Minerales arcillosos en el diseño de nanocatalizadores para el hidrocraqueo

dc.contributor.advisorMoreno Guaqueta, Soniaspa
dc.contributor.authorCortés García, Juan Carlosspa
dc.contributor.corporatenameUniversidad Nacional de Colombiaspa
dc.contributor.researchgroupEstado Sólido y Catálisis Ambientalspa
dc.date.accessioned2020-08-21T04:15:25Zspa
dc.date.available2020-08-21T04:15:25Zspa
dc.date.issued2020-08-18spa
dc.description.abstractUna serie de catalizadores bifuncionales mesoporosos fueron sintetizados mediante la incorporación de fases activas de Mo o W promovidas con Co, Ni, o Fe (Ni(Co)(Fe)-Mo(W)), sobre una serie de soportes basados en arcillas naturales colombianas previamente modificadas a través del proceso de delaminación. Los sólidos resultantes fueron caracterizados empleando difracción de rayos X (DRX), reducción a temperatura programada con H2 (TPR-H2), temperatura programada de desorción de amoniaco (TPD-NH3), espectroscopía infrarroja con transformada de Fourier en modo de reflectancia difusa usando amoníaco como molécula sonda (DRIFTS-NH3), isotermas de adsorción/desorción de N2, microscopía electrónica de transmisión (TEM), microscopía electrónica de transmisión de alta resolución (HRTEM), y espectroscopía fotoelectrónica de rayos X (XPS). El desempeño catalítico de los nuevos catalizadores fue evaluado en la hidroconversión de decano (n-C10), el hidrocraqueo (HCK) de 1-metilnaftaleno (1MN), y el hidrocraqueo de Bitumen de Atabasca (proveniente de la región de Alberta, Canadá). Los resultados muestran que los soportes y catalizadores sintetizados son mesoporosos y tienen acidez tipo Brönsted apropiadas para la reacción de hidrocraqueo de crudos pesados, extrapesados y bitumen. Adicionalmente, se evidencia que la incorporación de las fases oxídicas sobre los soportes delaminados fue exitosa alcanzando una buena dispersión. Así mismo, se observa una disminución en el área superficial y un aumento en la acidez de los materiales después de la incorporación de los óxidos, y se verifica la sulfuración de los metales, con algunas variaciones en la proporción sulfurada cuando se emplean las diferentes fases activas. Los catalizadores que presentan el mejor desempeño catalítico son aquellos que comprenden el sistema NiMo, lo cual se ve reflejado en menores temperaturas de conversión de decano y mayores conversiones de 1MN y de Bitumen. Este desempeño de los materiales se atribuye a mejores propiedades fisicoquímicas de los catalizadores: propiedades ácidas, número de especies reducibles y mayor dispersión metálica.spa
dc.description.abstractA series of mesoporous bifunctional catalysts of Mo and W were synthesized by incorporating active phases promoted with Co, Ni or Fe ((Ni(Co)(Fe)-Mo(W)) on different supports based on natural clays modified through delamination process. Solids were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), ammonia temperature-programmed desorption (TPD-NH3) and diffuse reflectance FTIR (DRIFTS-NH3), adsorption/desorption experiments using N2, transmission electron microscopies (TEM and HRTEM) and X-ray photoelectron spectroscopy (XPS). Catalytic performance was evaluated in the hydroconversion of n-decane (n-C10), hydrocracking (HCK) of 1-methylnaphtalene (1MN) and hydrocracking of Athabasca Bitumen (Alberta, Canada) Mesoporosity and Brønsted acid sites of supports and synthesized catalysts were determined by adsorption/desorption, TPD-NH3 and DRIFTS-NH3 experiments. These properties are suitable for hydrocracking reaction of heavy and extra heavy crudes as well as of bitumen. In addition, a successful incorporation of oxidic phases on delaminated supports was evidenced, reaching a good dispersion. Likewise, there was a decrease on surface area and an increase of acidity of catalytic materials because of the incorporation of the oxides. Also, the sulfurization of the metals was evidenced, with some variations in the sulfurized proportion when different active phases are used. Best catalytic performance was obtained using NiMo catalysts, which was reflected in lower n-decane conversion temperatures and higher conversions of 1MN and Bitumen. The performance of these catalysts seems to be related with better acidity properties, number of reducible species and a greater metallic dispersion.spa
dc.description.additionalLínea de investigación: Valorización de Minerales Arcillosos Colombianos y Catálisis Ácida Ambientalspa
dc.description.degreelevelDoctoradospa
dc.description.projectMinerales arcillosos en el diseño de nanocatalizadores para el hidrocraqueospa
dc.description.sponsorshipEcolpetrol - Colciencias - Universidad Nacional De Colombia - Universidad de Antioquiaspa
dc.format.extent137spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78144
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.references1. Hsu, C.S. and P.R. Robinson, Practical advances in petroleum processing. Vol. 1. 2007: Springer Science & Business Media.spa
dc.relation.references2. Robinson, P.R., Petroleum Processing Overview, in Practical Advances in Petroleum Processing, C.S. Hsu and P.R. Robinson, Editors. 2006,spa
dc.relation.references3. Thybaut, J. and G. Marin, Multiscale Aspects in Hydrocracking: From Reaction Mechanism Over Catalysts to Kinetics and Industrial Application, in Advances in Catalysis. 2016, Elsevier. p. 109-238.spa
dc.relation.references4. Marafi, M., A. Stanislaus, and E. Furimsky, Handbook of spent hydroprocessing catalysts. 2017: Elsevier.spa
dc.relation.references5. Ancheyta, J. and J.G. Speight, Hydroprocessing of heavy oils and residua. 2007: CRC Press.spa
dc.relation.references6. Speight, J.G., The refinery of the Future. 2010: Access Online via Elsevier.spa
dc.relation.references7. Viet, T.T., et al., Hydrocracking of vacuum residue with activated carbon in supercritical hydrocarbon solvents. Fuel, 2012. 94(0): p. 556-562.spa
dc.relation.references8. Ancheyta, J., M.S. Rana, and E. Furimsky, Hydroprocessing of heavy petroleum feeds: Tutorial. Catalysis Today, 2005. 109(1–4): p. 3-15.spa
dc.relation.references9. Eom, H.-J., et al., Hydrocracking of extra-heavy oil using Cs-exchanged phosphotungstic acid (CsxH3−xPW12O40, x = 1–3) catalysts. Fuel, 2014. 126(0): p. 263-270.spa
dc.relation.references10. Shah, A., et al., A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy & Environmental Science, 2010. 3(6): p. 700-714.spa
dc.relation.references11. Scott, C. and P. Pereira-Almao, Catalysis for heavy oils and bitumen upgrading. Current Topics in Catalysis, 2014. 11: p. 1-24.spa
dc.relation.references12. Rana, M.S., et al., A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel, 2007. 86(9): p. 1216-1231.spa
dc.relation.references13. Liu, Y., et al., Recent advances in heavy oil hydroprocessing technologies. Recent Patents on Chemical Engineering, 2009. 2(1): p. 22-36.spa
dc.relation.references14. Pascal, R. and T. Hervé, Catalysis by transition metal sulphides: From molecular theory to industrial application. 2013: Editions Technip.spa
dc.relation.references15. Strausz, O.P. and E.M. Lown, The chemistry of Alberta oil sands, bitumens and heavy oils. 2003: Alberta Energy Research Institute Calgary, Alberta, Canada.spa
dc.relation.references16. Speight, J.G., Enhanced recovery methods for heavy oil and tar sands. 2013: Elsevier.spa
dc.relation.references17. Stellman, J.M., Petróleo y gas natural, in Enciclopedia de Salud y Seguidad en el trabajo, R.S. Kraus, Editor. 1998, Ministerio de Trabajo y Asuntos Sociales: Madrid.spa
dc.relation.references18. Viet, T.T., et al., Hydrocracking of vacuum residue with activated carbon in supercritical hydrocarbon solvents. Fuel, 2012. 94: p. 556-562.spa
dc.relation.references19. Fahim, M.A., T.A. Alsahhaf, and A. Elkilani, Fundamentals of Petroleum Refining 2010, Oxford, UK: Elsevier B. V. 2.spa
dc.relation.references20. León, A.Y. and M.J. Parra, Determination of molecular weight of vacuum residue and their SARA fractions. CT&F - Ciencia, Tecnología y Futuro, 2010. 4(2): p. 101-112.spa
dc.relation.references21. Parra, M.J., A.Y. León, and L.J. Hoyos, Determination of molecular weight of vacuum residue and their SARA fractions. CT&F - Ciencia, Tecnología y Futuro, 2010. 4(2): p. 83-90.spa
dc.relation.references22. Verstraete, J.J., et al., Molecular reconstruction of heavy petroleum residue fractions. Chemical Engineering Science, 2010. 65(1): p. 304-312.spa
dc.relation.references23. Furimsky, E., Catalysts for upgrading heavy petroleum feeds. 2007: Elsevier.spa
dc.relation.references24. Martinez-Grimaldo, H., et al., Hydrocracking of Maya crude oil in a slurry-phase reactor. I. Effect of reaction temperature. Catalysis Today, 2014. 220: p. 295-300.spa
dc.relation.references25. Chapter 6 Hydroprocessing reactions, in Studies in Surface Science and Catalysis, E. Furimsky, Editor. 2007, Elsevier. p. 95-139.spa
dc.relation.references26. Jones, D.S. and P.P. Pujadó, Handbook of petroleum processing. 2006: Springer Science & Business Media.spa
dc.relation.references27. Hsu, C.S. and P.R. Robinson, Practical advances in petroleum processing. Vol. 1. 2006: Springer.spa
dc.relation.references28. Marafi, M., A. Stanislaus, and E. Furimsky, Chapter 3 - Hydroprocessing of Petroleum, in Handbook of Spent Hydroprocessing Catalysts. 2010, Elsevier: Amsterdam. p. 17-49.spa
dc.relation.references29. Speight, A.G., Petroleum chemistry and refining. 1998: CRC Press.spa
dc.relation.references30. Weitkamp, J., Catalytic Hydrocracking—Mechanisms and Versatility of the Process. ChemCatChem, 2012. 4(3): p. 292-306.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc665 - Tecnología de aceites, grasas, ceras, gases industrialesspa
dc.subject.ddc553 - Geología económicaspa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.ddc629 - Otras ramas de la ingenieríaspa
dc.subject.proposalarcilla delaminadaspa
dc.subject.proposaldelaminated clayeng
dc.subject.proposalsulfuros Wspa
dc.subject.proposalWeng
dc.subject.proposalMoeng
dc.subject.proposalMospa
dc.subject.proposalNieng
dc.subject.proposalNispa
dc.subject.proposalCospa
dc.subject.proposalCo and Fe sulfideseng
dc.subject.proposalbifunctional catalystseng
dc.subject.proposalFespa
dc.subject.proposalhydroconversioneng
dc.subject.proposalcatalizadores bifuncionalesspa
dc.subject.proposalhidroconversiónspa
dc.subject.proposalhydrocrackingeng
dc.subject.proposalhidrocraqueospa
dc.subject.proposaln-decaneeng
dc.subject.proposal1-methylnaphtaleneeng
dc.subject.proposaln-decanospa
dc.subject.proposal1-metilnaftalenospa
dc.subject.proposalbitumeneng
dc.subject.proposalbitumenspa
dc.titleMinerales arcillosos en el diseño de nanocatalizadores para el hidrocraqueospa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80220549.2020.pdf
Tamaño:
13.8 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: