Un método para generación de mapas mentales a partir de un dataset de artículos científicos en el contexto de calidad de software mediante técnicas de machine learning

dc.contributor.advisorEspinosa Bedoya, Albeiro
dc.contributor.authorTobón Villegas, Angela María
dc.date.accessioned2025-06-20T13:21:25Z
dc.date.available2025-06-20T13:21:25Z
dc.date.issued2025
dc.descriptionIlustraciones, gráficosspa
dc.description.abstractEn los últimos años, el análisis de grandes volúmenes de texto ha ganado relevancia en diversas disciplinas, especialmente con el avance de las técnicas de machine learning y el procesamiento de lenguaje natural. En particular, la investigación sobre calidad de software ha generado una gran cantidad de artículos científicos que, debido a su complejidad y volumen, dificultan la comprensión rápida y la identificación de las ideas clave. Una posible solución a este problema es el uso de herramientas automáticas que ayuden a visualizar las relaciones entre los conceptos clave de manera más accesible. En este estudio, se propone un enfoque para generar mapas mentales a partir de un conjunto de artículos científicos relacionados con la calidad de software, utilizando un modelo de lenguaje grande (LLM) como técnica principal. El objetivo es crear representaciones gráficas que permitan identificar las conexiones y temas principales de manera eficiente, simplificando la comprensión del contenido. Para lograr este objetivo, se llevó a cabo una revisión de la literatura para identificar las mejores técnicas de análisis de texto y generación de representaciones jerárquicas. Se decidió optar por el uso de un modelo de lenguaje grande (LLM) debido a su capacidad sobresaliente para procesar grandes volúmenes de texto y capturar relaciones semánticas complejas. Los LLM, entrenados en variados corpus de texto, tienen la capacidad de identificar patrones y extraer conceptos clave con alta precisión, lo que los convierte en una opción ideal para generar mapas mentales detallados y efectivos. En este caso, se implementó un código en Python utilizando el modelo Gemini-1.5-Flash, que, en su versión gratuita disponible en el momento del estudio, permitió realizar múltiples iteraciones para ajustar el modelo y obtener resultados más precisos. Los resultados demostraron que la alternativa propuesta es una herramienta eficaz para la generación de mapas mentales, con un resultado promedio de 88%. La capacidad del modelo para realizar múltiples iteraciones de manera eficiente, utilizando recursos computacionales limitados, abre la posibilidad de explorar otras herramientas de grandes modelos de lenguaje (LLM) y evaluar su desempeño en tareas de análisis cuantitativo de información en otros dominios, como la investigación académica o la ingeniería de software. (Tomado de la fuente)spa
dc.description.abstractIn recent years, the analysis of large volumes of text has gained relevance in various disciplines, especially with the advancement of machine learning techniques and natural language processing. In particular, research on software quality has generated a significant number of scientific articles that, due to their complexity and volume, make it difficult to quickly understand and identify key ideas. A possible solution to this problem is the use of automated tools to help visualize the relationships between key concepts in a more accessible way. This study proposes an approach to generate mind maps from a set of scientific articles related to software quality, using a large language model (LLM) as the main technique. The goal is to create graphical representations that allow for the efficient identification of connections and key themes, simplifying the understanding of the content. To achieve this goal, a literature review was conducted to identify the best techniques for text analysis and the generation of hierarchical representations. The decision was made to use a large language model (LLM) due to its outstanding ability to process large volumes of text and capture complex semantic relationships. LLMs, trained on diverse text corpora, have the capacity to identify patterns and extract key concepts with high precision, making them an ideal choice for generating detailed and effective mind maps. In this case, a Python code was implemented using the Gemini-1.5-Flash model, which, in its free version available at the time of the study, allowed for multiple iterations to fine-tune the model and obtain more accurate results. The results demonstrated that the proposed alternative is an effective tool for generating mind maps, with an average result of 88%. The model's ability to perform multiple iterations efficiently, using limited computational resources, opens up the possibility of exploring other large language model (LLM) tools and evaluating their performance in quantitative information analysis tasks in other domains, such as academic research or software engineering.eng
dc.description.curricularareaIngeniería De Sistemas E Informática.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Analíticaspa
dc.format.extent99 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88239
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesBuzan, T. (2010). The Mind Map Book: Unlock your creativity, boost your memory, change your life. (1ª edición Vintage). BBC Active, an imprint of Educational Publishers LLP, part of the Pearson Education Group.spa
dc.relation.referencesTucker, J. M., Armstrong, G. R. & Massad, V. J. (2010). Profilling a mind map user: a descriptive appraisal. Journal of Instructional Pedagogies, 2, 1-13.spa
dc.relation.referencesBeel, Joeran & Langer, Stefan & Kapitsaki, Georgia & Gipp, Bela. (2014). Mind-Map based User Modelling and Research Paper Recommendations.spa
dc.relation.referencesBeel, Joeran. (2017). Towards Effective Research-Paper Recommender Systems and User Modeling based on Mind Maps.spa
dc.relation.referencesBeel, J., & Gipp, B. (2010). Link analysis in mind maps: a new approach to determining document relatedness. En Proceedings of the 4th International Conference on Ubiquitous Information Management and Communication (ICUIMC '10) (páginas 1–5). DOI: 10.1145/2108616.2108662.spa
dc.relation.referencesDere, V.K., Sawant, M., Yadav, S., & Patil, D.K. (2021). IMAPGINE: MIND MAP GENERATION TOOL USING AI TECHNOLOGIES.spa
dc.relation.referencesErdem, A.R. (2017). Mind Maps as a Lifelong Learning Tool. Universal Journal of Educational Research, 5, 1-7.spa
dc.relation.referencesArulselvi, E. (2017). 50 Mind Maps in Classroom Teaching and Learning. The Excellence in Education Journal, 6(2), Summer, 50.spa
dc.relation.referencesBobadilla, J. (2021). Machine Learning y Deep Learning: Usando Python, Scikit y Keras. Ediciones de la U. https://doi.org/ISBN: 9587921461spa
dc.relation.referencesGoodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.spa
dc.relation.referencesMikolov, T., Karafiát, M., Burget, L., Černocký, J., & Khudanpur, S. (2010). Recurrent neural network based language model. In Proceedings of the 11th Annual Conference of the International Speech Communication Association (INTERSPEECH 2010), 1045–1048.spa
dc.relation.referencesKim, Y. (2014). Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 1746-1751).spa
dc.relation.referencesJurafsky, D., & Martin, J. H. (2023). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition (3rd ed., draft). Stanford University & University of Colorado at Boulder.spa
dc.relation.referencesMikolov, T., Corrado, G., Chen, K., & Dean, J. (2013). Efficient estimation of word representations in vector space (arXiv:1301.3781v3) [cs.CL]. https://arxiv.org/abs/1301.3781spa
dc.relation.referencesPennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors for word representation. Stanford University. https://nlp.stanford.edu/pubs/glove.pdfspa
dc.relation.referencesBlei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022. https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdfspa
dc.relation.referencesSee, A., Liu, P. J., & Manning, C. D. (2017). Get to the point: Summarization with pointer-generator networks (arXiv:1704.04368v2). https://arxiv.org/abs/1704.04368spa
dc.relation.referencesRadford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners (OpenAI). https://openai.com/research/language-unsupervisedspa
dc.relation.referencesBrown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., & Amodei, D. (2020). Language models are few-shot learners (arXiv:2005.14165v4). https://arxiv.org/abs/2005.14165spa
dc.relation.referencesVaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need (arXiv:1706.03762v7). https://arxiv.org/abs/1706.03762spa
dc.relation.referencesBunke, H., & Shearer, K. (1998). A graph distance metric based on the maximal common subgraph. Pattern Recognition Letters, 19(3), 255–259.spa
dc.relation.referencesCha, S.H. (2007) Comprehensive Survey on Distance Similarity Measures between Probability Density Functions. International Journal of Mathematical Models and Methods in Applied Sciences, 4, 300-307.spa
dc.relation.referencesNovak, J. D., & Cañas, A. J. (2008). The theory underlying concept maps and how to construct and use them. IHMC CmapTools.spa
dc.relation.referencesCañas, A. J., Hill, G., Carff, R., Suri, N., & Jammer, M. (2004). CmapTools: A knowledge modeling and sharing environment. In Concept Maps: Theory, Methodology, Technology, Proceedings of the 1st International Conference on Concept Mapping (pp. 1–7). Universidad Pública de Navarra. Pamplona, Spain.spa
dc.relation.referencesNewman, M. (2010). Networks: An introduction (1st ed.). Oxford University Press.spa
dc.relation.referencesPage, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71.spa
dc.relation.referencesNurrokhim, M. F. (2019). Generating mind map from an article using machine learning. Journal of Physics: Conference Series, 1280(032023).spa
dc.relation.referencesZhang, Z., Hu, M., Bai, Y. H., & Zhang, Z. (2023). Coreference Graph Guidance for Mind-Map Generation. arXiv preprint arXiv:2312.11997 [cs.CL]. https://doi.org/10.48550/arXiv.2312.11997.spa
dc.relation.referencesKoul, A., Patani, R., Dasmohapatra, S. P., & Tawde, P. (2022). Mind Map Generator. International Journal of Scientific Development and Research (IJSDR), 7(11), 569. ISSN: 2455-2631.spa
dc.relation.referencesYang, C., Zhang, J., Wang, H., Li, B., & Han, J. (2021). Neural concept map generation for effective document classification with interpretable structured summarization. Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 1-10.spa
dc.relation.referencesWen, Y., Wang, Z., & Sun, J. (2024). MindMap: Knowledge graph prompting sparks graph of thoughts in large language models (arXiv:2308.08361v5).spa
dc.relation.referencesWei, Y., Guo, H., Wei, J., & Su, Z. (2019). Revealing semantic structures of texts: Multi-grained framework for automatic mind-map generation. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19) (pp. 1234-1240).spa
dc.relation.referencesHu, M., Guo, H., Zhao, S., Gao, H., & Su, Z. (2020). Efficient mind-map generation via sequence-to-graph and reinforced graph refinement. Proceedings of the International Conference on Artificial Intelligence and Knowledge Engineering, 1-8.spa
dc.relation.referencesKudeli, R., Konecki, M., & Malekovi, M. (2011). Mind map generator software model with text mining algorithm. Nombre de la conferencia, Páginas del artículo. DOI: 10.13140/RG.2.1.1455.5601spa
dc.relation.referencesAn, S., Zhang, S., Guo, T., Lu, S., Zhang, W., & Cai, Z. (2025). Impacts of generative AI on student teachers' task performance and collaborative knowledge construction process in mind mapping-based collaborative environment. Computers & Education, 227, 105227.spa
dc.relation.referencesFang, M., Abdallah, A. K., & Vorfolomeyeva, O. (2024). Collaborative AI-enhanced digital mind-mapping as a tool for stimulating creative thinking in inclusive education for students with neurodevelopmental disorders. BMC Psychology, 12, 488.spa
dc.relation.referencesAlneyadi, S., Al-tkhayneh, T. K., & Abulibdeh, E. S. (2023). Examining science teachers' integration of STEM and AI through mind mapping. In Proceedings of the International Arab Conference of Information Technology (ACIT23), Ajman University.spa
dc.relation.referencesLin, C.-J., & Mubarok, H. (2021). Learning analytics for investigating the mind map-guided AI chatbot approach in an EFL flipped speaking classroom. Educational Technology & Society, 24(4), 16-35.spa
dc.relation.referencesGuerrero, J. M. (2020). Mind mapping in artificial intelligence for data democracy. In Data democracy: At the nexus of artificial intelligence, software development, and knowledge engineering (pp. 45-82).spa
dc.relation.referencesAl Qabani, B. A., & Kurdy, M.-B. (2022). A system for mind map generation from Arabic text using machine learning. In Proceedings of the Seventh International Congress on Information and Communication Technology (pp. 223-231).spa
dc.relation.referencesAbdeen, Mohammad & El-Sahan, R. & Ismaeil, A. & El-Harouny, S. & Shalaby, M. & Yagoub, Mustapha. (2009). Direct automatic generation of mind maps from text with M2Gen. 95 - 99. 10.1109/TIC-STH.2009.5444360.spa
dc.relation.referencesSaelan, A., & Purwarianti, A. (2013). Generating mind map from Indonesian text using natural language processing tools. Procedia Technology, 11, 1163-1169. https://doi.org/10.1016/j.protcy.2013.12.309spa
dc.relation.referencesChen, X., Xie, H., & Zou, D. (2023). ChatGPT for generating stories and mind-maps in storytelling. In Proceedings of the 2023 10th International Conference on Behavioural and Social Computing (BESC).spa
dc.relation.referencesElhoseiny, M., & Elgammal, A. (2012). English2MindMap: An automated system for mind map generation from English text. In Proceedings of the 2012 IEEE International Symposium on Multimedia (pp. 613-616). IEEE. https://doi.org/10.1109/ISM.2012.103 Pichai, S., Hassabis, D., & Kavukcuoglu, K. (2024, diciembre 11). Presentamos Gemini 2.0: nuestro nuevo modelo de IA para la era de la agencia. Google Blog.spa
dc.relation.referencesNovak, J. D., & Gowin, D. B. (1984). Learning how to learn. Cambridge University Press.spa
dc.relation.referencesRuiz-Primo, M. A., & Shavelson, R. J. (1996). Problems and issues in the use of concept maps in science assessment. Journal of Research in Science Teaching, 33(6), 569–600. https://doi.org/10.1002/(SICI)1098-2736(199608)33:6<569::AID-TEA1>3.0.CO;2-Mspa
dc.relation.referencesBuzan, T. (2006). The Mind Map Book: Unlock your creativity, boost your memory, change your life. BBC Active.spa
dc.relation.referencesNovak, J. D. (1998). Learning, creating, and using knowledge: Concept maps as facilitative tools in schools and corporations. Lawrence Erlbaum Associates Publishers.spa
dc.relation.referencesNesbit, J. C., & Adesope, O. O. (2006). Learning with concept and knowledge maps: A meta-analysis. Review of Educational Research, 76(3), 413–448. https://doi.org/10.3102/00346543076003413spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.lembMapeo conceptual - Procesamiento de datos
dc.subject.lembAnálisis de información - Procesamiento de datos
dc.subject.lembAnálisis de contenido - Procesamiento de datos
dc.subject.lembAprendizaje automático (Inteligencia artificial)
dc.subject.lembProgramas para computador - Control de calidad
dc.subject.proposalMapas mentalesspa
dc.subject.proposalCalidad de softwarespa
dc.subject.proposalmodelos de lenguajespa
dc.subject.proposalMind mapseng
dc.subject.proposalMachine learningeng
dc.subject.proposalSoftware qualityeng
dc.subject.proposalLarge language modelseng
dc.titleUn método para generación de mapas mentales a partir de un dataset de artículos científicos en el contexto de calidad de software mediante técnicas de machine learningspa
dc.title.translatedA method for generating mind maps from a dataset of scientific articles in the context of software quality using machine learning techniqueseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152213959.2025.pdf
Tamaño:
2.75 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Analítica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: