Un método para generación de mapas mentales a partir de un dataset de artículos científicos en el contexto de calidad de software mediante técnicas de machine learning
dc.contributor.advisor | Espinosa Bedoya, Albeiro | |
dc.contributor.author | Tobón Villegas, Angela María | |
dc.date.accessioned | 2025-06-20T13:21:25Z | |
dc.date.available | 2025-06-20T13:21:25Z | |
dc.date.issued | 2025 | |
dc.description | Ilustraciones, gráficos | spa |
dc.description.abstract | En los últimos años, el análisis de grandes volúmenes de texto ha ganado relevancia en diversas disciplinas, especialmente con el avance de las técnicas de machine learning y el procesamiento de lenguaje natural. En particular, la investigación sobre calidad de software ha generado una gran cantidad de artículos científicos que, debido a su complejidad y volumen, dificultan la comprensión rápida y la identificación de las ideas clave. Una posible solución a este problema es el uso de herramientas automáticas que ayuden a visualizar las relaciones entre los conceptos clave de manera más accesible. En este estudio, se propone un enfoque para generar mapas mentales a partir de un conjunto de artículos científicos relacionados con la calidad de software, utilizando un modelo de lenguaje grande (LLM) como técnica principal. El objetivo es crear representaciones gráficas que permitan identificar las conexiones y temas principales de manera eficiente, simplificando la comprensión del contenido. Para lograr este objetivo, se llevó a cabo una revisión de la literatura para identificar las mejores técnicas de análisis de texto y generación de representaciones jerárquicas. Se decidió optar por el uso de un modelo de lenguaje grande (LLM) debido a su capacidad sobresaliente para procesar grandes volúmenes de texto y capturar relaciones semánticas complejas. Los LLM, entrenados en variados corpus de texto, tienen la capacidad de identificar patrones y extraer conceptos clave con alta precisión, lo que los convierte en una opción ideal para generar mapas mentales detallados y efectivos. En este caso, se implementó un código en Python utilizando el modelo Gemini-1.5-Flash, que, en su versión gratuita disponible en el momento del estudio, permitió realizar múltiples iteraciones para ajustar el modelo y obtener resultados más precisos. Los resultados demostraron que la alternativa propuesta es una herramienta eficaz para la generación de mapas mentales, con un resultado promedio de 88%. La capacidad del modelo para realizar múltiples iteraciones de manera eficiente, utilizando recursos computacionales limitados, abre la posibilidad de explorar otras herramientas de grandes modelos de lenguaje (LLM) y evaluar su desempeño en tareas de análisis cuantitativo de información en otros dominios, como la investigación académica o la ingeniería de software. (Tomado de la fuente) | spa |
dc.description.abstract | In recent years, the analysis of large volumes of text has gained relevance in various disciplines, especially with the advancement of machine learning techniques and natural language processing. In particular, research on software quality has generated a significant number of scientific articles that, due to their complexity and volume, make it difficult to quickly understand and identify key ideas. A possible solution to this problem is the use of automated tools to help visualize the relationships between key concepts in a more accessible way. This study proposes an approach to generate mind maps from a set of scientific articles related to software quality, using a large language model (LLM) as the main technique. The goal is to create graphical representations that allow for the efficient identification of connections and key themes, simplifying the understanding of the content. To achieve this goal, a literature review was conducted to identify the best techniques for text analysis and the generation of hierarchical representations. The decision was made to use a large language model (LLM) due to its outstanding ability to process large volumes of text and capture complex semantic relationships. LLMs, trained on diverse text corpora, have the capacity to identify patterns and extract key concepts with high precision, making them an ideal choice for generating detailed and effective mind maps. In this case, a Python code was implemented using the Gemini-1.5-Flash model, which, in its free version available at the time of the study, allowed for multiple iterations to fine-tune the model and obtain more accurate results. The results demonstrated that the proposed alternative is an effective tool for generating mind maps, with an average result of 88%. The model's ability to perform multiple iterations efficiently, using limited computational resources, opens up the possibility of exploring other large language model (LLM) tools and evaluating their performance in quantitative information analysis tasks in other domains, such as academic research or software engineering. | eng |
dc.description.curriculararea | Ingeniería De Sistemas E Informática.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Analítica | spa |
dc.format.extent | 99 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88239 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Analítica | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Buzan, T. (2010). The Mind Map Book: Unlock your creativity, boost your memory, change your life. (1ª edición Vintage). BBC Active, an imprint of Educational Publishers LLP, part of the Pearson Education Group. | spa |
dc.relation.references | Tucker, J. M., Armstrong, G. R. & Massad, V. J. (2010). Profilling a mind map user: a descriptive appraisal. Journal of Instructional Pedagogies, 2, 1-13. | spa |
dc.relation.references | Beel, Joeran & Langer, Stefan & Kapitsaki, Georgia & Gipp, Bela. (2014). Mind-Map based User Modelling and Research Paper Recommendations. | spa |
dc.relation.references | Beel, Joeran. (2017). Towards Effective Research-Paper Recommender Systems and User Modeling based on Mind Maps. | spa |
dc.relation.references | Beel, J., & Gipp, B. (2010). Link analysis in mind maps: a new approach to determining document relatedness. En Proceedings of the 4th International Conference on Ubiquitous Information Management and Communication (ICUIMC '10) (páginas 1–5). DOI: 10.1145/2108616.2108662. | spa |
dc.relation.references | Dere, V.K., Sawant, M., Yadav, S., & Patil, D.K. (2021). IMAPGINE: MIND MAP GENERATION TOOL USING AI TECHNOLOGIES. | spa |
dc.relation.references | Erdem, A.R. (2017). Mind Maps as a Lifelong Learning Tool. Universal Journal of Educational Research, 5, 1-7. | spa |
dc.relation.references | Arulselvi, E. (2017). 50 Mind Maps in Classroom Teaching and Learning. The Excellence in Education Journal, 6(2), Summer, 50. | spa |
dc.relation.references | Bobadilla, J. (2021). Machine Learning y Deep Learning: Usando Python, Scikit y Keras. Ediciones de la U. https://doi.org/ISBN: 9587921461 | spa |
dc.relation.references | Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. | spa |
dc.relation.references | Mikolov, T., Karafiát, M., Burget, L., Černocký, J., & Khudanpur, S. (2010). Recurrent neural network based language model. In Proceedings of the 11th Annual Conference of the International Speech Communication Association (INTERSPEECH 2010), 1045–1048. | spa |
dc.relation.references | Kim, Y. (2014). Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 1746-1751). | spa |
dc.relation.references | Jurafsky, D., & Martin, J. H. (2023). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition (3rd ed., draft). Stanford University & University of Colorado at Boulder. | spa |
dc.relation.references | Mikolov, T., Corrado, G., Chen, K., & Dean, J. (2013). Efficient estimation of word representations in vector space (arXiv:1301.3781v3) [cs.CL]. https://arxiv.org/abs/1301.3781 | spa |
dc.relation.references | Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors for word representation. Stanford University. https://nlp.stanford.edu/pubs/glove.pdf | spa |
dc.relation.references | Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022. https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf | spa |
dc.relation.references | See, A., Liu, P. J., & Manning, C. D. (2017). Get to the point: Summarization with pointer-generator networks (arXiv:1704.04368v2). https://arxiv.org/abs/1704.04368 | spa |
dc.relation.references | Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners (OpenAI). https://openai.com/research/language-unsupervised | spa |
dc.relation.references | Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., & Amodei, D. (2020). Language models are few-shot learners (arXiv:2005.14165v4). https://arxiv.org/abs/2005.14165 | spa |
dc.relation.references | Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need (arXiv:1706.03762v7). https://arxiv.org/abs/1706.03762 | spa |
dc.relation.references | Bunke, H., & Shearer, K. (1998). A graph distance metric based on the maximal common subgraph. Pattern Recognition Letters, 19(3), 255–259. | spa |
dc.relation.references | Cha, S.H. (2007) Comprehensive Survey on Distance Similarity Measures between Probability Density Functions. International Journal of Mathematical Models and Methods in Applied Sciences, 4, 300-307. | spa |
dc.relation.references | Novak, J. D., & Cañas, A. J. (2008). The theory underlying concept maps and how to construct and use them. IHMC CmapTools. | spa |
dc.relation.references | Cañas, A. J., Hill, G., Carff, R., Suri, N., & Jammer, M. (2004). CmapTools: A knowledge modeling and sharing environment. In Concept Maps: Theory, Methodology, Technology, Proceedings of the 1st International Conference on Concept Mapping (pp. 1–7). Universidad Pública de Navarra. Pamplona, Spain. | spa |
dc.relation.references | Newman, M. (2010). Networks: An introduction (1st ed.). Oxford University Press. | spa |
dc.relation.references | Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. | spa |
dc.relation.references | Nurrokhim, M. F. (2019). Generating mind map from an article using machine learning. Journal of Physics: Conference Series, 1280(032023). | spa |
dc.relation.references | Zhang, Z., Hu, M., Bai, Y. H., & Zhang, Z. (2023). Coreference Graph Guidance for Mind-Map Generation. arXiv preprint arXiv:2312.11997 [cs.CL]. https://doi.org/10.48550/arXiv.2312.11997. | spa |
dc.relation.references | Koul, A., Patani, R., Dasmohapatra, S. P., & Tawde, P. (2022). Mind Map Generator. International Journal of Scientific Development and Research (IJSDR), 7(11), 569. ISSN: 2455-2631. | spa |
dc.relation.references | Yang, C., Zhang, J., Wang, H., Li, B., & Han, J. (2021). Neural concept map generation for effective document classification with interpretable structured summarization. Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 1-10. | spa |
dc.relation.references | Wen, Y., Wang, Z., & Sun, J. (2024). MindMap: Knowledge graph prompting sparks graph of thoughts in large language models (arXiv:2308.08361v5). | spa |
dc.relation.references | Wei, Y., Guo, H., Wei, J., & Su, Z. (2019). Revealing semantic structures of texts: Multi-grained framework for automatic mind-map generation. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19) (pp. 1234-1240). | spa |
dc.relation.references | Hu, M., Guo, H., Zhao, S., Gao, H., & Su, Z. (2020). Efficient mind-map generation via sequence-to-graph and reinforced graph refinement. Proceedings of the International Conference on Artificial Intelligence and Knowledge Engineering, 1-8. | spa |
dc.relation.references | Kudeli, R., Konecki, M., & Malekovi, M. (2011). Mind map generator software model with text mining algorithm. Nombre de la conferencia, Páginas del artículo. DOI: 10.13140/RG.2.1.1455.5601 | spa |
dc.relation.references | An, S., Zhang, S., Guo, T., Lu, S., Zhang, W., & Cai, Z. (2025). Impacts of generative AI on student teachers' task performance and collaborative knowledge construction process in mind mapping-based collaborative environment. Computers & Education, 227, 105227. | spa |
dc.relation.references | Fang, M., Abdallah, A. K., & Vorfolomeyeva, O. (2024). Collaborative AI-enhanced digital mind-mapping as a tool for stimulating creative thinking in inclusive education for students with neurodevelopmental disorders. BMC Psychology, 12, 488. | spa |
dc.relation.references | Alneyadi, S., Al-tkhayneh, T. K., & Abulibdeh, E. S. (2023). Examining science teachers' integration of STEM and AI through mind mapping. In Proceedings of the International Arab Conference of Information Technology (ACIT23), Ajman University. | spa |
dc.relation.references | Lin, C.-J., & Mubarok, H. (2021). Learning analytics for investigating the mind map-guided AI chatbot approach in an EFL flipped speaking classroom. Educational Technology & Society, 24(4), 16-35. | spa |
dc.relation.references | Guerrero, J. M. (2020). Mind mapping in artificial intelligence for data democracy. In Data democracy: At the nexus of artificial intelligence, software development, and knowledge engineering (pp. 45-82). | spa |
dc.relation.references | Al Qabani, B. A., & Kurdy, M.-B. (2022). A system for mind map generation from Arabic text using machine learning. In Proceedings of the Seventh International Congress on Information and Communication Technology (pp. 223-231). | spa |
dc.relation.references | Abdeen, Mohammad & El-Sahan, R. & Ismaeil, A. & El-Harouny, S. & Shalaby, M. & Yagoub, Mustapha. (2009). Direct automatic generation of mind maps from text with M2Gen. 95 - 99. 10.1109/TIC-STH.2009.5444360. | spa |
dc.relation.references | Saelan, A., & Purwarianti, A. (2013). Generating mind map from Indonesian text using natural language processing tools. Procedia Technology, 11, 1163-1169. https://doi.org/10.1016/j.protcy.2013.12.309 | spa |
dc.relation.references | Chen, X., Xie, H., & Zou, D. (2023). ChatGPT for generating stories and mind-maps in storytelling. In Proceedings of the 2023 10th International Conference on Behavioural and Social Computing (BESC). | spa |
dc.relation.references | Elhoseiny, M., & Elgammal, A. (2012). English2MindMap: An automated system for mind map generation from English text. In Proceedings of the 2012 IEEE International Symposium on Multimedia (pp. 613-616). IEEE. https://doi.org/10.1109/ISM.2012.103 Pichai, S., Hassabis, D., & Kavukcuoglu, K. (2024, diciembre 11). Presentamos Gemini 2.0: nuestro nuevo modelo de IA para la era de la agencia. Google Blog. | spa |
dc.relation.references | Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. Cambridge University Press. | spa |
dc.relation.references | Ruiz-Primo, M. A., & Shavelson, R. J. (1996). Problems and issues in the use of concept maps in science assessment. Journal of Research in Science Teaching, 33(6), 569–600. https://doi.org/10.1002/(SICI)1098-2736(199608)33:6<569::AID-TEA1>3.0.CO;2-M | spa |
dc.relation.references | Buzan, T. (2006). The Mind Map Book: Unlock your creativity, boost your memory, change your life. BBC Active. | spa |
dc.relation.references | Novak, J. D. (1998). Learning, creating, and using knowledge: Concept maps as facilitative tools in schools and corporations. Lawrence Erlbaum Associates Publishers. | spa |
dc.relation.references | Nesbit, J. C., & Adesope, O. O. (2006). Learning with concept and knowledge maps: A meta-analysis. Review of Educational Research, 76(3), 413–448. https://doi.org/10.3102/00346543076003413 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación | spa |
dc.subject.lemb | Mapeo conceptual - Procesamiento de datos | |
dc.subject.lemb | Análisis de información - Procesamiento de datos | |
dc.subject.lemb | Análisis de contenido - Procesamiento de datos | |
dc.subject.lemb | Aprendizaje automático (Inteligencia artificial) | |
dc.subject.lemb | Programas para computador - Control de calidad | |
dc.subject.proposal | Mapas mentales | spa |
dc.subject.proposal | Calidad de software | spa |
dc.subject.proposal | modelos de lenguaje | spa |
dc.subject.proposal | Mind maps | eng |
dc.subject.proposal | Machine learning | eng |
dc.subject.proposal | Software quality | eng |
dc.subject.proposal | Large language models | eng |
dc.title | Un método para generación de mapas mentales a partir de un dataset de artículos científicos en el contexto de calidad de software mediante técnicas de machine learning | spa |
dc.title.translated | A method for generating mind maps from a dataset of scientific articles in the context of software quality using machine learning techniques | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1152213959.2025.pdf
- Tamaño:
- 2.75 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Analítica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: