Análisis dinámico del confort en edificios con estrategias de control adaptativo en modos deslizantes

dc.contributor.advisorOlivar-Tost, Gerardspa
dc.contributor.advisorTaborda, John Alexanderspa
dc.contributor.advisorGómez-Mendoza, Juan Bernardospa
dc.contributor.authorFlorez Montes, Frankspa
dc.contributor.researchgroupPercepción y Control Inteligente (PCI)spa
dc.date.accessioned2021-02-02T15:48:26Zspa
dc.date.available2021-02-02T15:48:26Zspa
dc.date.issued2021-01-18spa
dc.description.abstractIn this doctoral thesis, the mathematical modeling of thermal zones is used to evaluate the ability of the control in sliding modes, to regulate the internal temperature of a case study. The grouped parameters technique is used to represent the closed spaces, which, when complemented with experimental measurements and optimization algorithms, allowed the construction of a simulator to reproduce the conditions of the model studied with an accuracy of more than 97 %, which allowed studying the system in general while introducing disturbances or variations in the model parameters. Initially, reduced-scale models were used to characterize the thermal insulating effect of the Thermo Skold solution on the internal temperature. The impact of the painting on each one of the heat transfer parameters was studied, which allowed us to understand the savings and results obtained experimentally. Subsequently, the reduced scale models were used to evaluate the control technique in sliding modes, so the effectiveness of the technique was modeled, simulated and veri ed experimentally to maintain a fixed reference temperature, with an error of less than 2 %. In the final stage of the thesis, a geodesic dome was used as a case study, which was modeled with an electrical circuit proposed for its speci c characteristics. Experimental measurements of the thermal conditions of the geodesic dome were made, with which the simulator was adjusted using the Pattern Search optimization algorithm. Thanks to the simulator developed, the thermal comfort conditions and the cooling needs of the dome were studied, considering different situations and internal loads by occupants and cooling systems.spa
dc.description.abstractEn esta tesis de doctorado se utiliza el modelado matemático de zonas térmicas para evaluar la capacidad del control en modos deslizantes, para regular la temperatura interna de un caso de estudio. Se utiliza la técnica de parámetros agrupados para representar los espacios cerrados, que al ser complementada con mediciones experimentales y algoritmos de optimización, permitió construir un simulador para reproducir con una precisión de más del 97% las condiciones del modelo estudiado, y que permitió estudiar el sistema en general mientras se introducen perturbaciones o variaciones en los parámetros del modelo. Inicialmente se utilizaron modelos de escala reducida para caracterizar el efecto termo-aislante de la solución Thermo Sköld sobre la temperatura interna, se caracterizó el efecto de la pintura sobre cada uno de los parámetros de transmisión de calor del caso de estudio, lo que permitió entender los ahorros y resultados obtenidos experimentalmente. Posteriormente, se utilizaron los modelos de escala reducida para evaluar la técnica de control en modos deslizantes, por lo que se modeló, simuló y veri ficó experimentalmente la efectividad de la técnica para mantener una temperatura de referencia ja, con un error inferior al 2 %. En la etapa final de la tesis se utilizó un domo geodésico como caso de estudio, el cual fue modelado con un circuito eléctrico propuesto para sus características especificas. Se realizaron medidas experimentales de las condiciones térmicas del domo geodésico, con las cuales se ajustó el simulador utilizando el algoritmo de optimización Búsqueda de Patrones. Gracias al simulador desarrollado se estudiaron las condiciones de confort térmico y las necesidades de refrigeración del domo, considerando diferentes situaciones y cargas internas por ocupantes y sistemas de refrigeración.spa
dc.description.additionalEstudiante de doble titulación : Doctor en Matemáticas, Universitat Politécnica de Valencia. Directores: Ph.D. Pedro Fernández de Córdoba Castellá, Ph.D. José Luis Higón Calvet -- Doctor en Ingeniería - Ingeniería Automática, Universidad Nacional de Colombia (Sede Manizales). Director: Ph.D Gerard Olivar Tost, Codirectores: Ph.D. John Alexander Taborda Giraldo Ph.D. Juan Bernardo Gómez Mendoza.
dc.description.degreelevelDoctoradospa
dc.format.extent153spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationFlorez Montes, F., Fernández de Córdoba, P., Higón, J. L., Taborda, J., Olivar, G., & Gómez, J. B. (2020). Análisis dinámico del confort en edificios: estrategias de control adaptativo en modos deslizantes. Universidad Nacional de Colombia.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79032
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automáticaspa
dc.relation.referencesBoehme P, Berger M, Massier T. Estimating the building based energy consumption as an anthropogenic contribution to urban heat islands. 2015;19:373-384.spa
dc.relation.referencesCostanzo V, Evola G, Marletta L. Energy savings in buildings or UHI mitigation? Comparison between green roofs and cool roofs. 2016;114:247-255spa
dc.relation.referencesMalley CO, Piroozfar P, Farr ERP, Pomponi F. Urban Heat Island (UHI) mitigating strategies : A case-based comparative analysis. 2015;19:222-235.spa
dc.relation.referencesTouchaei AG, Hosseini M, Akbari H. Energy savings potentials of commercial buildings by urban heat island reduction strategies in Montreal (Canada). 2016;110:41-48.spa
dc.relation.referencesKrarti M. Energy Audit of Building Systems: an Engineering Approach. CRC Press; 2011.spa
dc.relation.referencesEvins R. Multi-level optimization of building design , energy system sizing and operation. Energy. 2015;90.spa
dc.relation.referencesGul MS, Patidar S. Understanding the energy consumption and occupancy of a multipurpose academic building. 2015;87:155-165.spa
dc.relation.referencesKalz D, Pfafferot J. Thermal comfort and energy-efficient cooling of nonresidential buildings. Springer; 2006.spa
dc.relation.referencesMcDowall R. Fundamentals of HVAC Systems. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc.; 2006.spa
dc.relation.referencesSimion M, Socaciu L, Unguresan P. Factors which In uence the Thermal Comfort Inside of Vehicles. Energy Procedia. 2016;85(November 2015):472-480.spa
dc.relation.referencesTakada S, Sasaki A, Kimura R. Fundamental study of ventilation in air layer in clothing considering real shape of the human body based on CFD analysis. Building and Environment. 2016;99:210-220.spa
dc.relation.referencesArslanoglu N, Yigit A. Experimental and theoretical investigation of the effect of radiation heat flux on human thermal comfort. Energy and Buildings. 2016;113:23-29.spa
dc.relation.referencesLaura A, Piselli C, Cotana F. Thermal-physics and energy performance of an innovative green roof system : The Cool-Green Roof. Solar Energy. 2015;116:337-356.spa
dc.relation.referencesVijayaraghavan K. Green roofs : A critical review on the role of components , bene ts , limitations and trends. Renewable and Sustainable Energy Reviews. 2016;57:740-752.spa
dc.relation.referencesKoo C, Hong T, Lee M, Kim J. An integrated multi-objective optimization model for determining the optimal solution in implementing the rooftop photovoltaic system. Renewable and Sustainable Energy Reviews. 2016;57:822-837.spa
dc.relation.referencesZong Y, B oning GM, Santos RM, You S, Hu J, Han X. Challenges of implementing economic model predictive control strategy for buildings interacting with smart energy systems. Applied Thermal Engineering. 2017;114:1476{1486. Available from: http: //dx.doi.org/10.1016/j.applthermaleng.2016.11.141.spa
dc.relation.referencesGinestet S, Bouache T, Limam K, Lindner G. Thermal identi cation of building multilayer walls using reflective Newton algorithm applied to quadrupole modelling. Energy and Buildings. 2013;60:139-145.spa
dc.relation.referencesAvci M, Erkoc M, Rahmani A, Asfour S. Model predictive HVAC load control in buildings using real-time electricity pricing. Energy and Buildings. 2013;60:199-209.spa
dc.relation.referencesFiorentini M, Wall J, Ma Z, Braslavsky JH, Cooper P. Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage. Applied Energy. 2017;187:465-479.spa
dc.relation.referencesONU. Protocolo de Kioto; 1997.spa
dc.relation.referencesONU. Acuerdo de Paris; 2016spa
dc.relation.referencesONU. Agenda 2030 y los Objetivos de Desarrollo Sostenible; 2017.spa
dc.relation.referencesZhong H, Wang J, Jia H, Mu Y, Lv S. Vector eld-based support vector regression for building energy consumption prediction. Applied Energy. 2019;242:403{414. Available from: https://doi.org/10.1016/j.apenergy.2019.03.078.spa
dc.relation.referencesLi X, Zhou Y, Yu S, Jia G, Li H, Li W. Urban heat island impacts on building energy consumption: A review of approaches and ndings. Energy. 2019;174:407{419. Available from: https://doi.org/10.1016/j.energy.2019.02.183.spa
dc.relation.referencesBourdeau M, qiang Zhai X, Nefzaoui E, Guo X, Chatellier P. Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society. 2019;48.spa
dc.relation.referencesScherba A, Sailor DJ, Rosenstiel TN, Wamser CC. Modeling impacts of roof re ectivity, integrated photovoltaic panels and green roof systems on sensible heat flux into the urban environment. Building and Environment. 2011;46:2542-2551.spa
dc.relation.referencesZheng X, Li Hq, Yu M, Li G, Shang Qm. Bene t analysis of air conditioning systems using multiple energy sources in public buildings. 2016;107:709-718.spa
dc.relation.referencesAlvarez V, Acosta A, Gonz alez AI, Zamarre JM. Energy savings and guaranteed thermal comfort in hotel rooms through nonlinear model predictive controllers. Energy and Buildings. 2016;129:59-68.spa
dc.relation.referencesReinhart CF, Davila CC. Urban building energy modeling e A review of a nascent eld. Building and Environment. 2016;97:196-202.spa
dc.relation.referencesTanaka Y, Kawashima S, Hama T, S LF. Mitigation of heating of an urban building rooftop during hot summer by a hydroponic rice system. 2016;96.spa
dc.relation.referencesGhofrani A, Jafari MA. Distributed air conditioning control in commercial buildings based on a physical-statistical approach. Energy and Buildings. 2017;148:106-118.spa
dc.relation.referencesPark DY, Yun G, Kim KS. Experimental evaluation and simulation of a variable refrigerant- ow (VRF) air-conditioning system with outdoor air processing unit. 2017;146:122{140.spa
dc.relation.referencesNagarathinam S, Doddi H, Vasan A, Sarangan V, P VR, Sivasubramaniam A. Energy e cient thermal comfort in open-plan o ce buildings. 2017;139:476-486.spa
dc.relation.referencesBuonomano A, Montanaro U, Palombo A, Santini S. Dynamic building energy performance analysis : A new adaptive control strategy for stringent thermohygrometric indoor air requirements. Applied Energy. 2016;163:361-386.spa
dc.relation.referencesCapizzi G, Sciuto GL, Cammarata G, Cammarata M. Thermal transients simulations of a building by a dynamic model based on thermal-electrical analogy : Evaluation and implementation issue. Applied Energy. 2017;199:323-334.spa
dc.relation.referencesGorni D, Castilla M, Visioli A. An e cient modelling for temperature control of residential buildings. Building and Environment. 2016;103:86-98.spa
dc.relation.referencesForgiarini R, Giraldo N, Lamberts R. A review of human thermal comfort in the built environment. 2015;105:178-205.spa
dc.relation.referencesTaleb HM. Using passive cooling strategies to improve thermal performance and reduce energy consumption of residential buildings in U . A . E . buildings. Frontiers of Architectural Research. 2014;p. 154-165.spa
dc.relation.referencesOkochi GS, Yao Y. A review of recent developments and technological advancements of variable-air-volume (VAV) air-conditioning systems. Renewable and Sustainable Energy Reviews. 2016;59:784-817.spa
dc.relation.referencesNorton M, Khoo S, Kouzani A, Stojcevski A. Adaptive fuzzy multi-surface sliding control of multiple-input and multiple-output autonomous ight systems. IET Control Theory Applications. 2015;9(4):587-597.spa
dc.relation.referencesSingh R, Banerjee R. Estimation of rooftop solar photovoltaic potential of a city. Solar Energy. 2015;115:589-602.spa
dc.relation.referencesKarteris M, Theodoridou I, Mallinis G, Tsiros E, Karteris A. Towards a green sustainable strategy for Mediterranean cities: Assessing the bene ts of large-scale green roofs implementation in Thessaloniki, Northern Greece, using environmental modelling, GIS and very high spatial resolution remote sensing data. Renewable and Sustainable Energy Reviews. 2016;58:510-525.spa
dc.relation.referencesRaji B, Tenpierik MJ, van den Dobbelsteen A. The impact of greening system on building. Renewable and Sustainable Energy Reviews. 2015;45:610-623.spa
dc.relation.referencesYang J, Bou-Zeid E. Scale dependence of the bene ts and e ciency of green and cool roofs. Landscape and Urban Planning. 2019;185:127-140.spa
dc.relation.referencesKapsalis V, Karamanis D. On the e ect of roof added photovoltaics on building ' s energy demand. Energy and Buildings. 2015;108:195-204.spa
dc.relation.referencesDominguez A, Kleissl J, Luvall JC. Effects of solar photovoltaic panels on roof heat transfer. Solar Energy. 2011;85:2244-2255.spa
dc.relation.referencesChemisana D, Lamnatou C. Photovoltaic-green roofs : An experimental evaluation of system performance. Applied Energy. 2014;119:246-256.spa
dc.relation.referencesLamnatou C, Chemisana D. Evaluation of photovoltaic-green and other roo ng systems by means of ReCiPe and multiple life cycle e based environmental indicators. Building and Environment. 2015;93:376-384.spa
dc.relation.referencesTang R, Wang S, Shan K. Automation in Construction Optimal and near-optimal indoor temperature and humidity controls for direct load control and proactive building demand response towards smart grids. Automation in Construction. 2018;96(August):250-261.spa
dc.relation.referencesYang S, Wan MP, Ng BF, Zhang T, Babu S, Zhang Z, et al. A state-space thermal model incorporating humidity and thermal comfort for model predictive control in buildings. Energy and Buildings. 2018;170:25-39.spa
dc.relation.referencesLuzi M, Vaccarini M, Lemma M. A tuning methodology of Model Predictive Control design for energy e cient building thermal control. Journal of Building Engineering. 2019;21(September 2018):28-36.spa
dc.relation.referencesUlpiani G, Borgognoni M, Romagnoli A, Perna CD. Comparing the performance of on / o , PID and fuzzy controllers applied to the heating system of an energy-e cient building. 2019;116(2016):1-17.spa
dc.relation.referencesL opez-P erez L, Flores-Prieto J, Ríos-Rojas C. Adaptive thermal comfort model for educational buildings in a hot-humid climate. Building and Environment journal. 2019;150(September 2018):181-194.spa
dc.relation.referencesAHSRAE. Handbook Fundamentals. vol. 30329; 2009.spa
dc.relation.referencesVellei M, Herrera M, Fosas D, Natarajan S. The influence of relative humidity on adaptive thermal comfort. Building and Environment journal. 2017;124.spa
dc.relation.referencesWang Z, de Dear R, Luo M, Lin B, He Y, Ghahramani A, et al. Individual di erence in thermal comfort: A literature review. Building and Environment. 2018;138(April):181{ 193.spa
dc.relation.referencesHe Y, Chen W, Wang Z, Zhang H. Review of fan-use rates in eld studies and their effects on thermal comfort, energy conservation, and human productivity. Energy and Buildings. 2019;194:140{162. Available from: https://doi.org/10.1016/j.enbuild. 2019.04.015.spa
dc.relation.referencesBiyik E, Kahraman A. A predictive control strategy for optimal management of peak load, thermal comfort, energy storage and renewables in multi-zone buildings. Journal of Building Engineering. 2019;25(January):100826. Available from: https://doi.org/ 10.1016/j.jobe.2019.100826.spa
dc.relation.referencesJoe J, Karava P. A model predictive control strategy to optimize the performance of radiant oor heating and cooling systems in office buildings. Applied Energy. 2019;245(October 2018):65{77. Available from: https://doi.org/10.1016/ j.apenergy.2019.03.209.spa
dc.relation.referencesChen SY, Gong SS. Speed tracking control of pneumatic motor servo systems using observation-based adaptive dynamic sliding-mode control. Mechanical Systems and Signal Processing. 2017;94(129):111-128.spa
dc.relation.referencesXu Q, Huang J, Zhou L. ANN-inversion based fractional-order sliding control for the industrial robot. Chinese Control Conference, CCC. 2015;2015-Septe:4501-4505.spa
dc.relation.referencesHuang Y, Khajepour A, Ding H, Bagheri F, Bahrami M. An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems. Applied Energy. 2017;188:576{585. Available from: http://linkinghub. elsevier.com/retrieve/pii/S0306261916317962.spa
dc.relation.referencesAyadi A, Sou en H, Smaoui M, Chaari A. Robust control of electropneumatic actuator position via adaptive sliding mode approach. In: 2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, STA 2016 - Proceedings. IEEE; 2017. p. 520-525.spa
dc.relation.referencesMironova A, Mercorelli P, Zedler A. Robust Control using Sliding Mode Approach for Ice-Clamping Device activated by Thermoelectric Coolers. IFAC-PapersOnLine. 2016;49(25):470-475.spa
dc.relation.referencesHan JS, Kim TI, Park JH, Oh TH, Lee JH, Kim SO, et al. Gain selection method for robustness enhancement in sliding mode control combined with decoupled disturbance compensator with unknown inertia in industrial servo systems. International Conference on Control, Automation and Systems. 2017;2017-October(Iccas):1713-1717.spa
dc.relation.referencesWei Y, Sun T, Liu G. Active disturbance rejection-based sliding mode control for a surface vessel. Chinese Control Conference, CCC. 2015;2015-September(3):3201-3205.spa
dc.relation.referencesAshouri A, Fux SF, Benz MJ, Guzzella L. Optimal design and operation of building services using mixed-integer linear programming techniques. Energy. 2013;59:365-376.spa
dc.relation.referencesMcElroy. Energy building simulation second edition. IBPSA 1999.spa
dc.relation.referencesSkrjanc I, Zupancic B, Furlan B, Krainer A. Theoretical and experimental FUZZY modelling of building thermal dynamic response. Building and Environment. 2001;36(9):1023-1038.spa
dc.relation.referencesKim D, Cai J, Ariyur KB, Braun JE. System identi cation for building thermal systems under the presence of unmeasured disturbances in closed loop operation: Lumped disturbance modeling approach. Building and Environment. 2016;107:169-180.spa
dc.relation.referencesLin Y, Middelkoop T, Barooah P. Identi cation of control-oriented thermal models of rooms in multi-room buildings. Ieee Cdc. 2013;p. 1-27.spa
dc.relation.referencesXu X, Wang S. A simple time domain calculation method for transient heat transfer models. Energy and Buildings. 2008;40(9):1682-1690.spa
dc.relation.referencesCengel Y. Transferencia de calor y masa. MEXICO: McGraw Hill; 2007.spa
dc.relation.referencesOgata K, Pinto Bermúdez E, Matía F, Pearson E, Hall P, Dorf RC, et al. Ingeniería de control moderna; 2010. Available from: www.pearsoneducacion.com.spa
dc.relation.referencesBertagnolio S, Masy G, Lebrun J, Andre P. Building and Hvac System Simulation With the Help of an Engineering Equation Solver. Third National Conference of IBPSA-USA. 2008;p. 53-60.spa
dc.relation.referencesLapuerta Amigo M, Armas O. Frío Industrial y Aire Acondicionado; 2012.spa
dc.relation.referencesCabanzón J. Diseño y cálculo de un intercambiador de calor. Universidad de Cantabria; 2018.spa
dc.relation.referencesFrank Kreith, Manglik RM, Bohn Ms. Principios de Transferencia de Calor. vol. 1; 2015.spa
dc.relation.referencesJaramillo O. Intercambiadores de calor. Universidad Nacional Autónoma de Mexico; 2006. Available from: http://linkinghub.elsevier.com/retrieve/pii/ B9780080444918500023.spa
dc.relation.referencesSoldatos AG, Arvanitis KG, Daskalov PI, Pasgianos GD, Sigrimis NA. Nonlinear robust temperature- humidity control in livestock buildings. Computers and electronic in agriculture. 2005;49:357-376.spa
dc.relation.referencesKundu B, Lee KS. Effects of psychrometric properties on n performances of minimum envelope shape of wet ns. Energy Conversion and Management. 2016;110:481-493.spa
dc.relation.referencesMittal GS, Zhang J. Arti cial neural network-based psychrometric predictor. Biosystems Engineering. 2003;85(3):283-289.spa
dc.relation.referencesTurner SC, Paliaga G, Lynch BM, Arens EA, Aynsley RM, Brager GS, et al. Ashrae Standard Thermal Environmental Conditions for Human Occupancy. vol. 2010; 2011.spa
dc.relation.referencesBrastein OM, Perera DWU, Pfeifer C, Skeie NO. Parameter estimation for grey-box models of building thermal behaviour. Energy and Buildings. 2018;169:58-68.spa
dc.relation.referencesChew LW, Glicksman LR, Norford LK. Buoyant ows in street canyons: Comparison of RANS and LES at reduced and full scales. Building and Environment. 2018;146(September):77-87.spa
dc.relation.referencesLirola JM, Castañeda E, Lauret B, Khayet M. A review on experimental research using scale models for buildings: Application and methodologies. Energy and Buildings. 2017;142:72-110.spa
dc.relation.referencesColeman TF, Yin Z. Optimization Toolbox TM User ' s Guide R 2015 a; 2015.spa
dc.relation.referencesRobledo Fava R. Desarrollo de modelos matemáticos y análisis de sensibilidad para el estudio energético de edifi caciones; 2018.spa
dc.relation.referencesHeo Y, Wilde PD, Li Z, Yan D, Park CS. A review of uncertainty analysis in building energy assessment. Renewable and Sustainable Energy Reviews. 2018;93(May):285- 301. Available from: https://doi.org/10.1016/j.rser.2018.05.029.spa
dc.relation.referencesSiew-Chong T, Yuk-Ming L, Chi Kong T. Sliding Mode Control of Switching Power Converters; 2012.spa
dc.relation.referencesUtkin V. Mode Control in Systems. Segunda ed ed. Ohio: CRC Press; 2009.spa
dc.relation.referencesMarsden JE, Tromba AJ. marsden-tromba. Addison Wesley; 2004.spa
dc.relation.referencesZhang Q, Yan D, An J, Hong T, Tian W, Sun K. Spatial distribution of internal heat gains: A probabilistic representation and evaluation of its in uence on cooling equipment sizing in large office buildings. Energy and Buildings. 2017;139:407-416.spa
dc.relation.referencesTahmasebi F, Mosto S, Mahdavi A. Exploring the implications of di erent occupancy modelling approaches for building performance simulation results. Energy Procedia. 2015;78:567-572.spa
dc.relation.referencesMartin M, Afshari A, Norford LK, Parlow E, Vogt R. Validation of a lumped thermal parameter model coupled with an EnergyPlus model using BUBBLE data. 2015;96:1-6.spa
dc.relation.referencesDuffe Ja, Beckman Wa, Worek WM. Solar Engineering of Thermal Processes, 4nd ed.. vol. 116; 2003. Available from: http://books.google.com/books?hl=en{&}lr= {&}id=qkaWBrOuAEgC{&}pgis=1.spa
dc.relation.referencesGoldfarb W. HANDBOOK FUNDAMENTALS; 2013.spa
dc.relation.referencesAmerican Society of Heating R, (ASHRAE) ACE. Climatic design conditions 2009/2013; 2013. Available from: http://ashrae-meteo.info/.spa
dc.relation.referencesUS Department of Energy. EnergyPlus Engineering Reference: The Reference to EnergyPlus Calculations. US Department of Energy. 2010;(c):1-847.spa
dc.relation.referencesElsland R, Peksen I, Wietschel M. Are internal heat gains underestimated in thermal performance evaluation of buildings? Energy Procedia. 2014;62:32-41.spa
dc.relation.referencesJusoh N, Bakar RA, Ismail AR, Ali TZS. Computational analysis of thermal building in a no-uniform thermal environment. Energy Procedia. 2015;68:438-445.spa
dc.relation.referencesDe Meester T, Marique AF, De Herde A, Reiter S. Impacts of occupant behaviours on residential heating consumption for detached houses in a temperate climate in the northern part of Europe. Energy and Buildings. 2013;57:313-323.spa
dc.relation.referencesAmpatzi E, Knight I. Modelling the effect of realistic domestic energy demand pro les and internal gains on the predicted performance of solar thermal systems. Energy and Buildings. 2012;55:285-298.spa
dc.relation.referencesAmerican Society of Heating R, (ASHRAE) ACE. Handbook Fundamentals. vol. 30329; 2009.spa
dc.relation.referencesChen P, Cleland DJ, Lovatt SJ, Bassett MR. An empirical model for predicting air in ltration into refrigerated stores through doors. 2002;25:799{812.spa
dc.relation.referencesTian S, Gao Y, Shao S, Xu H, Tian C. A Local Air Velocity Measurement Method for Estimating In ltration Heat Load through Doorway of the Cold Store. Energy Procedia. 2017;105:3275-3281. Available from: http://linkinghub.elsevier.com/ retrieve/pii/S1876610217307993.spa
dc.relation.referencesBrown G, Solvason K. Natural convection through rectangular openings in partitions Pt. 1 : Vertical partitions. 1962;.spa
dc.relation.referencesCoronel J, Perez-Lombard L. Colección de Tablas, Gráfi cas y Ecuaciones de Transmisión de Calor. vol. 3; 2016. Available from: http://www.esi2.us.es/{~}jfc/ Descargas/TC/Coleccion{_}tablas{_}graficas{_}TC.pdf.spa
dc.relation.referencesMcDowall R. Fundamentals of HVAC Systems. vol. 53; 2013.spa
dc.relation.referencesMu K, Liu J, Lu Z, Zhang J. Analysis of heat rejection from an actual large-scale airconditioned o ce building by eld measurements and numerical simulations. Energy & Buildings. 2016;111:369-379. Available from: http://dx.doi.org/10.1016/j. enbuild.2015.11.035.spa
dc.relation.referencesUnderwood CP, Yik F. Modelling Methods for Energy in Buildings. Blackwell Science; 2004.spa
dc.relation.referencesAsociación Técnica Española de Climatización y Refrigeración. Guía técnica de instalaciones de climatización con equipos autónomos. Madrid: Instituto para la Diversi ficación y Ahorro de la Energía; 2012spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalthermal zone modelingeng
dc.subject.proposalModelado zonas térmicasspa
dc.subject.proposalsliding modes controleng
dc.subject.proposalcontrol en modos deslizantesspa
dc.subject.proposalmodelos de escala reducidaspa
dc.subject.proposalreduced scale modelseng
dc.subject.proposalthermal conforteng
dc.subject.proposalconfort térmicospa
dc.subject.proposalsoluciones termo-aislantesspa
dc.subject.proposalthermal isolating solutionseng
dc.subject.proposalmodelado por parámetros agrupadosspa
dc.subject.proposallumped parameters modelingeng
dc.titleAnálisis dinámico del confort en edificios con estrategias de control adaptativo en modos deslizantesspa
dc.title.alternativeDynamic analysis of comfort in buildings with adaptive control strategies in sliding modesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1082912057.2020.pdf
Tamaño:
29.91 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Automática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: