Stewart, M. Chruszcz, ‘Structural and immunologic characterization of bovine, horse, and rabbit serum albumins’, Mol Immunol, vol. 52, no. 3–4, pp. 174–182, Oct. 2012. https://doi.org/10.1016/j.molimm.2012.05.011.spa
dc.relation.referencesT. Kongraksawech, P. Vázquez-Landaverde, J. Huerta-Ruelas, and J. Torres, ‘Ionic strength and pH effects on optical thermographs for bovine serum albumin (BSA)’, Cien. Tecnol. Aliment., vol. 5, no. 4, pp. 259–264, Jan. 2007. https://doi.org/10.1080/11358120709487699.spa
dc.relation.referencesC. Anfinsen and H. Scheraga, ‘Experimental and theoretical aspects of protein folding’, Adv Protein Chem, vol. 29, pp. 205–300, 1975. https://doi.org/10.1016/s0065-3233(08)60413-1.spa
dc.relation.referencesK. A. Dill and H. Chan, ‘From Levinthal to pathways to funnels’, Nat Struct Biol, vol. 4, no. 1, pp. 10–9, Jan. 1997. https://doi.org/10.1038/nsb0197-10.spa
dc.relation.referencesK. a Dill and J. MacCallum, ‘The protein-folding problem, 50 years on.’, Science, vol. 338, no. 6110, pp. 1042–6, Nov. 2012. https://doi.org/10.1126/science.1219021.spa
dc.relation.referencesJ. Schellman, ‘Fifty years of solvent denaturation.’, Biophys Chem, vol. 96, no. 2–3, pp. 91–101, May 2002, Accessed: Jul. 02, 2013, https://doi.org/10.1016/s0301-4622(02)00009-1.spa
dc.relation.referencesP. Privalov, ‘Thermodynamics of protein folding’, J Chem Thermodyn, vol. 29, no. 4, pp. 447–474, Apr. 1997, https://doi.org/10.1006/jcht.1996.0178.spa
dc.relation.referencesG. Allen, A. Cooper, and G. Glasgow, ‘Thermodynamics of Protein Folding and Stability’, vol. 2, pp. 1–48, 1999, https://doi.org/10.1007/s00249-019-01362-7.spa
dc.relation.referencesD. Whitford, Proteins: structure and functions, 1st ed. Chichester: John Wiley & Sons, 2005. ISBN: 978-0-471-49894-0.spa
dc.relation.referencesD. Nelson, A. Lehninger, and M.Cox, Lehninger principles of biochemistry, 5th ed. New York: Macmillan, 2008. ISBN: 9780716771081.spa
dc.relation.referencesG. Petsko and D. Ringe, Protein structure and function. London: New Science Press, 2004. ISBN: 978-0878936632.spa
dc.relation.referencesM. Levitt and C. Chothia, ‘Structural patterns in globular proteins’, Nature, vol. 261, pp. 552–558, 1976, https://doi.org/10.1038/261552a0.spa
dc.relation.referencesV. Finkelstein and V. Galzitskaya, ‘Physics of protein folding’, Phys Life Rev, vol. 1, no. 1, pp. 23–56, Apr. 2004, https://doi.org/10.1016/j.plrev.2004.03.001.spa
dc.relation.referencesC. Levinthal, ‘Are there pathways for protein folding?’, Journal de Chimie Physique, vol. 65, pp. 44–45, 1968, https://doi.org/10.1051/jcp/1968650044.spa
dc.relation.referencesJ. Winkler, ‘Electron tunneling pathways in proteins’, Curr Opin Chem Biol, vol. 4, no. 2, pp. 192–198, Apr. 2000, https://doi.org/10.1016/S1367-5931(99)00074-5.spa
dc.relation.referencesC. Cecconi, E. Shank, C. Bustamante, and S. Marqusee, ‘Direct observation of the three-state folding of a single protein molecule.’, Science, vol. 309, no. 5743, pp. 2057–60, Sep. 2005, https://doi.org/10.1126/science.1116702.spa
dc.relation.referencesS. Salamanca Seguí, ‘Plegamiento y funcionalidad biológica del inhibidor de metalocarboxipeptidasas LCI’, TDX (Tesis Doctorals en Xarxa), Apr. 2004. ISBN: 8468841706.spa
dc.relation.referencesX. Qi, C. Holt, and D. McNulty, ‘Effect of temperature on the secondary structure of beta-lactoglobulin at pH 6.7, as determined by CD and IR spectroscopy: a test of the molten globule hypothesis.’, Biochem J, vol. 324, pp. 341–346, May 1997, https://doi.org/10.1042/bj3240341.spa
dc.relation.referencesH. Labouré, E. Cases, and Ph. Cayot, ‘Heat induced β-lactoglobulin polymerization: role of the change in medium permittivity’, Food Chem, vol. 85, no. 3, pp. 399–406, May 2004, https://doi.org/10.1016/j.foodchem.2003.07.017.spa
dc.relation.referencesR. Usha, R. Maheshwari, A. Dhathathreyan, and T. Ramasami, ‘Structural influence of mono and polyhydric alcohols on the stabilization of collagen.’, Colloids Surf B Biointerfaces, vol. 48, no. 2, pp. 101–5, Mar. 2006, https://doi.org/10.1016/j.colsurfb.2006.01.015.spa
dc.relation.referencesS. Woski, ‘Bioorganic chemistry: Peptides and proteins’, J Am Chem Soc, vol. 120, no. 47, pp. 12386–12386, Dec. 1998, https://doi.org/10.1021/ja985642p.spa
dc.relation.referencesW. Kauzmann, ‘Some factors in the interpretation of protein denaturation’, Adv Protein Chem, vol. 14, pp. 1–63, Jan. 1959, https://doi.org/10.1016/S0065-3233(08)60608-7.spa
dc.relation.referencesV. Calandrini, D. Fioretto, G. Onori, and A. Santucci, ‘Role of hydrophobic interactions on the stabilisation of native state of globular proteins’, Chem Phys Lett, vol. 324, no. 5–6, pp. 344–348, Jul. 2000, https://doi.org/10.1016/S0009-2614(00)00589-3.spa
dc.relation.referencesC. Tanford, ‘Contribution of Hydrophobic Interactions to the Stability of the Globular Conformation’, J Am Chem Soc, vol. 84, no. 22, pp. 4240–4247, 1962, https://doi.org/10.1021/ja00881a009.spa
dc.relation.referencesK. Dill, ‘Dominant forces in protein folding.’, Biochemistry, vol. 29, no. 31, pp. 7133–55, 1990, https://doi.org/10.1021/bi00483a001.spa
dc.relation.referencesT. Creamer, R. Srinivasan, and G. Rose, ‘Modeling unfolded states of proteins and peptides. II. Backbone solvent accessibility.’, Biochemistry, vol. 36, no. 10, pp. 2832–5, Mar. 1997, https://doi.org/10.1021/bi962819o.spa
dc.relation.referencesP. Privalov and S. Gill, ‘Stability of protein structure and hydrophobic interaction.’, Adv Protein Chem, vol. 39, pp. 191–234, Jan. 1988, https://doi.org/10.1016/S0065-3233(08)60377-0.spa
dc.relation.referencesC. Scharnagl, M. Reif, and J. Friedrich, ‘Stability of proteins: temperature, pressure and the role of the solvent.’, Biochim Biophys Acta, vol. 1749, no. 2, pp. 187–213, Jun. 2005, https://doi.org/10.1016/j.bbapap.2005.03.002.spa
dc.relation.referencesJ. Chelftel, J. Cuq, and D. Lórient, Proteínas alimentarias: Bioquímica. Propiedades funcionales. Valor nutritivo. Modificaciones químicas. Zaragoza, 1989.ISBN: 9788420006499.spa
dc.relation.referencesF. Franks, ‘Protein stability: The value of “old literature”’, Biophys Chem, vol. 96, no. 2–3, pp. 117–127, 2002, https://doi.org/10.1016/S0301-4622(02)00014-5.spa
dc.relation.referencesJ. Bischof and X. He, ‘Thermal stability of proteins.’, Ann N Y Acad Sci, vol. 1066, pp. 12–33, Dec. 2005, https://doi.org/10.1196/annals.1363.003.spa
dc.relation.referencesA. van Teeffelen, K. Broersen, and H. de Jongh, ‘Glucosylation of beta-lactoglobulin lowers the heat capacity change of unfolding; a unique way to affect protein thermodynamics.’, Protein Sci, vol. 14, no. 8, pp. 2187–94, Aug. 2005, https://doi.org/10.1110/ps.051405005.spa
dc.relation.referencesR. Tilton, J. Dewan, and G. Petsko, ‘Effects of temperature on protein structure and dynamics: x-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320K’, Biochemistry, vol. 31, no. 9, pp. 2469–2481, Mar. 1992, https://doi.org/10.1021/bi00124a006.spa
dc.relation.referencesC. Tanford, ‘Protein Denaturation’, Adv Protein Chem, pp. 121–282, 1968, https://doi.org/10.1016/S0065-3233(08)60401-5.spa
dc.relation.referencesD. Canchi and A. García, ‘Cosolvent effects on protein stability.’, Annu Rev Phys Chem, vol. 64, pp. 273–93, Jan. 2013, https://doi.org/10.1146/annurev-physchem-040412-110156.spa
dc.relation.referencesD. Otzen, ‘Protein-surfactant interactions: a tale of many states.’, Biochim Biophys Acta, vol. 1814, no. 5, pp. 562–91, May 2011, https://doi.org/10.1016/j.bbapap.2011.03.003.spa
dc.relation.referencesA. Rozo Balcero, Influencia de la temperatura y longitud de cadena en los coeficientes osmóticos y de actividad de sales de amonio cuaternario en solución acuosa. Tesis de doctorado. Universidad Nacional de Colombia. Facultad de Ciencias, 2011. [Online]. Available: http://www.bdigital.unal.edu.co/5339/1/anapatriciarozobalcero.2011.pdfspa
dc.relation.referencesN. v. di Russo, D. Estrin, M. Martí, and A. Roitberg, ‘pH-Dependent Conformational Changes in Proteins and Their Effect on Experimental pKas: The Case of Nitrophorin 4’, PLoS Comput Biol, vol. 8, no. 11, 2012, https://doi.org/10.1371/journal.pcbi.1002761.spa
dc.relation.referencesK. Talley and E. Alexov, ‘On the pH-optimum of activity and stability of proteins’, Proteins: Structure, Function and Bioinformatics, vol. 78, no. 12, pp. 2699–2706, 2010, https://doi.org/10.1002/prot.22786.spa
dc.relation.referencesC. Tanford, ‘Protein denaturation: Part c. theoretical models for the mechanism of denaturation’, Adv Protein Chem, vol. 24, no. C, pp. 1–95, 1970, https://doi.org/10.1016/S0065-3233(08)60241-7.spa
dc.relation.referencesA. H. Elcock, ‘Realistic modeling of the denatured states of proteins allows accurate calculations of the pH dependence of protein stability.’, J Mol Biol, vol. 294, no. 4, pp. 1051–62, Dec. 1999, https://doi.org/10.1006/jmbi.1999.3305.spa
dc.relation.referencesE. P. O’Brien, B. R. Brooks, and D. Thirumalai, ‘Effects of pH on proteins: Predictions for ensemble and single-molecule pulling experiments’, J Am Chem Soc, vol. 134, no. 2, pp. 979–987, 2012, https://doi.org/10.1021/ja206557y.spa
dc.relation.referencesS. T. Whitten, J. O. Wooll, R. Razeghifard, E. B. García-Moreno, and V. J. Hilser, ‘The origin of pH-dependent changes in m-values for the denaturant-induced unfolding of proteins’, J Mol Biol, vol. 309, no. 5, pp. 1165–1175, 2001, https://doi.org/10.1006/jmbi.2001.4726.spa
dc.relation.referencesA. Cooper, ‘Thermodynamic analysis of biomolecular interactions.’, Curr Opin Chem Biol, vol. 3, no. 5, pp. 557–63, Oct. 1999, Accessed: Jun. 19, 2013, https://doi.org/10.1016/s1367-5931(99)00008-3.spa
dc.relation.referencesC. Gómez-Moreno and J. Sancho, Estructura de proteinas, 1st ed. Barcelona: Gayban Grafic, 2003.ISBN: 9788434480612.spa
dc.relation.referencesG. Giraldo, ‘Aspectos termodinámicos de la relación entre grupos polares y apolares de alcoholes c-4 y su efecto sobre la estabilidad estructural de la β-lactoglobulina en soluciones acuosas’, Universidad Nacional de Colombia, 2007. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/29997.spa
dc.relation.referencesJ. Sancho, ‘The stability of 2-state, 3-state and more-state proteins from simple spectroscopic techniques... plus the structure of the equilibrium intermediates at the same time’, Arch Biochem Biophys, vol. 531, no. 1–2, pp. 4–13, 2013, https://doi.org/10.1016/j.abb.2012.10.014.spa
dc.relation.referencesJ. Brandts and L. Hunt, ‘The thermodynamics of protein denaturation. 3. The denaturation of ribonuclease in water and in aqueous urea and aqueous ethanol mixtures.’, J Am Chem Soc, vol. 89, no. 19, pp. 4826–38, Sep. 1967, https://doi.org/10.1021/ja00995a002.spa
dc.relation.referencesM. Zweifel and D. Barrick, ‘Relationships between the temperature dependence of solvent denaturation and the denaturant dependence of protein stability curves.’, Biophys Chem, vol. 101–102, pp. 221–37, Dec. 2002, https://doi.org/10.1016/s0301-4622(02)00181-3.spa
dc.relation.referencesI. Haque, R. Singh, A. Moosavi-Movahedi, and F. Ahmad, ‘Effect of polyol osmolytes on DeltaG(D), the Gibbs energy of stabilisation of proteins at different pH values.’, Biophys Chem, vol. 117, no. 1, pp. 1–12, Aug. 2005, https://doi.org/10.1016/j.bpc.2005.04.004.spa
dc.relation.referencesM. Auton, A. Ferreon, and D. Bolen, ‘Metrics that differentiate the origins of osmolyte effects on protein stability: a test of the surface tension proposal.’, J Mol Biol, vol. 361, no. 5, pp. 983–92, Sep. 2006, doi: 10.1016/j.jmb.2006.07.003.spa
dc.relation.referencesP. Davis-Searles, A. Saunders, D. Erie, D. Winzor, and G. Pielak, ‘Interpreting the effects of small uncharged solutes on protein-folding equilibria.’, Annu Rev Biophys Biomol Struct, vol. 30, pp. 271–306, Jan. 2001, https://doi.org/10.1146/annurev.biophys.30.1.271.spa
dc.relation.referencesJ. Wyman, ‘Linked functions and reciprocal effects in hemoglobin: A second look.’, Adv Protein Chem, vol. 19, pp. 223–286, 1964, https://doi.org/10.1016/s0065-3233(08)60190-4.spa
dc.relation.referencesR. Curtis, J. Newman, H. Blanch, and J. Prausnitz, ‘McMillan-Mayer solution thermodynamics for a protein in a mixed solvent’, Fluid Phase Equilib, vol. 192, no. 1–2, pp. 131–153, https://doi.org/10.1016/S0378-3812(01)00635-5.spa
dc.relation.referencesV. Parsegian, R. Rand, and D. Rau, ‘Osmotic stress, crowding, preferential hydration, and binding: A comparison of perspectives.’, Proc Natl Acad Sci U S A, vol. 97, no. 8, pp. 3987–92, Apr. 2000, https://doi.org/10.1073/pnas.97.8.3987.spa
dc.relation.referencesS. Timasheff, ‘Control of protein stability and reactions by weakly interacting cosolvents: the simplicity of the complicated.’, Adv Protein Chem, vol. 51, pp. 355–432, Jan. 1998, https://doi.org/10.1016/s0065-3233(08)60656-7.spa
dc.relation.referencesT. Arakawa and S. Timasheff, ‘Stabilization of protein structure by sugars.’, Biochemistry, vol. 21, no. 25, pp. 6536–44, Dec. 1982, https://doi.org/10.1021/bi00268a033.spa
dc.relation.referencesG. Xie and S. Timasheff, ‘Mechanism of the stabilization of ribonuclease A by sorbitol: preferential hydration is greater for the denatured then for the native protein.’, Protein Sci, vol. 6, no. 1, pp. 211–21, Jan. 1997, https://doi.org/10.1002/pro.5560060123.spa
dc.relation.referencesS. Shimizu and D. Smith, ‘Preferential hydration and the exclusion of cosolvents from protein surfaces.’, J Chem Phys, vol. 121, no. 2, pp. 1148–54, Jul. 2004, https://doi.org/10.1063/1.1759615.spa
dc.relation.referencesR. Bhat and S. Timasheff, ‘Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols.’, Protein Sci, vol. 1, no. 9, pp. 1133–43, Sep. 1992, https://doi.org/10.1002/pro.5560010907.spa
dc.relation.referencesT. Arakawa and S. Timasheff, ‘The stabilization of proteins by osmolytes’, Biophys J, vol. 47, no. 3, pp. 411–4, Mar. 1985, https://doi.org/10.1016/S0006-3495(85)83932-1.spa
dc.relation.referencesS. Timasheff, ‘In disperse solution, “osmotic stress” is a restricted case of preferential interactions.’, Proc Natl Acad Sci U S A, vol. 95, no. 13, pp. 7363–7, Jun. 1998, https://doi.org/10.1073/pnas.95.13.7363.spa
dc.relation.referencesT. Lin and S. Timasheff, ‘On the role of surface tension in the stabilization of globular proteins.’, Protein Sci, vol. 5, no. 2, pp. 372–81, Feb. 1996, https://doi.org/10.1002/pro.5560050222.spa
dc.relation.referencesA. Taravati, M. Shokrzadeh, A. Ebadi, ‘Various effects of sugar and polyols on the protein structure and function: Role as osmolyte on protein stability’, World Applied Sci. J., vol. 2, pp. 353–362, 2007. ISSN: 18184952.spa
dc.relation.referencesS. Timasheff and G. Xie, ‘Preferential interactions of urea with lysozyme and their linkage to protein denaturation’, Biophys Chem, vol. 105, no. 2–3, pp. 421–448, Sep. 2003, https://doi.org/10.1016/S0301-4622(03)00106-6.spa
dc.relation.referencesJ. Lee, K. Gekko, and S. Timasheff, ‘Measurements of preferential solvent interactions by densimetric techniques.’, Methods Enzymol, vol. 61, pp. 26–49, 1979, https://doi.org/10.1016/0076-6879(79)61005-4.spa
dc.relation.referencesJ. Lee and S. Timasheff, ‘Partial specific volumes and interactions with solvent components of proteins and guanidine hydrochloride’, Biochemistry, vol. 13, no. 2, pp. 257–265, 1974, doi:10.1021/bi00699a005.spa
dc.relation.referencesE. Courtenay, M. Capp, C. Anderson, and M. Record, ‘Vapor pressure osmometry studies of osmolyte-protein interactions: implications for the action of osmoprotectants in vivo and for the interpretation of “osmotic stress” experiments in vitro.’, Biochemistry, vol. 39, no. 15, pp. 4455–71, Apr. 2000, https://doi.org/ 10.1021/bi992887l.spa
dc.relation.referencesL. Blanco, E. Amado, and J. Avellaneda, ‘Isopiestic determination of the osmotic and activity coefficients of dilute aqueous solutions of the series MeEt3NI to HepEt3NI at 298.15K’, Fluid Phase Equilib, vol. 249, no. 1–2, pp. 147–152, Nov. 2006, https://doi.org/10.1016/j.fluid.2006.09.025.spa
dc.relation.referencesT. Lin and S. Timasheff, ‘On the role of surface tension in the stabilization of globular proteins.’, Protein Sci, vol. 5, no. 2, pp. 372–81, Feb. 1996, https://doi.org/10.1002/pro.5560050222.spa
dc.relation.referencesF. Cioci, R. Lavecchia, and L. Marrelli, ‘Effect of surface tension on the conformational stability of erythrocyte carbonic anhydrase’, vol. 116, pp. 118–125, 1996, https://doi.org/10.1016/0378-3812(95)02879-X.spa
dc.relation.referencesC. Romero and A. Albis, ‘Influence of polyols and glucose on the surface tension of bovine α-lactalbumin in aqueous solution’, J Solution Chem, vol. 39, no. 12, pp. 1865–1876, 2010, https://doi.org/10.1007/s10953-010-9554-5.spa
dc.relation.referencesC. Romero and J. Abella, ‘Surface behavior of α-chymotrypsinogen A in aqueous solutions at 298.15 K’, J Mol Liq, vol. 285, pp. 89–95, 2019, https://doi.org/10.1016/j.molliq.2019.04.073.spa
dc.relation.referencesC. Romero, J. Abella, and Y. Beltrán, ‘Influence of salts on the surface behavior of α-chymotrypsinogen A in aqueous solutions at 298.15 K’, J Mol Liq, vol. 344, p. 117723, 2021, https://doi.org/10.1016/j.molliq.2021.117723.spa
dc.relation.referencesJ. Lee and S. Timasheff, ‘The stabilization of proteins by sucrose.’, J Biol Chem, vol. 256, no. 14, pp. 7193–201, Jul. 1981, https://doi.org/10.1016/S0021-9258(19)68947-7.spa
dc.relation.referencesP. Wiggins, ‘Hydrophobic hydration, hydrophobic forces and protein folding’, Physica A: Statistical Mechanics and its Applications, vol. 238, no. 1–4, pp. 113–128, 1997, https://doi.org/10.1016/S0378-4371(96)00431-1.spa
dc.relation.referencesY. Kita, T. Arakawa, T. Lin, and S. Timasheff, ‘Contribution of the Surface Free Energy Perturbation to Protein-Solvent Interactions’, Biochemistry, vol. 33, no. 50, pp. 15178–15189, 1994, https://doi.org/10.1021/bi00254a029.spa
dc.relation.referencesJ. Krause, ‘Surface activity of proteins: chemical and physicochemical modifications.’, Molecular nutrition food research, vol. 41, no. 4, pp. 245–245, 1997, https://doi.org/10.1002/food.19970410415.spa
dc.relation.referencesC. Romero and N. Mendieta, ‘Influence of 1-butanol, 1,2-butanediol and 1,2,3,4-butanetreol on the adsorption of b-lactoglobulin at the air-water interface’, Revista Colombiana de Química, vol. 40, no. 3, pp. 367–380, 2011.ISSN: 0120-2804.spa
dc.relation.referencesG. Yampolskaya and D. Platikanov, ‘Proteins at fluid interfaces: Adsorption layers and thin liquid films’, Adv Colloid Interface Sci, vol. 128–130, no. 2006, pp. 159–183, Dec. 2006, https://doi.org/10.1016/j.cis.2006.11.018.spa
dc.relation.referencesT. Kongraksawech, ‘Characterization by optical methods of the heat denaturation of bovine serum albumin (BSA) as affected by protein concentration, pH, ionic strength and sugar concentration’, Oregon State University, 2006. [Online]. Available: https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/v118rh400spa
dc.relation.referencesD. C. Carter and J. X. Ho, ‘Structure of serum albumin.’, Adv Protein Chem, vol. 45, pp. 153–203, Jan. 1994, doi: 10.1016/s0065-3233(08)60640-3.spa
dc.relation.referencesM. Baker, ‘Albumin’s role in steroid hormone action and the origins of vertebrates: is albumin an essential protein?’, FEBS Lett, vol. 439, no. 1–2, pp. 9–12, 1998, doi: 10.1016/S0014-5793(98)01346-5.spa
dc.relation.referencesP. Relkin, ‘Thermal unfolding of beta-lactoglobulin, alpha-lactalbumin, and bovine serum albumin. A thermodynamic approach.’, Crit Rev Food Sci Nutr, vol. 36, no. 6, pp. 565–601, Jul. 1996, https://doi.org/10.1080/10408399609527740.spa
dc.relation.referencesB. Huang, H. Kim, and C. Dass, ‘Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry’, J Am Soc Mass Spectrom, vol. 15, no. 8, pp. 1237–1247, 2004, https://doi.org/10.1016/j.jasms.2004.05.004.spa
dc.relation.referencesL. Wu, B. Ma, D. Zou, Z. Tie, J. Wang, and W. Wang, ‘Influence of metal ions on folding pathway and conformational stability of bovine serum albumin’, J Mol Struct, vol. 877, no. 1–3, pp. 44–49, Apr. 2008, https://doi.org/10.1016/j.molstruc.2007.07.013.spa
dc.relation.referencesT. Peters, ‘Serum albumin’, Adv Protein Chem, vol. 37, pp. 161–246, 1985, https://doi.org/10.1016/s0065-3233(08)60065-0.spa
dc.relation.referencesT. Peters, ‘All About Albumin: Biochemistry, Genetics, and Medical Applications.’, America (NY), 1996. ISBN: 9780080527048.spa
dc.relation.referencesD. Bendedouch and S. Chen, ‘Structure and interparticle interactions of bovine serum albumin in solution studied by small-angle neutron scattering’, Journal of Physical Chemistry, vol. 87, no. 9, pp. 1473–1477, 1983, https://doi.org/10.1021/j100232a003.spa
dc.relation.referencesD. Li, M. Zhu, C. Xu, and B. Ji, ‘Characterization of the baicalein-bovine serum albumin complex without or with Cu2+ or Fe3+ by spectroscopic approaches.’, Eur J Med Chem, vol. 46, no. 2, pp. 588–99, Feb. 2011, https://doi.org/10.1016/j.ejmech.2010.11.038.spa
dc.relation.referencesK. Murayama and M. Tomida, ‘Heat-induced secondary structure and conformation change of bovine serum albumin investigated by Fourier transform infrared spectroscopy.’, Biochemistry, vol. 43, no. 36, pp. 11526–32, Sep. 2004, https://doi.org/10.1021/bi0489154.spa
dc.relation.referencesY. Moriyama, E. Watanabe, K. Kobayashi, H. Harano, E. Inui, and K. Takeda, ‘Secondary structural change of bovine serum albumin in thermal denaturation up to 130 degrees C and protective effect of sodium dodecyl sulfate on the change.’, J Phys Chem B, vol. 112, no. 51, pp. 16585–9, Dec. 2008, doi: 10.1021/jp8067624.spa
dc.relation.referencesR. Wetzel, ‘Temperature Behaviour of Human Serum Albumin’, Eur J Biochem, vol. 104, no. 2, pp. 469–478, Mar. 1980, https://doi.org/10.1111/j.1432-1033.1980.tb04449.x.spa
dc.relation.referencesM. Noelken and S. Timasheff, ‘Preferential solvation of bovine serum albumin in aqueous guanidine hydrochloride.’, Journal of Biological Chemistry, vol. 242, no. 21, pp. 5080–5085, 1967, https://doi.org/10.1016/s0021-9258(18)99478-0.spa
dc.relation.referencesT. Arakawa and S. Timasheff, ‘Preferential interactions of proteins with solvent components in aqueous amino acid solutions.’, Arch Biochem Biophys, vol. 224, no. 1, pp. 169–77, Jul. 1983, https://doi.org/10.1016/0003-9861(83)90201-1.spa
dc.relation.referencesS. Baier and D. McClements, ‘Impact of sorbitol on the thermostability and heat-induced gelation of bovine serum albumin’, Food Research International, vol. 36, no. 9–10, pp. 1081–1087, Jan. 2003, https://doi.org/10.1016/j.foodres.2003.09.003.spa
dc.relation.referencesS. Baier, E. Decker, and D. McClements, ‘Impact of glycerol on thermostability and heat-induced gelation of bovine serum albumin’, Food Hydrocoll, vol. 18, no. 1, pp. 91–100, Jan. 2004, https://doi.org/10.1016/S0268-005X(03)00046-8.spa
dc.relation.referencesH. A. McKenzie, Milk proteins: chemistry and molecular biology, no. v. 2. New York: Academic Press, 1970. ISBN: 0124852025.spa
dc.relation.referencesM. Yamasaki, H. Yano, and K. Aoki, ‘Differential scanning calorimetric studies on bovine serum albumin: I. Effects of pH and ionic strength’, Int J Biol Macromol, vol. 12, no. 4, pp. 263–268, Aug. 1990, https://doi.org/10.1016/0141-8130(90)90007-W.spa
dc.relation.referencesL. Barbosa, M. Ortore, F. Spinozzi, P. Mariani, S. Bernstorff, and R. Itri, ‘The importance of protein-protein interactions on the pH-induced conformational changes of bovine serum albumin: A small-angle x-ray scattering study’, Biophys J, vol. 98, no. 1, pp. 147–157, 2010, https://doi.org/10.1016/j.bpj.2009.09.056.spa
dc.relation.referencesG. McDonnell and a D. Russell, ‘Antiseptics and disinfectants: activity, action, and resistance.’, Clin Microbiol Rev, vol. 12, no. 1, pp. 147–79, Jan. 1999, https://doi.org/10.1128/cmr.12.1.147.spa
dc.relation.referencesS. Duce, A. Mateo, I. Alonso, J. García Ruano, and M. Cid, ‘Role of quaternary ammonium salts as new additives in the enantioselective organocatalytic β-benzylation of enals.’, Chem Commun (Camb), vol. 48, no. 42, pp. 5184–6, May 2012, https://doi.org/10.1039/c2cc31451g.spa
dc.relation.referencesJ. Kinsella and N. Melachouris, ‘Functional properties of proteins in foods: A survey’, C R C Critical Reviews in Food Science and Nutrition, vol. 7, no. 3, pp. 219–280, Apr. 1976, https://doi.org/10.1080/10408397609527208.spa
dc.relation.referencesF. Franks, Water: A Matrix of Life, 2nd ed. Cambridge: Royal Society of Chemistry, 2000. Accessed: Jul. 03, 2013. ISBN: 085404583X.spa
dc.relation.referencesR. Apenten, S. Khokhar, and D. Galani, ‘Stability parameters for β-lactoglobulin thermal dissociation and unfolding in phosphate buffer at pH 7.0’, Food Hydrocoll, vol. 16, no. 2, pp. 95–103, 2002, https://doi.org/10.1016/S0268-005X(01)00067-4.spa
dc.relation.referencesJ. Oremusová, ‘Micellization of alkyl trimethyl ammonium bromides in aqueous solutions-part 1: Critical micelle concentration (cmc) and ionization degree’, Tenside, Surfactants, Detergents, vol. 49, no. 3, pp. 231–240, 2012, https://doi.org/10.3139/113.110187.spa
dc.relation.referencesJ. Boye, C. Ma, and V. Harwalkar, Thermal denaturation and coagulation of food proteins. New York: Marcel Dekker, 1997. ISBN: 9780203755617.spa
dc.relation.referencesG. Kontopidis, C. Holt, and L. Sawyer, ‘Invited review: β-lactoglobulin: Binding properties, structure, and function’, J Dairy Sci, vol. 87, no. 4, pp. 785–796, 2004, https://doi.org/10.3168/jds.S0022-0302(04)73222-1.spa
dc.relation.referencesS. Hambling, A. McAlpine, and L. Sawyer, ‘Beta-lactoglobulin’, in Advanced Dairy Chemistry—1 Proteins, 3rd ed., P. Fox and K. McSweenney, Eds. Kluwer Academic, 1992, pp. 141–190. ISBN: 9781461447146.spa
dc.relation.referencesT. Nicolai, M. Britten, and C. Schmitt, ‘β-Lactoglobulin and WPI aggregates: Formation, structure and applications’, Food Hydrocoll, vol. 25, no. 8, pp. 1945–1962, 2011, https://doi.org/10.1016/j.foodhyd.2011.02.006.spa
dc.relation.referencesN. Turro, X. Lei, K. Ananthapadmanabhan, and M. Aronson, ‘Spectroscopic Probe Analysis of Protein-Surfactant Interaciion: The BSA/SDS System’, Langmuir, vol. 11, no. 7, pp. 2525–2533, 1995, https://doi.org/10.1021/la00007a035.spa
dc.relation.referencesR. Waninge, M. Paulsson, T. Nylander, B. Ninham, and P. Sellers, ‘Binding of Sodium Dodecyl Sulphate and Dodecyl Trimethyl Ammonium Chloride to beta-Lactoglobulin : A Calorimetric Study’, Int Dairy J, vol. 8, no. 2, pp. 141–148, 1998, doi: 10.1016/S0958-6946(98)00031-4.spa
dc.relation.referencesA. Moosavi-Movahedi, A. Bordbar, A. Taleshi, H. Naderimanesh, and P. Ghadam, ‘Mechanism of denaturation of bovine serum albumin by dodecyl trimethylammonium bromide’, International Journal of Biochemistry and Cell Biology, vol. 28, no. 9, pp. 991–998, Sep. 1996, https://doi.org/10.1016/1357-2725(96)00044-1.spa
dc.relation.referencesJ. Wen, K. Arthur, L. Chemmalil, S. Muzammil, J. Gabrielson, and Y. Jiang, ‘Applications of Differential Scanning Calorimetry for Thermal Stability Analysis of Proteins: Qualification of DSC’, J Pharm Sci, vol. 101, no. 3, pp. 955–964, Mar. 2012, https://doi.org/10.1002/JPS.22820.spa
dc.relation.referencesB. Zhou, J. Tobin, S. Drusch, and S. Hogan, ‘Interfacial properties of milk proteins: A review’, Adv Colloid Interface Sci, vol. 295, p. 102347, Sep. 2021, https://doi.org/10.1016/j.cis.2020.102347.spa
dc.relation.referencesS. Timasheff, ‘The control of protein stability and association by weak interactions with water: How Do Solvents Affect These Processes ?’, Annu Rev Biophys Biomol Struct, vol. 22, pp. 67–97, 1993, https://doi.org/10.1146/annurev.bb.22.060193.000435.spa
dc.relation.referencesJ. Sánchez-ruiz, J. López-lacomba, M. Cortijo, and P. Mateo, ‘Differential Scanning Calorimetry of the Irreversible Thermal Denaturation of Thermolysin’, Biochemistry, vol. 27, no. 5, pp. 1648–1652, 1988, https://doi.org/10.1021/bi00405a039.spa
dc.relation.referencesC. Giancola, C. de Sena, D. Fessas, G. Graziano, and G. Barone, ‘DSC studies on bovine serum albumin denaturation effects of ionic strength and SDS concentration’, Int J Biol Macromol, vol. 20, no. 3, pp. 193–204, 1997, https://doi.org/10.1016/S0141-8130(97)01159-8.spa
dc.relation.referencesA. Michnik, ‘Thermal stability of bovine serum albumin DSC study’, J Therm Anal Calorim, vol. 71, no. 2, pp. 509–519, 2003, https://doi.org/10.1023/A:1022851809481.spa
dc.relation.referencesR. Raoufinia, A. Mota, N. Keyhanvar, F. Safari, S. Shamekhi, and J. Abdolalizadeh, ‘Overview of albumin and its purification methods’, Adv Pharm Bull, vol. 6, no. 4, pp. 495–507, 2016, https://doi.org/ 10.15171/apb.2016.063.spa
dc.relation.referencesW. Norde and C. Giacomelli, ‘BSA structural changes during homomolecular exchange between the adsorbed and the dissolved states’, J Biotechnol, vol. 79, no. 3, pp. 259–268, 2000, https://doi.org/10.1016/S0168-1656(00)00242-X.spa
dc.relation.referencesS. Chaturvedi, E. Ahmad, J. Khan, P. Alam, M. Ishtikhar, and R. Khan, ‘Elucidating the interaction of limonene with bovine serum albumin: a multi-technique approach’, Mol. BioSyst., vol. 11, no. 1, pp. 307–316, 2015, https://doi.org/10.1039/C4MB00548A.spa
dc.relation.referencesB. Elysée-Collen and R. Lencki, ‘Effect of ethanol, ammonium sulfate, fatty acids, and temperature on the solution behavior of bovine serum albumin’, Biotechnol Prog, vol. 13, no. 6, pp. 849–856, 1997, https://doi.org/ 10.1021/bp9700768.spa
dc.relation.referencesT. Vermonden, C. Giacomelli, and W. Norde, ‘Reversibility of structural rearrangements in bovine serum albumin during homomolecular exchange from AgI particles’, Langmuir, vol. 17, no. 12, pp. 3734–3740, 2002, https://doi.org/10.1021/la010162o.spa
dc.relation.referencesT. Banerjee and N. Kishore, ‘Insights into the energetics and mechanism underlying the interaction of tetraethylammonium bromide with proteins’, Journal of Chemical Thermodynamics, vol. 40, no. 3, pp. 483–491, 2008, https://doi.org/10.1016/j.jct.2007.08.007.spa
dc.relation.referencesD. Kelley and D. McClements, ‘Interactions of bovine serum albumin with ionic surfactants in aqueous solutions’, Food Hydrocoll, vol. 17, no. 1, pp. 73–85, 2003, https://doi.org/10.1016/S0268-005X(02)00040-1.spa
dc.relation.referencesM. Pramila, D. Uma, and M. Suprava, ‘Investigation of bovine serum albumin-surfactant aggregation and its physicochemical characteristics’, Colloids Surf A Physicochem Eng Asp, vol. 483, pp. 36–44, 2015, https://doi.org/10.1016/j.colsurfa.2015.06.052.spa
dc.relation.referencesG. Barone, ‘Comparative DSC study of human and bovine serum albumin’, J Therm Anal Calorim, vol. 40, no. 1, pp. 113–117, Mar. 1997, https://doi.org/10.1007/s10973-005-7170-1.spa
dc.relation.referencesR. Zieliński, S. Ikeda, H. Nomura, and S. Kato, ‘Effect of temperature on micelle formation in aqueous solutions of alkyltrimethylammonium bromides’, J Colloid Interface Sci, vol. 129, no. 1, pp. 175–184, 1989, https://doi.org/10.1016/0021-9797(89)90428-1.spa
dc.relation.referencesK. Tamaki, ‘The Surface Activity of Tetra- n -alkylammonium Halides in Aqueous Solutions. The Effect of Hydrophobic Hydration’, Bull Chem Soc Jpn, vol. 47, no. 11, pp. 2764–2767, Nov. 1974, https://doi.org/10.1246/bcsj.47.2764.spa
dc.relation.referencesK. Dopierala and K. Prochaska, ‘The effect of molecular structure on the surface properties of selected quaternary ammonium salts’, J Colloid Interface Sci, vol. 321, no. 1, pp. 220–226, 2008, https://doi.org/10.1016/j.jcis.2008.01.049.spa
dc.relation.referencesD. Gómez-Díaz, J. Navaza, and B. Sanjurjo, ‘Density, Kinematic Viscosity, Speed of Sound, and Surface Tension of Hexyl, Octyl, and Decyl Trimethyl Ammonium Bromide Aqueous Solutions’, J Chem Eng Data, vol. 52, no. 3, pp. 889–891, May 2007, https://doi.org/10.1021/je060486k.spa
dc.relation.referencesA. Escamilla, ‘Concentración micelar crítica de bromuros de octiltrimetilamonio y deciltrimetilamonio en agua y en soluciones acuosas de 1,2-propanodiol a 298,15K’, Universidad Nacional de Colombia, 2015. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/56690spa
dc.relation.referencesN. Mucic, ‘Adsorption of equimolar aqueous sodium dodecyl sulphate/dodecyl trimethylammonium bromide mixtures at solution/air and solution/oil interfaces’, Colloid Polym Sci, vol. 293, no. 11, pp. 3099–3106, Nov. 2015, https://doi.org/10.1007/s00396-015-3735-0.spa
dc.relation.referencesJ. Zawala, A. Wiertel-Pochopien, and P. Kowalczuk, ‘Critical Synergistic Concentration of Binary Surfactant Mixtures’, Minerals, vol. 10, no. 2, p. 192, Feb. 2020, https://doi.org/10.3390/min10020192.spa
dc.relation.referencesV. Bergeron, ‘Disjoining Pressures and Film Stability of Alkyltrimethylammonium Bromide Foam Films’, Langmuir, vol. 13, no. 13, pp. 3474–3482, Jun. 1997, https://doi.org/10.1021/la970004q.spa
dc.relation.referencesA. Olea and C. Gamboa, ‘Synergism in mixtures of cationic surfactant and anionic copolymers’, J Colloid Interface Sci, vol. 257, no. 2, pp. 321–326, 2003, https://doi.org/10.1016/S0021-9797(02)00019-X.spa
dc.relation.referencesD. Guzey, D. McClements, and J. Weiss, ‘Adsorption kinetics of BSA at air-sugar solution interfaces as affected by sugar type and concentration’, Food Research International, vol. 36, no. 7, pp. 649–660, 2003, https://doi.org/10.1016/S0963-9969(03)00004-8.spa
dc.relation.referencesA. Medrano, C. Abirached, L. Panizzolo, P. Moyna, and M. Añón, ‘The effect of glycation on foam and structural properties of β-lactoglobulin’, Food Chem, vol. 113, no. 1, pp. 127–133, 2009, https://doi.org/10.1016/j.foodchem.2008.07.036.spa
dc.relation.referencesR. Baeza, C. Carrera Sanchez, A. Pilosof, and J. Rodríguez Patino, ‘Interactions of polysaccharides with β-lactoglobulin adsorbed films at the air–water interface’, Food Hydrocoll, vol. 19, no. 2, pp. 239–248, 2005, https://doi.org/10.1016/j.foodhyd.2004.06.002.spa
dc.relation.referencesC. Rao and S. Damodaran, ‘Is surface pressure a measure of interfacial water activity? Evidence from protein adsorption behavior at interfaces’, Langmuir, vol. 16, no. 24, pp. 9468–9477, 2000, https://doi.org/10.1021/la0007168.spa
dc.relation.referencesA. Ward and L. Tordai, ‘Time‐Dependence of Boundary Tensions of Solutions I. The Role of Diffusion in Time‐Effects’, J Chem Phys, vol. 14, no. 7, pp. 453–461, Jul. 1946, https://doi.org/10.1063/1.1724167.spa
dc.relation.referencesV. Alahverdjieva, ‘Adsorption behaviour of hen egg-white lysozyme at the air/water interface’, Colloids Surf A Physicochem Eng Asp, vol. 323, no. 1–3, pp. 167–174, Jun. 2008, https://doi.org/10.1016/j.colsurfa.2007.12.031.spa
dc.relation.referencesV. Ruíz-Henestrosa, C. Sánchez, Y. Escobar, J. Jiménez, F. Rodríguez, and J. Patino, ‘Interfacial and foaming characteristics of soy globulins as a function of pH and ionic strength’, Colloids Surf A Physicochem Eng Asp, vol. 309, no. 1–3, pp. 202–215, Nov. 2007, https://doi.org/10.1016/j.colsurfa.2007.01.030.spa
dc.relation.referencesJ. Álvarez Gómez, V. Henestrosa, C. Sánchez, and J. Rodríguez, ‘The role of static and dynamic characteristics of diglycerol esters and β-lactoglobulin mixed films foaming. 1. Dynamic phenomena at the air–water interface’, Food Hydrocoll, vol. 22, no. 6, pp. 1105–1116, 2008, https://doi.org/10.1016/j.foodhyd.2007.06.002.spa
dc.relation.referencesD. Graham and M. Phillips, ‘Proteins at liquid interfaces. I. Kinetics of adsorption and surface denaturation’, J Colloid Interface Sci, vol. 70, no. 3, pp. 403–414, 1979, https://doi.org/10.1016/0021-9797(79)90048-1.spa
dc.relation.referencesV. Mosquera, ‘A study of the aggregation behavior of hexyltrimethylammonium bromide in aqueous solution’, J Colloid Interface Sci, vol. 206, no. 1, pp. 66–76, 1998, https://doi.org/10.1006/jcis.1998.5708.spa
dc.relation.referencesZ. Ryszard, ‘Effect of Temperature on the Viscosity of Aqueous Solutions of Alkyltrimethylammonium Bromides’, Zeitschrift fur Physikalische Chemie, vol. 173, no. 1, pp. 63–78, 1991, https://doi.org/10.1524/zpch.1991.173.Part_1.063.spa
dc.relation.referencesJ. Oremusová, ‘Micellization of alkyl trimethyl ammonium bromides in aqueous solutions - Part 1: critical micelle concentration (CMC) and ionization degree’, Archive Tenside Surfactants Detergents, vol. 49, no. 3, pp. 231–240, 2012, https://doi.org/10.3139/113.110187.spa
dc.relation.referencesN. Matubayasi, K. Takayama, and T. Ohata, ‘Thermodynamic quantities of surface formation of aqueous electrolyte solutions. IX. Aqueous solutions of ammonium salts’, J Colloid Interface Sci, vol. 344, no. 1, pp. 209–213, 2010, https://doi.org/10.1016/j.jcis.2009.12.018.spa
dc.relation.referencesP. Mukerjee and K. Mysels, ‘Critical Micelle Concentrations of Aqueous Surfactant Systems’, J Pharm Sci, vol. 61, no. 2, p. 319, Feb. 1972, https://doi.org/10.1002/jps.2600610254.spa
dc.relation.referencesW. Wen and S. Saito, ‘Apparent and Partial Molal Volumes of Five Symmetrical Tetraalkylammonium Bromides in Aqueous Solutions’, J Phys Chem, vol. 68, no. 9, pp. 2639–2644, Sep. 1964, https://doi.org/10.1021/j100791a042.spa
dc.relation.referencesR. Buwalda, J. Engberts, H. Høiland, and M. Blandamer, ‘Volumetric properties and compressibilities of alkyltrimethylammonium bromides and sodium alkylsulphates in aqueous solution’, J Phys Org Chem, vol. 11, no. 1, pp. 59–62, 1998, https://doi.org/10.1002/(SICI)1099-1395(199801)11:1<59::AID-POC971>3.0.CO;2-1.spa
dc.relation.referencesJ. Corkill, J. Goodman, and T. Walker, ‘Partial molar volumes of surface-active agents in aqueous solution’, Transactions of the Faraday Society, vol. 63, no. 0, pp. 768–772, 1967, https://doi.org/10.1039/TF9676300768.spa
dc.relation.referencesR. de Lisi, C. Ostiguy, G. Perron, and J. Desnoyers, ‘Complete thermodynamic properties of nonyl- and decyltrimethylammonium bromides in water’, J Colloid Interface Sci, vol. 71, no. 1, pp. 147–166, 1979, https://doi.org/10.1016/0021-9797(79)90229-7.spa
dc.relation.referencesR. de Lisi, V. Liveri, M. Castagnolo, and A. Inglese, ‘Mass action model for solute distribution between water and micelles. Partial molar volumes of butanol and pentanol in dodecyl surfactant solutions’, J Solution Chem, vol. 15, no. 1, pp. 23–54, 1986, https://doi.org/10.1007/BF00646309.spa
dc.relation.referencesJ. Abella and C. Romero, ‘Preferential Interaction of Chymotrypsinogen in Aqueous Solutions of Polyols at 298.15 K’, J Solution Chem, vol. 48, no. 11, pp. 1591–1602, 2019, https://doi.org/10.1007/s10953-019-00936-5.spa
dc.relation.referencesT. Arakawa and S. Timasheff, ‘Preferential interactions of proteins with solvent components in aqueous amino acid solutions’, Arch Biochem Biophys, vol. 224, no. 1, pp. 169–177, Jul. 1983, https://doi.org/10.1016/0003-9861(83)90201-1.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::541 - Química físicaspa
dc.subject.lembCALORIMETRIAspa
dc.subject.lembCalorimeters and calorimetryeng
dc.subject.proposalAlbúmina sérica bovinaspa
dc.subject.proposalSales de tetraalquilamoniospa
dc.subject.proposalCalorimetría diferencial de barridospa
dc.subject.proposalTensión superficialspa
dc.subject.proposalInteracción preferencialspa
dc.subject.proposalBovine serum albumineng
dc.subject.proposalTetraalkylammonium saltseng
dc.subject.proposalDifferential scanning calorimetryeng
dc.subject.proposalSurface tensioneng
dc.subject.proposalPreferential interactioneng
dc.titleEstabilidad de albúmina sérica bovina en solución acuosa en presencia de sales de tetraalquilamoniospa
dc.title.translatedStability of bovine serum albumin in aqueous solution in the presence of tetraalkylammonium saltseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEfecto de aminoácidos y sales de amonio sobre la estabilidad térmica de la albúmina sérica bovina y su relación con el cambio en la tensión superficial del solventespa
oaire.fundernameDirección de investigación. Sede Bogotá. Universidad Nacional de Colombia.spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80098322.2023.pdf
Tamaño:
7.82 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Químicas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: