Concepción del proceso de diseño de un Sistema Híbrido de Almacenamiento de Energía compuesto por baterías y supercondensadores, con aplicación a microrredes eléctricas residenciales

dc.contributor.advisorCortés Guerrero, Camilo Andrés
dc.contributor.advisorTrujillo Rodríguez, César Leonardo
dc.contributor.authorNarváez Cubillos, Eider Alexander
dc.contributor.cvlacNarvaez Cubillos, Eider Alexander [0000593966]spa
dc.contributor.orcidNarvaez, Alexander [0000000204444691]spa
dc.contributor.researchgroupGrupo de Investigación Emc-Unspa
dc.date.accessioned2024-07-16T20:36:20Z
dc.date.available2024-07-16T20:36:20Z
dc.date.issued2024-01-30
dc.descriptionilustraciones, diagramas, fotografías, gráficas, tablasspa
dc.description.abstractEl presente documento de Tesis de Doctorado aborda de forma integral las diferentes etapas en materia diseño e implementación de un Sistema de Almacenamiento Híbrido de Almacenamiento de Energía (SHAE), compuesto por baterías de la familia de iones de litio y supercondensadores, con una aplicación potencial para microrredes eléctricas de tipo residencial. La forma de interconectar los elementos de almacenamiento y las características operativas de este tipo de sistemas eléctricos, generan condiciones específicas para el diseño, construcción y operación de los sistemas de almacenamiento de energía. Si bien las exigencias para los sistemas de almacenamiento de energía en microrredes residenciales, respecto a grandes densidades de potencia o de energía, no son muy altas, el cambio porcentual tan alto en los parámetros de corriente o potencia, cuando se conectan o se desconectan cargas o cuando hay pulsos o intermitencias en la generación local, propician un alto estrés eléctrico en las baterías, lo que conlleva a una disminución en su vida útil. Con la integración de un elemento almacenador que maneje un alto número de ciclos de carga y descarga, al igual que altas densidades de potencia, como es el caso de los condensadores de doble capa o supercondensadores, se puede reducir significativamente el estrés eléctrico de la batería y la vez prolongar su vida útil. Los objetivos del presente proyecto de investigación fueron formulados y desarrollados en torno a las actividades de definición y diseño de los algoritmos de control, evaluación y selección de las topologías para la interconexión y finalmente las etapas de diseño y construcción de un SHAE en una microrred DC de tipo residencial (Texto tomado de la fuente)spa
dc.description.abstractThe present Doctoral Thesis document comprehensively addresses the different stages regarding the design and implementation of a Hybrid Energy Storage System (HESS), composed of lithium-ion batteries and supercapacitors, with a potential application for residential-type electric microgrids. The way storage elements are interconnected and the operational characteristics of these types of electrical systems generate specific conditions for the design, construction, and operation of energy storage systems. Although the requirements for energy storage systems in residential microgrids, in terms of high power or energy densities, are not very high, the high percentage change in current or power parameters when loads are connected or disconnected, or when there are pulses or intermittences in local generation, leads to high electrical stress on the batteries, resulting in a decrease in their lifespan. By integrating a storage element capable of handling a high number of charge-discharge cycles, as well as high power densities, such as electric double-layer capacitors or supercapacitors, the electrical stress on the battery can be significantly reduced, thereby prolonging its lifespan. The objectives of this research project were formulated and developed around the activities of definition and design of control algorithms, evaluation and selection of topologies for interconnection, and finally the stages of design and construction of a HESS in a residential-type DC microgrid.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaEnergy storage and microgridsspa
dc.description.sponsorshipUniversidad Distrital Francisco José de Caldasspa
dc.format.extentxvii, 104 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86484
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctricaspa
dc.relation.references[1] M. Molina, Emerging Advanced Energy Storage Systems: Dynamic Modeling, Control and Simulation. Nova Science Publishers, Incorporated, 2013.spa
dc.relation.references[2] DOE, “Summary Report: 2012 DOE Microgrid Workshop,” 2012.spa
dc.relation.references[3] C. Trujillo et al., Microrredes eléctricas, 1st ed. Bogotá: Universidad Distrital Francisco José de Caldas, 2015.spa
dc.relation.references[4] N. D. Hatziargyriou, Microgrids. Architecture and control. Wiley, 2014.spa
dc.relation.references[5] E. Rodriguez-Diaz, J. C. Vasquez, and J. M. Guerrero, “Intelligent DC Homes in Future Sustainable Energy Systems: When efficiency and intelligence work together,” IEEE Consum. Electron. Mag., vol. 5, no. 1, pp. 74–80, 2016.spa
dc.relation.references[6] S. D. Percy, M. Aldeen, C. N. Rowe, and A. Berry, “A comparison between capacity, cost and degradation in Australian residential battery systems,” in 2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia), 2016, pp. 202–207.spa
dc.relation.references[7] M. I. Fahmi, R. K. Rajkumar, R. Arelhi, and D. Isa, “Study on the effect of supercapacitors in solar PV system for rural application in Malaysia,” in Proceedings of the Universities Power Engineering Conference, 2015, vol. 2015-Novem.spa
dc.relation.references[8] G. Comodi et al., “Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental analysis and simulation of energy management strategies,” Appl. Energy, vol. 137, pp. 854–866, 2015.spa
dc.relation.references[9] H. Kakigano, Y. Miura, and T. Ise, “Configuration and control of a DC microgrid for residential houses,” in Transmission and Distribution Conference and Exposition: Asia and Pacific, T and D Asia 2009, 2009, pp. 1–4.spa
dc.relation.references[10] K. Clement-Nyns, Impact of Plug-in Hybrid Electric Vehicles on the electricity system. Doctoral Thesis. Katholieke Universiteit Leuven, 2010.spa
dc.relation.references[11] G. Joos, M. De Freige, and M. Dubois, “Design and simulation of a fast charging station for PHEV/EV batteries,” EPEC 2010 - IEEE Electr. Power Energy Conf. “Sustainable Energy an Intell. Grid,” 2010.spa
dc.relation.references[12] A. Gonzalez, E. Goikolea, J. A. Barrena, and R. Mysyk, “Review on supercapacitors: Technologies and materials,” Renew. Sustain. Energy Rev., vol. 58, pp. 1189–1206, 2016.spa
dc.relation.references[13] T. Bocklisch, “Hybrid energy storage systems for renewable energy applications,” Energy Procedia, vol. 73, pp. 103–111, 2015.spa
dc.relation.references[14] D. O. Akinyele and R. K. Rayudu, “Review of energy storage technologies for sustainable power networks,” Sustain. Energy Technol. Assessments, vol. 8, pp. 74–91, 2014.spa
dc.relation.references[15] J. Jiang, Y. Bao, and L. Y. Wang, “Topology of a bidirectional converter for energy interaction between electric vehicles and the grid,” Energies, vol. 7, no. 8, pp. 4858–4894, 2014.spa
dc.relation.references[16] QUANTA TECHNOLOGY, “Electric Energy Storage Systems.” [Online]. Available: http://quanta-technology.com/sites/default/files/doc-files/Energy_Storage-12-01-13.pdfspa
dc.relation.references[17] A. Kuperman and I. Aharon, “Battery-ultracapacitor hybrids for pulsed current loads: A review,” Renew. Sustain. Energy Rev., vol. 15, no. 2, pp. 981–992, 2011.spa
dc.relation.references[18] M. Chowdhury, “Grid integration impacts and energy storage systems for wind energy applications—A review,” IEEE Power Energy Soc. Gen. Meet., pp. 1–8, 2011.spa
dc.relation.references[19] UNITED STATES COUNCIL FOR AUTOMOTIVE RESEARCH LLC, “Energy Storage System Goals.” [Online]. Available: http://www.uscar.org/guest/article_view.php?articles_id=85.spa
dc.relation.references[20] S. F. Tie and C. W. Tan, “A review of energy sources and energy management system in electric vehicles,” Renew. Sustain. Energy Rev., vol. 20, pp. 288–292, 2013.spa
dc.relation.references[21] G. Ren, G. Ma, and N. Cong, “Review of electrical energy storage system for vehicular applications,” Renew. Sustain. Energy Rev., vol. 41, pp. 225–236, 2015.spa
dc.relation.references[22] M. B. Camara, H. Gualous, F. Gustin, and A. Berthon, “Design and new control of DC/DC converters to share energy between supercapacitors and batteries in hybrid vehicles,” IEEE Trans. Veh. Technol., vol. 57, no. 5, pp. 2721–2735, 2008.spa
dc.relation.references[23] B. H. Lee et al., “A study on hybrid energy storage system for 42V automotive power-net,” 2006 IEEE Veh. Power Propuls. Conf. VPPC 2006, 2006.spa
dc.relation.references[24] W. Henson, “Optimal battery/ultracapacitor storage combination,” J. Power Sources, vol. 179, no. 1, pp. 417–423, 2008.spa
dc.relation.references[25] H. Yoo, S.-K. Sul, Y. Park, and J. Jeong, “System Integration and Power-Flow Management for a Series Hybrid Electric Vehicle Using Supercapacitors and Batteries,” IEEE Trans. Ind. Appl., vol. 44, no. 1, pp. 108–114, 2008.spa
dc.relation.references[26] S. Lu, K. A. Corzine, and M. Ferdowsi, “A new battery/ultracapacitor energy storage system design and its motor drive integration for hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 56, no. 4 I, pp. 1516–1523, 2007.spa
dc.relation.references[27] N. S. Chouhan and M. Ferdowsi, “Review of energy storage systems,” 41st North Am. Power Symp., pp. 1–5, 2009.spa
dc.relation.references[28] F. Díaz-González, A. Sumper, O. Gomis-Bellmunt, and R. Villafáfila-Robles, “A review of energy storage technologies for wind power applications,” Renew. Sustain. Energy Rev., vol. 16, no. 4, pp. 2154–2171, 2012.spa
dc.relation.references[29] C. Abbey and G. Joos, “Supercapacitor energy storage for wind energy applications,” IEEE Trans. Ind. Appl., vol. 43, no. 3, pp. 769–776, 2007.spa
dc.relation.references[30] J. P. Zheng, T. R. Jow, and M. S. Ding, “Hybrid Power Sources for Pulsed Current Applications,” IEEE Trans. Aerosp. Electron. Syst., vol. 37, no. 1, pp. 298–292, 2001.spa
dc.relation.references[31] W. Jing, C. H. Lai, M. L. Dennis Wong, and W. S. H. Wong, “Smart hybrid energy storage for stand-alone PV microgrid: Optimization of battery lifespan through dynamic power allocation,” Asia-Pacific Power Energy Eng. Conf. APPEEC, pp. 3–7, 2016.spa
dc.relation.references[32] I. Stoppa, J. Lundin, N. Lima, and J. G. Oliveira, “Dual Voltage / Power System By Battery / Flywheel Configuration,” in 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference, COBEP/SPEC 2016, 2015.spa
dc.relation.references[33] I. Toshifumi, K. Masanori, and T. Akira, “A Hybrid Energy Storage With a SMES and Secondary Battery,” IEEE Trans. Appl. Supercond., vol. 15, no. 2, pp. 1915–1918, 2005.spa
dc.relation.references[34] J. Li, R. Xiong, Q. Yang, F. Liang, M. Zhang, and W. Yuan, “Design/test of a hybrid energy storage system for primary frequency control using a dynamic droop method in an isolated microgrid power system,” Appl. Energy, 2016.spa
dc.relation.references[35] L. Shen, W. Qiao, R. Song, G. Xi, and S. Gao, “Characteristics and control strategies of composite energy storages in microgrids,” in China International Conference on Electricity Distribution, CICED, 2016, vol. 2016-Septe, no. Ciced, pp. 10–13.spa
dc.relation.references[36] Z. Jiang and R. A. Dougal, “A compact digitally controlled fuel cell/battery hybrid power source,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1094–1104, 2006.spa
dc.relation.references[37] M. H. Todorovic, L. Palma, and P. N. Enjeti, “DC Converter With a Robust Power Control Scheme Suitable for Fuel Cell Power Conversion,” Ind. Electron. IEEE Trans., vol. 55, no. 3, pp. 1247–1255, 2008.spa
dc.relation.references[38] S. Lemofouet and a. Rufer, “A Hybrid Energy Storage System Based on Compressed Air and Supercapacitors With Maximum Efficiency Point Tracking (MEPT),” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1105–1115, 2006.spa
dc.relation.references[39] S. Parhizi, H. Lotfi, A. Khodaei, and S. Bahramirad, “State of the art in research on microgrids: A review,” IEEE Access, vol. 3, pp. 890–925, 2015.spa
dc.relation.references[40] J. Pascual, I. S. Martin, A. Ursua, P. Sanchis, and L. Marroyo, “Implementation and control of a residential microgrid based on renewable energy sources, hybrid storage systems and thermal controllable loads,” in 2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013, 2013, pp. 2304–2309.spa
dc.relation.references[41] M. Thomann and F. Popescu, “Estimating the effect of domestic load and renewable supply on battery,” Procedia Comput. Sci., vol. 32, pp. 715–722, 2014.spa
dc.relation.references[42] V. Bolborici, F. Dawson, and K. Lian, “Hybrid Energy Storage Systems,” IEEE Ind. Appl. Mag., no. Julyl, pp. 31–40, 2014.spa
dc.relation.references[43] G. Sikha and B. N. Popov, “Performance optimization of a battery-capacitor hybrid system,” J. Power Sources, vol. 134, no. 1, pp. 130–138, 2004.spa
dc.relation.references[44] E. Schaltz, A. Khaligh, and P. O. Rasmussen, “Influence of battery/ultracapacitor energy-storage sizing on battery lifetime in a fuel cell hybrid electric vehicle,” IEEE Trans. Veh. Technol., vol. 58, no. 8, pp. 3882–3891, 2009.spa
dc.relation.references[45] W. Martinez, C. Cortes, and L. Munoz, “Sizing of ultracapacitors and batteries for a high performance electric vehicle,” 2012 IEEE Int. Electr. Veh. Conf. IEVC 2012, 2012.spa
dc.relation.references[46] X. Hu, L. Johannesson, N. Murgovski, and B. Egardt, “Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus,” Appl. Energy, vol. 137, pp. 913–924, 2014.spa
dc.relation.references[47] M. Masih-Tehrani, M. R. Ha’iri-Yazdi, V. Esfahanian, and A. Safaei, “Optimum sizing and optimum energy management of a hybrid energy storage system for lithium battery life improvement,” J. Power Sources, vol. 244, pp. 2–10, 2013.spa
dc.relation.references[48] Z. Song, H. Hofmann, J. Li, X. Han, and M. Ouyang, “Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach,” Appl. Energy, vol. 139, no. Dc, pp. 151–162, 2015.spa
dc.relation.references[49] Z. Song et al., “Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles,” Appl. Energy, vol. 135, pp. 212–224, 2014.spa
dc.relation.references[50] J. Shen, S. Dusmez, and a Khaligh, “Optimization of Sizing and Battery Cycle Life in Battery/UC Hybrid Energy Storage System for Electric Vehicle Applications,” Ind. Informatics, IEEE Trans., vol. PP, no. 99, p. 1, 2014.spa
dc.relation.references[51] M. A. Zamee, D. Han, and D. Won, “Integrated grid forming-grid following inverter fractional order controller based on Monte Carlo Artificial Bee Colony Optimization,” Energy Reports, vol. 9, pp. 57–72, 2023.spa
dc.relation.references[52] Q. Xu, X. Hu, P. Wang, J. Xiao, P. Tu, and C. Wen, “A Decentralized Dynamic Power Sharing Strategy for Hybrid Energy Storage System in Autonomous DC Microgrid,” Ind. Electron. IEEE Trans., vol. 64, no. 7, pp. 5930–5941, 2017.spa
dc.relation.references[53] Q. Xu, J. Xiao, and X. Hu, “Decentralized Power Management Strategy for Hybrid Energy Storage System with Autonomous Bus Voltage Restoration and State of Charge Recovery,” Ind. Electron. IEEE Trans., vol. 0046, no. c, 2017.spa
dc.relation.references[54] D. Sable, R. Ridley, and B. Cho, “Comparison of performance of single-loop and current-injection control for PWM converters that operate in both continuous and discontinuous modes of operation,” IEEE Trans. Power Electron., vol. 7, pp. 136–142, 1992.spa
dc.relation.references[55] Y.-S. Jung, J.-Y. Lee, and M.-J. Youn, “A new small signal modeling of average current mode control,” in PESC Record - IEEE Annual Power Electronics Specialists Conference, 1998, pp. 1118–1124.spa
dc.relation.references[56] R. K. Singh, N. S. Chauhan, and S. Mishra, “A novel average current-mode controller based optimal battery charger for automotive applications,” in 2012 International Conference on Devices, Circuits and Systems, ICDCS 2012, 2012, pp. 135–139.spa
dc.relation.references[57] A. Etxeberria, I. Vechiu, H. Camblong, and J.-M. Vinassa, “Comparison of Sliding Mode and PI Control of a Hybrid Energy Storage System in a Microgrid Application,” Energy Procedia, vol. 12, pp. 966–974, 2011.spa
dc.relation.references[58] A. Etxeberria, I. Vechiu, H. Camblong, and J. M. Vinassa, “Comparison of three topologies and controls of a hybrid energy storage system for microgrids,” Energy Convers. Manag., vol. 54, no. 1, pp. 113–121, 2012.spa
dc.relation.references[59] Q. Xu, P. Wang, J. Xiao, and L. Yeong, “Modeling and Stability Analysis of Hybrid Energy Storage System under Hierarchical Control,” in IEEE Asi Pacific Power and Engineering Conference (APPEEC), 2015, vol. 3, pp. 0–4.spa
dc.relation.references[60] I. Vechiu, A. Etxeberria, H. Camblong, and Q. Tabart, “Control of a Microgrid-Connected Hybrid Energy Storgae System,” in 3rd International Conference on Renewable Energy Research and Applications, 2014, pp. 412–417.spa
dc.relation.references[61] Y. Zhu, F. Zhuo, and F. Wang, “Coordination control of lithium battery-supercapacitor hybrid energy storage system in a microgrid under unbalanced load condition,” 2014 16th Eur. Conf. Power Electron. Appl. EPE-ECCE Eur. 2014, no. 28, 2014.spa
dc.relation.references[62] N. L. Diaz, T. Dragičević, J. C. Vasquez, and J. M. Guerrero, “Intelligent Distributed Generation and Storage Units for DC Microgrids—A New Concept on Cooperative Control Without Communications Beyond Droop Control,” IEEE Trans. Smart Grid, vol. 5, no. 5, pp. 2476–2485, 2014.spa
dc.relation.references[63] N. L. Diaz, T. Dragičević, J. C. Vasquez, and J. M. Guerrero, “Fuzzy-Logic-Based Gain-Scheduling Control for State-of-Charge Balance of Distributed Energy Storage Systems for DC Microgrids,” Appl. Power Electron. Conf. Expo. (APEC), 2014 Twenty-Ninth Annu. IEEE, pp. 2171–2176, 2014.spa
dc.relation.references[64] N. L. Diaz, D. Wu, T. Dragičević, J. C. Vasquez, and J. M. Guerrero, “Fuzzy Droop Control Loops Adjustment for Stored Energy Balance in Distributed Energy Storage System,” 9th Int. Conf. Power Electron. - ECCE Asia "Green World with Power Electron. ICPE 2015-ECCE Asia, pp. 5–12, 2015.spa
dc.relation.references[65] X. Zhang, C. C. Mi, A. Masrur, and D. Daniszewski, “Wavelet-transform-based power management of hybrid vehicles with multiple on-board energy sources including fuel cell, battery and ultracapacitor,” J. Power Sources, vol. 185, no. 2, pp. 1533–1543, 2008.spa
dc.relation.references[66] N. L. Diaz, A. C. Luna, J. C. Vasquez, and J. M. Guerrero, “Energy Management System with Equalization Algorithm for Distributed Energy Storage Systems in PV-Active Generator Based Low Voltage DC Microgrids,” in 2015 IEEE 1st International Conference on Direct Current Microgrids, ICDCM 2015, 2015, pp. 293–298.spa
dc.relation.references[67] Q. Jiang and H. Hong, “Wavelet-Based Capacity Con fi guration and Coordinated Control of Hybrid Energy Storage System for Smoothing Out Wind Power Fluctuations,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1363–1372, 2013.spa
dc.relation.references[68] S. K. Kollimalla, M. K. Mishra, and N. L. Narasamma, “Design and analysis of novel control strategy for battery and supercapacitor storage system,” IEEE Trans. Sustain. Energy, vol. 5, no. 4, pp. 1137–1144, 2014.spa
dc.relation.references[69] N. Mendis, K. M. Muttaqi, and S. Perera, “Management of battery-supercapacitor hybrid energy storage and synchronous condenser for isolated operation of PMSG based variable-speed wind turbine generating systems,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 944–953, 2014.spa
dc.relation.references[70] W. Li, G. Joos, and J. Belanger, “Real-Time Simulation of a Wind Turbine Generator Coupled With a Battery Supercapacitor Energy Storage System,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1137–1145, 2010.spa
dc.relation.references[71] J. Xiao, P. Wang, and L. Setyawan, “Multilevel Energy Management System for Hybridization of Energy Storages in DC Microgrids,” IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 847–856, 2015.spa
dc.relation.references[72] M.-E. Choi, S.-W. Kim, and S.-W. Seo, “Energy Management Optimization in a Battery/Supercapacitor Hybrid Energy Storage System,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 463–472, 2012.spa
dc.relation.references[73] A. Mohamed, V. Salehi, and O. Mohammed, “Real-time energy management algorithm for mitigation of pulse loads in hybrid microgrids,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1911–1922, 2012.spa
dc.relation.references[74] R. A. Dougal, S. Liu, and R. E. White, “Power and life extension of battery-ultracapacitor hybrids,” IEEE Trans. Components Packag. Technol., vol. 25, no. 1, pp. 120–131, 2002.spa
dc.relation.references[75] A. Khaligh, “Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-In Hybrid Electric Vehicles: State of the Art,” IEEE Trans. Veh. Technol., vol. 59, no. 6, pp. 2806–2814, 2010.spa
dc.relation.references[76] S. Y. Kan, M. Verwaal, and H. Broekhuizen, “The use of battery-capacitor combinations in photovoltaic powered products,” J. Power Sources, vol. 162, no. 2 SPEC. ISS., pp. 971–974, 2006.spa
dc.relation.references[77] A. Lahyani, P. Venet, A. Guermazi, and A. Troudi, “Battery/Supercapacitors Combination in Uninterruptible Power Supply (UPS),” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1509–1522, 2013.spa
dc.relation.references[78] Y. Zhan, Y. Guo, J. Zhu, and L. Li, “Power and energy management of grid / PEMFC / battery / supercapacitor hybrid power sources for UPS applications,” Electr. Power Energy Syst., vol. 67, pp. 598–612, 2015.spa
dc.relation.references[79] M. Ortúzar, J. Moreno, and J. Dixon, “Ultracapacitor-based auxiliary energy system for an electric vehicle: Implementation and evaluation,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2147–2156, 2007.spa
dc.relation.references[80] J. Sanfélix, M. Messagie, N. Omar, J. Van Mierlo, and V. Hennige, “Environmental performance of advanced hybrid energy storage systems for electric vehicle applications,” Appl. Energy, vol. 137, pp. 925–930, 2014.spa
dc.relation.references[81] A. Etxeberria, I. Vechiu, and H. Camblong, “Hybrid Energy Storage Systems for Renewable Energy Sources Integration in Microgrids : A Review,” Power Electron. Conf. Int., pp. 532–537, 2010.spa
dc.relation.references[82] W. Gebremedihn, “Bi-directional power converters for smart grids: Isolated bidirectional DC-DC converter,” Norwegian University of Science and Technology, 2014.spa
dc.relation.references[83] K. Tytelmaier, O. Husev, O. Veligorskyi, and R. Yershov, “A review of non-isolated bidirectional dc-dc converters for energy storage systems,” 2016 II Int. Young Sci. Forum Appl. Phys. Eng., pp. 22–28, 2016.spa
dc.relation.references[84] R. W. Erickson and D. Maksimović, Fundamentals of Power Electronics, vol. 59. Cham: Springer International Publishing, 2020.spa
dc.relation.references[85] J. Armenta, C. Núñez, N. Visairo, and I. Lázaro, “An advanced energy management system for controlling the ultracapacitor discharge and improving the electric vehicle range,” J. Power Sources, vol. 284, pp. 452–458, 2015.spa
dc.relation.references[86] J. Cao and A. Emadi, “A New Battery/UltraCapacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122–132, 2012.spa
dc.relation.references[87] B. Wang, J. Xu, B. Cao, and X. Zhou, “A novel multimode hybrid energy storage system and its energy management strategy for electric vehicles,” J. Power Sources, vol. 281, pp. 432–443, 2015.spa
dc.relation.references[88] I. J. Cohen, S. S. Member, J. P. Kelley, D. a Wetz, and J. Heinzel, “Evaluation of a Hybrid Energy Storage Module for Pulsed Power Applications,” IEEE Trans. Plasma Sci., vol. 42, no. 10, pp. 2948–2955, 2014.spa
dc.relation.references[89] A. Narvaez, C. Cortes, and C. L. Trujillo, “Comparative analysis of topologies for the interconnection of Batteries and Supercapacitors in a Hybrid Energy Storage System,” in IEEE 8th International Symposium on Power Electronics for Distributed Generation, 2017.spa
dc.relation.references[90] E. A. N. L.C.Hernandez, J.S Rojas, C.L. Trujillo, “Comparación de dos topologías activas de almacenamiento Híbrido en el contexto de las microrredes eléctricas,” in 26° seminario anual, automática, electrónica industrial e instrumentación. Libro de Actas, 2019, no. July, pp. 528–533.spa
dc.relation.references[91] E. A. Narvaez Cubillos, C. A. Cortés Guerrero, and C. L. Trujillo Rodríguez, “Topologies for Battery and Supercapacitor Interconnection in Residential Microgrids with Intermittent Generation,” Ingeniería, vol. 25, no. 1, pp. 6–19, 2020.spa
dc.relation.references[92] A. Narvaez, C. Cortes, and C. Trujillo, “Real-Time Frequency-Decoupling Control for a Hybrid Energy Storage System in an Active Parallel Topology Connected to a Residential Microgrid with Intermittent Generation,” in Applied Computer Sciences in Engineering, 2018, pp. 596–605.spa
dc.relation.references[93] J. M. Guerrero, M. Chandorkar, T. Lee, and P. C. Loh, “Advanced Control Architectures for Intelligent Microgrids; Part I: Decentralized and Hierarchical Control,” Ind. Electron. IEEE Trans., vol. 60, no. 4, pp. 1254–1262, 2013.spa
dc.relation.references[94] N. Vukajlović, D. Milićević, B. Dumnić, and B. Popadić, “Comparative analysis of the supercapacitor influence on lithium battery cycle life in electric vehicle energy storage,” J. Energy Storage, vol. 31, no. May, p. 101603, 2020.spa
dc.relation.references[95] L. Dixon, “Average Current Mode Control of Switching Power Supplies,” Unitrode Switch. Regul. Power Supply Des. Appl. Note, pp. 3.356-3.369, 1999.spa
dc.relation.references[96] V. Vorpérian, “Simplified Analysis of Pwm Converters Using Model of Pwm Switch Part I: Continuous Conduction Mode,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 3, pp. 490–496, 1990.spa
dc.relation.references[97] J. M. Díaz, R. Costa-Castelló, and S. Dormido, “Closed-Loop Shaping Linear Control System Design: An Interactive Teaching/Learning Approach [Focus on Education],” IEEE Control Syst., vol. 39, no. 5, pp. 58–74, 2019.spa
dc.relation.references[98] D. Velasco De La Fuente, C. L. Trujillo Rodriguez, G. Garcera, E. Figueres, and R. Ortega Gonzalez, “Photovoltaic power system with battery backup with grid-connection and islanded operation capabilities,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1571–1581, 2013.spa
dc.relation.references[99] IEEE, IEEE 2030.7-2017 Standard for the Specification of Microgrid Controllers. 2018.spa
dc.relation.references[100] B. Yang et al., “Applications of battery/supercapacitor hybrid energy storage systems for electric vehicles using perturbation observer based robust control,” J. Power Sources, vol. 448, no. November 2019, p. 227444, 2020.spa
dc.relation.references[101] ICONTEC, CÓDIGO ELÉCTRICO COLOMBIANO. NTC 2050. ICONTEC, 2002.spa
dc.relation.references[102] R. Mayfield, Photovoltaic Design and Installation For Dummies. Wiley, 2019.spa
dc.relation.references[103] A. Luque and S. Hegedeus, Handbook of Photovoltaic Science and Engineering. Wiley, 2010.spa
dc.relation.references[104] H. Häberlin, Photovoltaics. Wiley, 2012.spa
dc.relation.references[105] R. A. Messenger and A. Abtahi, Photovoltaic Systems Engineering. CRC Press, 2018.spa
dc.relation.references[106] M. Gomez-Gonzalez, J. C. Hernández, P. G. Vidal, and F. Jurado, “Novel optimization algorithm for the power and energy management and component sizing applied to hybrid storage-based photovoltaic household-prosumers for the provision of complementarity services,” J. Power Sources, vol. 482, no. August 2020, 2021.spa
dc.relation.references[107] N. Devillers, M. C. Péra, D. Bienaimé, and M. L. Grojo, “Influence of the energy management on the sizing of Electrical Energy Storage Systems in an aircraft,” J. Power Sources, vol. 270, pp. 391–402, 2014.spa
dc.relation.references[108] E. W. Schaefer, G. Hoogsteen, J. L. Hurink, and R. P. van Leeuwen, “Sizing of hybrid energy storage through analysis of load profile characteristics: A household case study,” J. Energy Storage, vol. 52, no. PA, p. 104768, 2022.spa
dc.relation.references[109] R. Kalbitz and F. Puhane, “Supercapacitor – A Guide for the Design-In Process.” WÜRT ELEKTRONIK, pp. 1–9, 2020.spa
dc.relation.references[110] T. Kim, S. Member, and W. Qiao, “A Hybrid Battery Model Capable of Capturing Dynamic Circuit Characteristics and Nonlinear Capacity Effects,” IEEE Trans. Energy Convers., vol. 26, no. 4, pp. 1172–1180, 2011.spa
dc.relation.references[111] Z. Miao, L. Xu, V. R. Disfani, and L. Fan, “An SOC-based battery management system for microgrids,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 966–973, 2014.spa
dc.relation.references[112] D. Wu, F. Tang, T. Dragicevic, J. C. Vasquez, J. M. Guerrero, and S. Member, “Autonomous Active Power Control for Islanded AC Microgrids With Photovoltaic Generation and Energy Storage System,” IEEE Trans. Energy Convers., vol. 29, no. 4, pp. 882–892, 2014.spa
dc.relation.references[113] X. Liu et al., “Sponge Supercapacitor rule-based energy management strategy for wireless sensor nodes optimized by using dynamic programing algorithm,” Energy, vol. 239, p. 122368, 2022.spa
dc.relation.references[114] K. Puentes, S. Silva, and N. L. Díaz, “Diseño de un Esquema de Sincronización e Interconexión de dos Inversores Trifásicos Operando como Unidades Formadoras,” Universidad Distrital Francisco José de Caldas, 2020.spa
dc.relation.references[115] A. Latorre, W. Martinez, and C. A. Cortes, “Average Current Control with Internal Model Control and Real-Time Frequency Decoupling for Hybrid Energy Storage Systems in Microgrids,” J. Mod. Power Syst. Clean Energy, vol. 11, no. 2, pp. 511–522, 2022.spa
dc.rightsDerechos reservados al autor, 2024spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.otherEnergy storageeng
dc.subject.proposalBaterías de iones de Litiospa
dc.subject.proposalSupercondensadoresspa
dc.subject.proposalSHAEspa
dc.subject.proposalMicrorred DCspa
dc.subject.proposalconvertidores conmutados de potenciaspa
dc.subject.proposaltopologías para la interconexiónspa
dc.subject.proposalLithium-ion Batterieseng
dc.subject.proposalEDLCeng
dc.subject.proposalSupercapacitorseng
dc.subject.proposalHESSeng
dc.subject.proposalDC Microgrideng
dc.subject.proposalPower Electronic Converterseng
dc.subject.proposalInterconnection topologieseng
dc.subject.wikidatasupercondensadorspa
dc.subject.wikidatasupercapacitoreng
dc.subject.wikidatasuministro de energíaspa
dc.subject.wikidataenergy supplyeng
dc.titleConcepción del proceso de diseño de un Sistema Híbrido de Almacenamiento de Energía compuesto por baterías y supercondensadores, con aplicación a microrredes eléctricas residencialesspa
dc.title.translatedConception of the design process for a Hybrid Energy Storage System composed of batteries and supercapacitors, with application to residential electrical microgridseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis PhD_HESS_corregido con anexos.pdf
Tamaño:
5.25 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería – Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: