Caracterización molecular del viroma de plantas solanáceas de importancia económica en Antioquia

dc.contributor.advisorMarín Montoya, Mauricio Alejandrospa
dc.contributor.advisorGutiérrez Sánchez, Pablo Andrésspa
dc.contributor.authorGallo García, Yuliana Marcelaspa
dc.date.accessioned2020-08-28T16:41:26Zspa
dc.date.available2020-08-28T16:41:26Zspa
dc.date.issued2020-02-08spa
dc.description.abstractLa familia Solanaceae es considerada como el tercer taxón botánico más importante a nivel agronómico y uno de los grupos de plantas mejor estudiados en su biología, ecología e interacciones con otros organismos, incluyendo sus patógenos. En la región andina de Colombia, las especies de solanáceas de mayor importancia económica son afectadas por diversas enfermedades de origen biótico que limitan sus rendimientos y la calidad final de sus productos, destacándose las enfermedades de origen viral, ya que no sólo disminuyen los rendimientos de los cultivos, sino también su longevidad y las características organolépticas de sus frutos y/o tubérculos, con la consecuente reducción de su valor comercial. En las regiones andinas de Colombia se cultivan diferentes solanáceas para el consumo interno y con gran potencial para su exportación como frutas y tubérculos exóticos; entre estas especies de plantas se destacan las variedades locales de papa común (Solanum tuberosum subsp. andigena), tomate (S. lycopersicum), pimentón (Capsicum annuum), lulo (S. quitoense) y uchuva (Physalis peruviana). Desafortunadamente, el nivel de conocimiento que se tiene de los agentes causales y de los efectos de las enfermedades virales sobre dichos cultivos es aún incipiente en nuestro país y por consiguiente las estrategias de manejo que emplean los agricultores para su manejo resultan ineficientes y con un alto costo no sólo económico sino ambiental. Dada esta problemática de desconocimiento de los componentes del viroma de solanáceas cultivadas en los Andes, en esta tesis se utilizaron diversas metodologías moleculares, incluyendo la Secuenciación de alto rendimiento (HTS), utilizando como región de estudio el oriente de Antioquia. Como base para los análisis moleculares, se utilizó tanto la extracción de ARN total como de ARN de doble cadena (ARNdc), encontrándose que son metodologías complementarias con respecto a la diversidad viral y a la cobertura de los genomas a identificar. Las secuencias obtenidas mediante HTS fueron empleadas para 7 dirigir la detección por RT-PCR convencional y RT-PCR en tiempo real (RT-qPCR) de los virus en muestras individuales de dichas plantas. Los resultados del trabajo indicaron la presencia de los virus: PLRV, PYVV, PMTV, PVY, PVX, PVS, BPEV, ANSV y CMV en cultivos de lulo, siendo algunos de estos virus los primeros reportes en el mundo sobre este hospedante. Para el caso de la uchuva, se logró detectar un nuevo virus del género Ilarvirus (CGIV-1); así como PVY, PMTV, PYVV, PYV, STV y PVS. Por otra parte, en pimentón se destaca la detección con altos niveles de incidencia del tospovirus ANSV, así como también del CMV, PVY y BPEV; mientras que, en cultivos de tomate, se detectó por primera vez en el país el virus STV, del cual también se obtuvo su secuencia genómica completa, al igual que del PYVV, PVX, PVS y PVY. En papa se logró aumentar el número de secuencias genómicas de los virus PVY, PVX, PYVV, PLRV y PVS. Finalmente, en el trabajo se evaluó la infección de virus directamente en tubérculos-semilla de papa y en semilla sexual de tomate (comercial y no comercial), evidenciándose una alta prevalencia de algunos virus en este material de siembra. Se espera que la información obtenida sobre el viroma de este grupo de hospedantes sea utilizada en Colombia y en otros países para diseñar programas de manejo integrado de enfermedades virales que reduzcan las pérdidas económicas ocasionadas por dichos patógenos; así como también que se implementen las herramientas moleculares aquí evaluadas para la detección rutinaria de virus en programas cuarentenarios, epidemiológicos, de mejoramiento genético y de producción de semilla certificada en estos cultivos.spa
dc.description.abstractThe Solanaceae family is considered the third most important botanical taxon in agronomy. As such, it is one of the most studied plant groups when it comes to its biology, ecology and plant-microbe interactions. The Andean region of Colombia is known for growing numerous Solanaceae species of great economic importance, which are constantly affected by different diseases of biotic origin that can significantly reduce their yield and compromise the final quality of their products. Among these, viral diseases stand out due to their potential to reduce the crop’s yield, interfere with its longevity and impact the organoleptic properties of its fruits and/or tubers, therefore reducing their commercial value. South America is known for being one of the main centers of diversity of Solanaceae species. In Colombia, these crops are grown both to supply internal demand of produce and as important export products due to their exotic and nutritional properties. Among these Solanaceae species, local varieties of potato (Solanum tuberosum subsp. andigena), tomato (S. lycopersicum), bell pepper (Capsicum annuum), lulo (S. quitoense) and cape gooseberry (Physalis peruviana) stand out. Despite the importance of this Solanaceous crops, information regarding their viral diseases, specific causal agents and their effects on the crop is still scarce. As a consequence, management strategies directed towards preventing or controlling the disease are often ineffective, but nevertheless expensive both from an economic and from an environmental standpoint. 9 The goal of this work was to expand the knowledge about the virome of Solanaceous species cultivated in the Andes, using eastern Antioquia as the study region and different molecular techniques, including Throughput Sequencing (HTS), to identify and characterize viral pathogens. As source material, both total RNA and double stranded RNA (dsRNA) were extracted from plant tissue and analyzed for viral RNA. We found that both methodologies complement each other increasing the sensibility of the analysis. Simultaneously using both techniques resulted in a larger number of virus identified and an improved coverage of their sequenced genomes. The sequences obtained through HTS were used to guide the detection of viruses in individual plant samples by conventional RT-PCR and real time RT-PCR (RT-qPCR). The main result of this work is a comprehensive list of the viruses found infecting different Solanaceous crops. The viruses PLRV, PYVV, PMTV, PVY, PVX, PVS, BPEV, ANSV and CMV were identified in lulo, with some of these being the first worldwide report of the particular virus infecting this crop. In the case of cape gooseberry, a new virus from the genera Ilarvirus (CGIV-1) was detected. Additionally, PVY, PMTV, PYVV, PYV, STV and PVS were also found infecting this crop. For bell pepper, ANSV tospovirus was detected with high incidence, as well as CMV, PVY and BPEV. In tomato, STV virus was reported for the first time in Colombia, and its complete genomic sequence was obtained. PYVV, PVX, PVS and PVY were also identified infecting tomato. Finally, in potato, PVY, PVX, PYVV, PLRV and PVS were detected and sequenced, increasing the number of complete genome sequences available for these viruses. Furthermore, we directly used potato seed tubers and tomato sexual seeds (commercial and non-commercial) for virus detection and we were able to observe a high prevalence of viruses in this planting material. 10 The results obtained in this work regarding the virome of Solanaceous provide valuable information that can be used, not only in Colombia, but many other regions to design more effective integrated management programs for prevention and control of viral diseases. The implementation of informed management decision could significantly decrease the economic losses caused by viral pathogens. In a similar manner, the implementation of the molecular tools evaluated and designed here could facilitate efforts for the routine detection of viruses for quarantine and epidemiological purposes as well as to complement programs focusing on the genetic improvement and certified seed production of these crops.spa
dc.description.degreelevelDoctoradospa
dc.format.extent542spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78313
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de biocienciasspa
dc.publisher.programMedellín - Ciencias - Doctorado en Biotecnologíaspa
dc.relation.referencesAdams, I. P., Fox, A., Boonham, N., Massart, S., & De Jonghe, K. (2018). The impact of high throughput sequencing on plant health diagnostics. European Journal of Plant Pathology, 152(4), 909–919. https://doi.org/10.1007/s10658-018-1570-0spa
dc.relation.referencesAgindotan, B. O., Shiel, P. J., & Berger, P. H. (2007). Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan real-time RT-PCR. Journal of Virological Methods, 142(1–2), 1–9. https://doi.org/10.1016/j.jviromet.2006.12.012spa
dc.relation.referencesAgrios, G. (2005). Plant pathology (5th ed.). Elsevier.spa
dc.relation.referencesAgronet. (2014). Red de información y comunicación del sector agropecuario Colombiano. http://www.agronet.gov.co/estadistica/Paginas/default.aspxspa
dc.relation.referencesAgronet. (2019). Agronet. http://www.agronet.gov.co/estadistica/Paginas/default.aspxspa
dc.relation.referencesAhmadvand, R., Takács, A., Taller, J., Wolf, I., & Polgár, Z. (2012). Potato viruses and resistance genes in potato. Acta Agronomica Humgarica, 60(3), 283–298. https://doi.org/10.1556/AAgr.60.2012.3.10spa
dc.relation.referencesAlba, V. (1950). Viropatógenos. Conferencia Latinoamericana de Especialistas En Papa, 52–58.spa
dc.relation.referencesAlcalá, R., Coşkan, S., Londoño, M., & Polston, J. (2017). Genome sequence of Southern tomato virus in asymptomatic tomato “Sweet Hearts.” Genome Announcements, 5(7), 1–2. https://doi.org/10.1128/genomeA.01374-16spa
dc.relation.referencesAlemu, K. (2015). Detection of diseases, identification and diversity of viruses: A Review. Journal of Biology, Agriculture and Healthcare, 5(1), 204–214.spa
dc.relation.referencesAlfaro García, J. P., & Franco Lara, L. (2015). Potato virus Y (PVY) Y Potato yellow veinvirus (PYVV) eninfecciones mixtas no causan síntomas atípicos en plantas de papa. Universidad Militar Nueva Grana, 11(2), 26–37. https://doi.org/http://dx.doi.org/10.18359/rfcb.1297spa
dc.relation.referencesAlfson, K. J., Beadles, M. W., & Griffiths, A. (2014). A new approach to determining whole viral genomic sequences including termini using a single deep sequencing run. Journal of Virological Methods, 208, 1–5. https://doi.org/10.1016/j.jviromet.2014.07.023spa
dc.relation.referencesAltschul, S., W, G., Miller, W., Myers, E., & Lipman, D. (1990). Basic local alignment search tool. Journal Molecular Biology, 215, 403–410.spa
dc.relation.referencesÁlvarez, D., Gutiérrez, P., & Marín, M. (2016). Molecular Characterization of Potato virus V ( PVV ) Infecting Solanum phureja Using Next-Generation Sequencing. Acta Biológica Colombiana, 21(3), 521–531. https://doi.org/http://dx.doi.org/10.15446/abc.v21n3.54712spa
dc.relation.referencesÁlvarez, D., Gutiérrez, P., & Marín, M. (2017). Secuenciación del genoma del Potato yellow vein virus ( PYVV ) y desarrollo de una prueba molecular para su detección. Bioagro, 29(1), 3–14.spa
dc.relation.referencesÁlvarez, N., Jaramillo, H., Gallo, Y., Gutiérrez, P., & Marín, M. (2017). Molecular characterization of Potato virus Y (PVY) and Potato virus V (PVV) (Potyvirus, Potyviridae) naturally infecting Cape gooseberry (Physalis peruviana L.) in Antioquia (Colombia). The Plant Pathology. https://doi.org/10.1039/b000000xspa
dc.relation.referencesAnders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biol., 11, 106.spa
dc.relation.referencesAndrews, S. (2014). A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.spa
dc.relation.referencesArciniegas, N. (2003). Técnicas de diagnóstico y evaluación de resistencia al virus del Amarillamiento de las Nervaduras de la papa (PYVV) en accesiones de la Colección Central Colombiana de Solanum phureja. Universidad Nacional de Colombia.spa
dc.relation.referencesAstier, S., Albouy, J., Maury, Y., Robaglia, C., & Lecoq, H. (2007). Principles of Plant Virology. Principles of Plant Virology, 112.spa
dc.relation.referencesBabacar, N., Yancheng, G., Xiliang, W., & Dingren, B. (2010). Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Analytical and Bioanalytical Chemistry, 397, 1113–1135.spa
dc.relation.referencesBaena, L. M., Andrés, P., Sánchez, G., & Montoya, M. M. (2017). Genome Sequencing of Potato yellow vein virus ( PYVV ) Strain Infecting Solanum lycopersicum in Colombia. Acta Biológica Colombiana, 22(1), 5–17.spa
dc.relation.referencesBaker, C., Jeyaprakash, A., Webster, C., & Adkins, S. (2014). Plant Pathology Circular No. 415. Florida Department of Agriculture and Consumer Services. http://www.freshfromflorida.com/content/download/40511/873282/ppcirc415.pdfspa
dc.relation.referencesBeemster, A. B. R., & Bokx, A. de. (1987). Survey of properties and symptoms. In J. A. De Bokx & J. P. H. van der Want (Eds.), Viruses of potatoes and seed potato production (Secon edit, pp. 84–113). Wageningen University.spa
dc.relation.referencesBennett, C. W. (1953). Interactions between Viruses and Virus Strains. Advances in Virus Research, 1(C), 39–67. https://doi.org/10.1016/S0065-3527(08)60461-3spa
dc.relation.referencesBolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic : a flexible trimmer for Illumina sequence data. Genome Analysis, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170spa
dc.relation.referencesBoonham, N., Kreuze, J., Winter, S., van der Vlugt, R., Bergervoet, J., Tomlinson, J., & Mumford, R. (2014). Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Research, 186, 20–31. https://doi.org/10.1016/j.virusres.2013.12.007spa
dc.relation.referencesBright, A., Patrick, S., & Philip, B. (2007). Simultaneous detection of potato viruses , PLRV , PVA , PVX and PVY from dormant potato tubers by TaqMan real-time RT-PCR. Journal of Virological Methods, 142, 1–9. https://doi.org/10.1016/j.jviromet.2006.12.012spa
dc.relation.referencesBuchen, O. (2010). The Universal Virus Database of the International Committe on Taxonomy of Virus. http://www.ictvdb.orgspa
dc.relation.referencesCandresse, T., Marais, A., & Faure, C. (2013). First Report of Southern Tomato Virus on Tomatoes in Southwest France. Plant Disease, 97(8), 1124–1124. https://doi.org/https://doi.org/10.1094/PDIS-01-13-0017-PDNspa
dc.relation.referencesCOLOMBIA. MINISTERIO DE AGRICULTURA Y DESARROLLO RURAL. (2018). Indicadores e Instrumentos Enero 2018 Indicadores Generales. https://sioc.minagricultura.gov.co/Cacao/Documentos/002 - Cifras Sectoriales/002 - Cifras Sectoriales - 2018 Enero Cacao.pdfspa
dc.relation.referencesCompanyo, R., Granados, M., Guiteras, J., & Prat, M. (2009). Analytical and Bioanalytical chemistry. 395, 877–891.spa
dc.relation.referencesConesa, A., Madrigal, P., Tarazona, S., Gómez-Cabrero, D., Cervera, A., McPherson, A., Szczesniak, M., Gaffney, D., Elo, L., Zhang, X., & Mortazavi, A. (2016). A surver of best practices for RNA-seq data analysis. Genome Biology, 17–13.spa
dc.relation.referencesCorpoica. (2016). Virus de la papa. http://corpoica.org.co/noticias/generales/virus-de-la-papa.spa
dc.relation.referencesCortazar, A., & Silva, E. P. (2004). Métodos físico-químicos en biotecnología: PCR. In PCR en Tiempo Real. http://www.ibt.unam.mx/computo/pdfs/met/pcr.pdfspa
dc.relation.referencesDanks, C., & Barker, I. (2000). On site detection of plant pathogens usinf lateral flow devices.spa
dc.relation.referencesDiez, A., & Martín, V. (2013). Implementación de algoritmos de ensamblaje de genomas en sistemas de memoria compartida y memoria distribuida. univesidad Politécnica de Madrid.spa
dc.relation.referencesDonaire, L., Pagán, I., & Ayllón, M. A. (2016). Characterization of Botrytis cinerea negative-stranded RNA virus 1, a new mycovirus related to plant viruses, and a reconstruction of host pattern evolution in negative-sense ssRNA viruses. Virology, 499, 212–218. https://doi.org/10.1016/j.virol.2016.09.017spa
dc.relation.referencesEdgar, R. C., Drive, R. M., & Valley, M. (2004). MUSCLE : multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340spa
dc.relation.referencesFang, Y, & Ramasamy, R. (2015). Current and Prospective Methods for Plant Disease Detection. Rains GC, Ed. Biosensors, 5, 537–561.spa
dc.relation.referencesFang, Yi, & Ramasamy, R. P. (2015). Current and prospective methods for plant disease detection. Biosensors, 5(3), 537–561. https://doi.org/10.3390/bios5030537spa
dc.relation.referencesFAO. (2008). Organización de las Naciones Unidas para la Alimentación y la Agricultura. http://www.fao.org/publications/sofa/2008/es/spa
dc.relation.referencesFAOSTAT. (2019). Organización de las Naciones Unidas para la Alimentación y la agricultura. http://www.fao.org/faostat/es/#data/QC/visualizespa
dc.relation.referencesFedepapa. (2018). Revista Fedepapa : El agricultor y su papel en el país. FEDEPAPA, 43, 48. http://fedepapa.com/wp-content/uploads/2017/01/REVISTA-43-OK.pdfspa
dc.relation.referencesFischer, G., Almanza, P. J., & Miranda, D. (2014). Importancia y cultivo de la Uchuva (Physalis peruviana L .). Scielo, 36(1), 1–15. https://doi.org/10.1590/0100-2945-441/13spa
dc.relation.referencesFischer, G., & Velásquez, M. (2010). Uchuva Physalis peruviana L. Solanaceae. Agr. Sci, April.spa
dc.relation.referencesFrost, K. E., Groves, R. L., & Charkowski, A. O. (2013). Integrated Control of Potato Pathogens Through Seed Potato Certification and Provision of Clean Seed Potatoes. Plant Disease, 97(10), 1268–1280. https://doi.org/10.1094/PDIS-05-13-0477-FEspa
dc.relation.referencesFukuhara, T. (2019). Endornaviruses: persistent dsRNA viruses with symbiotic properties in diverse eukaryotes. Virus Genes, 55(2), 165–173. https://doi.org/10.1007/s11262-019-01635-5spa
dc.relation.referencesGallo-García, Y. M., Jaramillo-Mesa, H., Toro-Fernández, L. F., Marín-Montoya, M., & Gutiérrez, P. A. (2018). Characterization of the genome of a novel ilarvirus naturally infecting Cape gooseberry (Physalis peruviana). Archives of Virology, 163(6). https://doi.org/10.1007/s00705-018-3796-8spa
dc.relation.referencesGallo García, Y., Sierra Mejía, A., Donaire Segarra, L., Aranda, M. A., Gutiérrez, P. A., & Montoya, M. M. (2019). Natural coinfection of RNA viruses in potato ( Solanum tuberosum subsp . Andigena ) crops in Antioquia ( Colombia ). Acta Biol. Colomb, 24(3), 546–560.spa
dc.relation.referencesGallo, Y., Gutierrez, P., & Marin, M. (2013). Detection of PMTV Using Polyclonal Antibodies Raised Against a Capsid-Specific Peptide Antigen. Revista Facultad Nacional de Agronomia Medellin, 66(2), 6999–7008.spa
dc.relation.referencesGallo, Y., Gutierrez, P., & Marín, M. (2012). Generación de antígenos derivados de la proteína de la cápside de PVY, TaLMV y PMTV, para la producción de anticuerpos útiles en el desarrollo de pruebas serológicas.spa
dc.relation.referencesGallo, Y., Sierra, A., Muñoz, L., Marín, M., & Gutiérrez, P. A. (2019). Genome characterization of three Alstroemeria necrotic streak orthotospovirus (ANSV) isolates naturally infecting bell pepper (Capsicum annuum) in Antioquia (Colombia). Tropical Plant Pathology, 44(4), 326–334. https://doi.org/10.1007/s40858-019-00292-1spa
dc.relation.referencesGallo, Y., Toro, L. F., Jaramillo, H., Gutiérrez, P. A., & Marín, M. (2018). Identificación y caracterización molecular del genoma completo de tres virus en cultivos de lulo (Solanum quitoense) de Antioquia (Colombia). Revista Colombiana de Ciencias Hortícolas, 12(2), 281–292.spa
dc.relation.referencesGarcía Ruíz, D., Olarte Quintero, M. A., Gutiérrez Sánchez, P. A., & Marín Montoya, M. A. (2016). Detección serológica y molecular del Potato virus X (PVX) en tubérculos-semilla de papa (Solanum tuberosum L. y Solanum phureja Juz. Bukasov) en Antioquia, Colombia. Revista Colombiana de Biotecnología, 18(1), 1–8. https://doi.org/10.15446/rev.colomb.biote.v18n1.51389spa
dc.relation.referencesGil, Jose F, Gutiérrez, P., Cotes, J. M., González, E. P., & MA. (2011). Caracterización genotípica de aislamientos Colombianos del Potato Mop Top Virus (PMTV, Pomovirus). Actual Biol, 33(94), 69–84.spa
dc.relation.referencesGil, Jose F, Marin, M., & Cotes, J. M. (2010). Diagnóstico y caracterización molecular de virus asociados al cultivo de la papa en Colombia, con énfasis en el virus mop-top (PMTV, Pomovirus).spa
dc.relation.referencesGil, José Fernando, Cotes, J. M., & Marín, M. (2011). Incidencia de potyvirus y caracterización molecular de PVY en regiones productoras de papa ( Solanum tuberosum L .) de Colombia. Revista Colombiana de Biotecnología, 85–93.spa
dc.relation.referencesGil, José Fernando, Cotes, J. M., & Marín, M. A. (2013). Incidencia visual de Síntomas asociados a enfermedades virales en cultivos de papa de Colombia. Biotecnología En El Sector Agropecuario y Agroindustrial, 11(2), 101–110.spa
dc.relation.referencesGómez, F., Trejo, L., García, C., & Cadena, J. (2014). Lulo (Solanum quitoense [Lamarck.]) as new landscape crop in the Mexican agro-ecosystem. Revista Mexicana de Ciencias Agrícolas, 9, 1741–1753.spa
dc.relation.referencesGoodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet, 17(6), 333–351. https://doi.org/10.1038/nrg.2016.49spa
dc.relation.referencesGrabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., … Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644–652. https://doi.org/10.1038/nbt.1883spa
dc.relation.referencesGurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: Quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072–1075. https://doi.org/10.1093/bioinformatics/btt086spa
dc.relation.referencesGutiérrez, P. A., Alzate, J. F., & Marín-Montoya, M. A. (2013). Complete genome sequence of a novel potato virus S strain infecting Solanum phureja in Colombia. Archives of Virology, 158(10), 2205–2208. https://doi.org/10.1007/s00705-013-1730-7spa
dc.relation.referencesGutiérrez, P. A., Alzate, J. F., & Marín Montoya, M. (2014). Genome sequence of a virus isolate from tamarillo (Solanum betaceum) in Colombia: evidence for a new potyvirus. Archives of Virology, 160(2), 557–560. https://doi.org/10.1007/s00705-014-2296-8spa
dc.relation.referencesGutiérrez, P., Alzate, J. F., & Marín, M. (2015). Complete genome sequence of an isolate of Potato virus X ( PVX ) infecting Cape gooseberry ( Physalis peruviana ) in Colombia. Virus Genes, 50(3), 518–522. https://doi.org/10.1007/s11262-015-1181-1spa
dc.relation.referencesGutiérrez, P., Alzate, J., & Marín, M. (2012). Pirosecuenciación del genoma de una cepa andina de Potato virus S ( PVS , Carlavirus ) infectando Solanum phureja ( Solanaceae ) en Colombia. Revista Facultad de Ciencias Básicas, 8(1), 84–93.spa
dc.relation.referencesGuzmán, M., Ruiz, E., Arciniegas, N., & Coutts, R. H. A. (2006). Occurrence and variability of Potato yellow vein virus in three Departments of Colombia. Journal of Phytopathology, 154(11–12), 748–750. https://doi.org/10.1111/j.1439- 0434.2006.01174.xspa
dc.relation.referencesGuzmán, Mónica, Román, V., Franco, L., & Rodríguez, P. (2010). Presencia de cuatro virus en algunas accesiones de la Colección Central Colombiana de papa mantenida en campo. Agronomia Colombiana, 38(2), 225–233.spa
dc.relation.referencesHalterman, D., Charkowski, A., & Verchot, J. (2012). Potato , Viruses , and Seed Certification in the USA to Provide Healthy Propagated Tubers Planted into field. Pest Technology, 1, 1–14.spa
dc.relation.referencesHameed, A., Iqbal, Z., Asad, S., & Mansoor, S. (2014). Detection of Multiple Potato Viruses in the Field Suggests Synergistic Interac- tions among Potato Viruses in Pakistan. Plant Pathol. J, 30(4), 407–415.spa
dc.relation.referencesHanssen, I., Lapidot, M., & Thomma, B. (2010). Emerging Viral Diseases of Tomato Crops. The American Phytopathological Society, 23(5), 539–548. https://doi.org/10.1094 /MPMI -23-5-0539spa
dc.relation.referencesHass, B., Papanicolaou, A., & Yassour, M. (2013). De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nature Protocols, 8, 1494–1512.spa
dc.relation.referencesHe, Z., Larkin, R., & Honeycutt, W. (2012). Sustainable Potato Production: Global Case Studies (S. D. H. N. Y. London (ed.)). https://doi.org/DOI 10.1007/978-94-007-4104-1spa
dc.relation.referencesHily, J. M., Candresse, T., Garcia, S., Vigne, E., Tannière, M., Komar, V., Barnabé, G., Alliaume, A., Gilg, S., Hommay, G., Beuve, M., Marais, A., & Lemaire, O. (2018). High-throughput sequencing and the viromic study of grapevine leaves: From the detection of grapevine-infecting viruses to the description of a new environmental Tymovirales member. Frontiers in Microbiology, 9(AUG). https://doi.org/10.3389/fmicb.2018.01782spa
dc.relation.referencesJagatheeswari, D. (2014). Morphological studies on flowering plants ( Solanaceae ). International Letters of Natural Sciences, 15, 36–43. https://doi.org/10.18052/www.scipress.com/ILNS.15.36spa
dc.relation.referencesKnapp, S., Bohs, L., Nee, M., & Spooner, D. M. (2004). Solanaceae - A model for linking genomics with biodiversity. Comparative and Functional Genomics, 5(3), 285–291. https://doi.org/10.1002/cfg.393spa
dc.relation.referencesKoski, L., Gray, M., Lang, B., & Burger, G. (2005). AutoFACT: an automatic functional annotation and classification tool. BMC Bioinformatics, 6, 151.spa
dc.relation.referencesKumar, S., Stecher, G., & Tamura, K. (2016). MEGA7 : Molecular Evolutionary Genetics Analysis Version 7 . 0 for Bigger Datasets Brief communication. Mol. Biol. Evol, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054spa
dc.relation.referencesLangmead, B., & Salzberg, S. (2013). Fast gapped-read alignment with Bowtie 2. Nat Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923.Fastspa
dc.relation.referencesLangmead, B., Trapnell, C., Pop, M., & Salzberg, S. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol., 10(3), R25. https://doi.org/10.1186/gb-2009-10-3-r25spa
dc.relation.referencesLi, B., & Dewey, C. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323.spa
dc.relation.referencesLi, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754–1760. https://doi.org/10.1093/bioinformatics/btp324spa
dc.relation.referencesLi, R., Gao, S., Hernandez, A. G., Wechter, W. P., Fei, Z., & Ling, K. S. (2012). Deep sequencing of small RNAs in tomato for virus and viroid identification and strain differentiation. PLoS ONE, 7(5). https://doi.org/10.1371/journal.pone.0037127spa
dc.relation.referencesLi, Y., Wang, H., Nie, K., Zhang, C., Zhang, Y., Wang, J., Niu, P., & Ma, X. (2016). VIP: an integrated pipeline for metagenomics of virus identification and discovery. Nature Publishing Group. https://doi.org/10.1038/srep23774spa
dc.relation.referencesLiu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Lu, L., & Law, M. (2012). Comparison of next-generation sequencing systems. Journal of Biomedicine and Biotechnology, 2012. https://doi.org/10.1155/2012/251364spa
dc.relation.referencesMADR. (2015). El cultivo de pimentón (capsicum annuum L) bajo invernadero. In Boletin mensual, insumos y factores asociados a la producción agropecuaria (Vol. 37). http://scholar.google.es/scholar?q=pistacho+cultivo+españa&btnG=&hl=ca&as_sdt=0,5#5spa
dc.relation.referencesMadroñero, J., Madroñero, J., Rozo, Z. L. C., Pérez, J. A. E., & Romero, M. L. V. (2019). Plataformas de secuenciación de nueva generación y proteómica aplicadas a la virología vegetal: ¿Cómo ha avanzado Colombia? Acta Biológica Colombiana, 24(3), 423–438. https://doi.org/10.15446/abc.v24n3.79486spa
dc.relation.referencesMaree, H. J., Fox, A., Al Rwahnih, M., Boonham, N., & Candresse, T. (2018). Application of HTS for Routine Plant Virus Diagnostics: State of the Art and Challenges. Frontiers in Plant Science, 9(August), 1–4. https://doi.org/10.3389/fpls.2018.01082spa
dc.relation.referencesMarshall, B. B., Barker, H., & Verrall, S. R. (1988). Effects of potato leafroll virus on the crop processes leading to tuber yield in potato cultivars which differ in tolerance of infection. Annals of Applied Biology, 113, 297–305.spa
dc.relation.referencesMartinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Goulart, L. R., Davis, C. E., & Dandekar, A. M. (2015). Advanced methods of plant disease detection. A review. Agronomy for Sustainable Development, 35(1), 1–25. https://doi.org/10.1007/s13593-014-0246-1spa
dc.relation.referencesMatousek, J., Schubert, J., Ptacek, J., Kozlova, P., & Dedic, P. (2004). Complete nucleotide sequence and molecular probing of potato virus S genome. Acta Virologica, 49, 195–205.spa
dc.relation.referencesMcLeish, M. J., Fraile, A., & García-Arenal, F. (2019). Evolution of plant–virus interactions: host range and virus emergence. Current Opinion in Virology, 34, 50–55. https://doi.org/10.1016/j.coviro.2018.12.003spa
dc.relation.referencesMedina, C., Gutiérrez, P., & Marin, M. (2015). Detección del Potato Virus Y (PVY) en tubérculos de papa mediante TAS-ELISA Y qRT-PCR en Antioquia (Colombia). Bioagro, 27(2), 83–92.spa
dc.relation.referencesMedina, H., Gutiérrez, P., & Marín, M. (2017). Detection and sequencing of Potato virus Y (PVY) and Potato leafroll virus (PLRV) in a volunteer plant of Solanum tuberosum L. cv. Diacol-Capiro. Acta Agronomica, 66(1), 625–632. https://doi.org/https://doi.org/10.15446/acag.v66n4.59753 Detectionspa
dc.relation.referencesMesa, M., González, M., Gutiérrez, P., & Marín, M. (2016). Diagnóstico serológico y molecular del Potato leafroll virus (PLRV) en tubérculos-semilla de papa en Antioquia , Colombia. Acta Agronomica, 65(2), 204–210. https://doi.org/http://dx.doi.org/10.15446/acag.v65n2.50764 Diagnósticospa
dc.relation.referencesMiller, J. R., Koren, S., & Sutton, G. (2010). Assembly algorithms for next-generation sequencing data. Genomics, 95(6), 315–327. https://doi.org/10.1016/j.ygeno.2010.03.001spa
dc.relation.referencesMumford, R. A., Walsh, K., Barker, I., & Boonham, N. (2000). Detection of Potato mop top virus and Tobacco rattle virus Using a Multiplex Real-Time Fluorescent Reverse-Transcription Polymerase Chain Reaction Assay. Virology, 90(5), 448–453.spa
dc.relation.referencesMuñoz-baena, L., Marín-montoya, M., & Gutiérrez, P. A. (2017). Genome sequencing of two Bell pepper endornavirus (BPEV) variants infecting Capsicum annuum in Colombia. Agronomia Colombiana, 35(1), 44–52. https://doi.org/10.15446/agron.colomb.v35n1.60626spa
dc.relation.referencesMuñoz, D., Gutiérrez, P., & Marín, M. (2016). Detección y caracterización molecular del Potato virus Y (PVY) en cultivos de papa ( Solanum tuberosum L .) del norte de Antioquia , Colombia. Protección Veg., 31(1), 9–19.spa
dc.relation.referencesMuñoz, L., Gutiérrez, P., & Marín, M. (2016b). Detección y secuenciación del genoma del Potato Virus Y (PVY) que infecta plantas de tomate en Antioquia, Colombia. Bioagro, 28(2), 69–80.spa
dc.relation.referencesMuñoz, L., Gutiérrez, P., & Marín, M. (2017). Secuenciación del genoma completo del Potato yellow vein virus (PYVV) en tomate (Solanum lycopersicum) en Colombia. Acta Biológica Colombiana, 22(1), 5. https://doi.org/10.15446/abc.v22n1.59211spa
dc.relation.referencesMusacchia, F., Basu, S., Petrosino, G., Salvemini, M., & Sanges, R. (2015). Annocript: a flexible pipeline for the annotation of transcriptomes able to identify putative long noncoding RNAs. Bioinformatics, 31, 2199–2201spa
dc.relation.referencesNavarrete, I., Pnchi, N., Kromann, P., Forbes, G., & Andrade, J. (2017). Health quality of seed potato and yield losses in Ecuador. Revista Latinoamericana de La Papa, 21(2), 69–88. https://doi.org/http://dx.doi.org/10.1101/108712spa
dc.relation.referencesNie, X., & Singh, R. P. (2001). A novel usage of random primers for multiplex RT-PCR detection of virus and viroid in aphids, leaves and tubers. Journal of Virological Methods, 91, 37–49.spa
dc.relation.referencesNikitin, M. M., Statsyuk, N. V., Frantsuzov, P. A., Dzhavakhiya, V. G., & Golikov, A. G. (2018). Matrix approach to the simultaneous detection of multiple potato pathogens by real-time PCR. Journal of Applied Microbiology, 124(3), 797–809. https://doi.org/10.1111/jam.13686spa
dc.relation.referencesNolte, P., Whitworth, J. L., Thornton, M. K., & McIntosh, C. S. (2004). Effect of Seedborne Potato virus Y on Performance of Russet Burbank , Russet Norkotah , and Shepody Potato. Plant Disease, 88(3), 248–252.spa
dc.relation.referencesOsman, F., Leutenegger, C., Golino, D., & Rowhani, A. (2008). Comparison of low-density arrays , RT-PCR and real-time TaqMan RT-PCR in detection of grapevine viruses. Journal of Virological Methods, 149, 292–299. https://doi.org/10.1016/j.jviromet.2008.01.012spa
dc.relation.referencesPanno, S., Davino, S., Rubio, L., Rangel, E., Davino, M., García-Hernández, J., & Olmos, A. (2012). Simultaneous detection of the seven main tomato-infecting RNA viruses by two multiplex reverse transcription polymerase chain reactions. Journal of Virological Methods, 186(1–2), 152–156. https://doi.org/10.1016/j.jviromet.2012.08.003spa
dc.relation.referencesParella, G., Gognalons, P., Gebre-Selassie, K., Vovlas, C., & Carchoux, G. (2003). An update on the host range of Tomato spotted wilt virus. Plant Pathology, 85, 227.spa
dc.relation.referencesPark, M. ., Kwon, S. ., Choi, H., Hemenway, C., & Kim, K. (2008). Mutations that alter a repeat ACCA element located at 5‟ end of Potato virus X genome affect RNA accumulation. Virology Journal, 378, 133–141.spa
dc.relation.referencesPecman, A., Kutnjak, D., Gutiérrez-Aguirre, I., Adams, I., Fox, A., Boonham, N., & Ravnikar, M. (2017). Next generation sequencing for detection and discovery of plant viruses and viroids: Comparison of two approaches. Frontiers in Microbiology, 8(OCT), 1–10. https://doi.org/10.3389/fmicb.2017.01998spa
dc.relation.referencesPérez, M., Castañón, G., & Ramírez, M. (2015). Avances y Perspectivas sobre el estudio del origen y la diversidad genética de Capsicum spp. Ecosistemas y Recursos Agropecuarios, 2(4), 117–128.spa
dc.relation.referencesPuchades, A., Carpino, C., Alfaro-Fernandez, A., Font-San-Ambrosio, M., Davino, S., Guerri, J., Rubio, L., & Galipienso, L. (2017). Detection of Southern tomato virus by molecular hybridisation. Annals of Applied Biology, 171(2), 172–178. https://doi.org/10.1111/aab.12367spa
dc.relation.referencesPuente, L., Pinto, M. C., Castro, E., & Cortés, M. (2011). Physalis peruviana L, the multiple properties of a highly functional fruit: A review. Food Research International, 44, 1733–1740.spa
dc.relation.referencesRadford, A., Chapman, D., Dixon, L., Chatrey, J., Darby, A., & Hall, N. (2012). Application of next generation sequencing technologies in virology. Journal of General Virology, 93, 1853–1868.spa
dc.relation.referencesRadford, A. D., Chapman, D., Dixon, L., Chantrey, J., Darby, A. C., & Hall, N. (2012). Application of next-generation sequencing technologies in virology. Journal of General Virology, 93(PART 9), 1853–1868. https://doi.org/10.1099/vir.0.043182-0spa
dc.relation.referencesRiascos, M., Gutiérrez Sánchez, P. A., Marín Montoya, M. A., & Montoya, M. A. M. (2018). Identificación molecular de Potyvirus infectando cultivos de papa en el oriente de Antioquia (Colombia). Acta Biológica Colombiana, 23(1), 39–50. https://doi.org/10.15446/abc.v23n1.65683spa
dc.relation.referencesRobinson, M., McCarthy, D., & Smyth, G. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140.spa
dc.relation.referencesRuffalo, M., Laframboise, T., & Koyutürk, M. (2011). Comparative analysis of algorithms for next-generation sequencing read alignment. Bioinformatics, 27(20), 2790–2796. https://doi.org/10.1093/bioinformatics/btr477spa
dc.relation.referencesSabanadzovic, S., Valverde, R. A., Brown, J. K., Martin, R. R., & Tzanetakis, I. E. (2009). Southern tomato virus: The link between the families Totiviridae and Partitiviridae. Virus Research, 140(1–2), 130–137. https://doi.org/10.1016/j.virusres.2008.11.018spa
dc.relation.referencesSalomone, A., Bruzzone, C., Minuto, G., Minuto, A., & Roggero, P. (2002). A compararison of lateral flow and ELISA for detection of Tomato mosaic virus in tomato. Journal of Plant Pathology, 84, 1993.spa
dc.relation.referencesSalomone, A., Mongelli, M., Roggero, P., & Boscia, D. (2004). Reliability of detection of citrus tristeza virus by an inmunochromatographic lateral flow assay in comparison with ELISA. Journal of Plant Pathology, 86, 43 – 48.spa
dc.relation.referencesSalomone, A., & Roggero, P. (2002). Host range, seed transmission and detection by ELISA and lateral flow of an Italian isolate of pepino mosaic virus. Journal of Plant Pathology, 84, 65–68.spa
dc.relation.referencesSantillan, F. W., Fribourg, C. E., Adams, I. P., Gibbs, A. J., Boonham, N., Kehoe, M. A., Maina, S., & Jones, R. A. C. (2018). The Biology and Phylogenetics of Potato virus S Isolates from the Andean Region of South America. Plant Disease, 102(5), 869–885. https://doi.org/10.1094/PDIS-09-17-1414-REspa
dc.relation.referencesSavary, S., Willocquet, L., Pethybridge, S. J., Esker, P., Mcroberts, N., & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. NatEcoEvol, 3(3), 430–439. https://doi.org/10.1038/s41559-018-0793-yspa
dc.relation.referencesSavenkov, E., Germundsson, A., Zamyathin, A., Sandgren, M., & Valkonen, J. (2003). Potato mop-top virus: The coat protein- encoding RNA and the gene for cystein -rich protein are dispensable for systemic virus movement in Nicotianan benthamiana. Journal of General Virology, 80, 2779–2784.spa
dc.relation.referencesSavenkov, E. I., & Valkonen, J. P. . (2001). Potyviral helper-component proteinase expressed in transgenic plants enhances titers of Potato Leaf Roll Virus but does not alleviate its phloem limitation. Virology, 283, 285–293.spa
dc.relation.referencesScholthof, K., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., Hohn, B., Saunders, K., Candresse, T., Ahlquist, P., Hemenway, C., & Foster, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12(9), 938–954. https://doi.org/10.1111/j.1364-3703.2011.00752.xspa
dc.relation.referencesSchulte-Geldermann, E., Gildemacher, P. R., & Struik, P. C. (2012). Improving Seed Health and Seed Performance by Positive Selection in Three Kenyan Potato Varieties. American Journal of Potato Research, 89(6), 429–437. https://doi.org/10.1007/s12230-012-9264-1spa
dc.relation.referencesSifres, A. B., & Nuez, F. (2011). Pattern of genetic variability of Solanum habrochaites in its natural area of distribution. Genet Resour Crop, 58, 347–360.spa
dc.relation.referencesSingh, M., Singh, R. P., & Fageria, M. S. (2012). Optimization of a Real-Time RT-PCR Assay and its Comparison with ELISA , Conventional RT-PCR and the Grow-out Test for Large Scale Diagnosis of Potato virus Y in Dormant Potato Tubers. American Journal of Potato Research, 90(1), 43–50. https://doi.org/10.1007/s12230-012-9274-zspa
dc.relation.referencesSingh, R. P., Kurz, J., Boiteau, G., & Bernard, G. (1995). Detection of potato leafroll virus in single aphids by the reverse transcription polymerase chain reaction and its potencial epidemiological application. Journal of Virological Methods, 1(506), 133–143.spa
dc.relation.referencesSpooner, D. M., Ghislain, M., Simon, R., Jansky, S. H., & Gavrilenko, T. (2014). Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes. Botanical Review, 80(4), 283–383. https://doi.org/10.1007/s12229-014-9146-yspa
dc.relation.referencesStammler, J., Oberneder, A., Kellermann, A., & Hadersdorfer, J. (2018). Detecting potato viruses using direct reverse transcription quantitative PCR (DiRT-qPCR) without RNA purification: an alternative to DAS-ELISA. European Journal of Plant Pathology, 152(1), 237–248. https://doi.org/10.1007/s10658-018-1468-xspa
dc.relation.referencesStevenson, W., Loria, R., & Gardy, F. (2001). Compendium of Potato Diseases (Second Edi).spa
dc.relation.referencesSyller, J. (2012). Facilitative and antagonistic interactions between plant viruses in mixed infections. Molecular Plant Pathology, 13(2), 204–216. https://doi.org/10.1111/j.1364-3703.2011.00734.xspa
dc.relation.referencesTamayo, P., & Jaramillo, J. (2013). Enfermedades del tomate ,pimenton, aji y berenjena en Colombia. Guía para su diagnóstico y manejo. https://repository.agrosavia.co/handle/20.500.12324/13267spa
dc.relation.referencesTamayo, P., Navarro, R., & de la Rotta, M. C. (2001). Enfermedades del cultivo del lulo en Colombia. Boletín Técnico 9 - CORPOICA.spa
dc.relation.referencesThomas-Sharma, S., Abdurahman, A., Ali, S., Andrade-Piedra, J. L., Bao, S., Charkowski, A. O., Crook, D., Kadian, M., Kromann, P., Struik, P. C., Torrance, L., Garrett, K. A., & Forbes, G. A. (2016). Seed degeneration in potato: The need for an integrated seed health strategy to mitigate the problem in developing countries. Plant Pathology, 65(1), 3–16. https://doi.org/10.1111/ppa.12439spa
dc.relation.referencesTurco, S., Golyaev, V., Seguin, J., Farinelli, L., Boller, T., Schumpp, O., & Pooggin, M. (2018). Small RNA-Omics for Virome Reconstruction and Antiviral Defense Characterization in Mixed Infections of Cultivated Solanum Plants. The American Phytopathological Society, 31(7), 707–723.spa
dc.relation.referencesUrcuqui-inchima, S., Haenni, A., & Bernardi, F. (2001). Potyvirus proteins: a wealth of functions. Virus Research, 74, 157–175.spa
dc.relation.referencesVaca Vaca, J., Betancur Pérez, J., & López-López, K. (2012). Distribución y diversidad genética de Begomovirus que infectan tomate (Solanum lycopersicum L) en Colombia. Revista Colombiana de Biotecnología, 14(1), 60–76.spa
dc.relation.referencesVallejo, D., Gutiérrez, P., & Marín, M. (2016). Genome characterization of a Potato virus S ( PVS ) variant from tuber sprouts of Solanum phureja Juz . et Buk . Agronomia Colombiana, 34(1), 51–60. https://doi.org/10.15446/agron.colomb.v34n1.53161spa
dc.relation.referencesValverde, R., Nameth, S., & Jordan, R. (1990). Analysis of double-stranded RNA for plant virus diagnosis. Plant Disease, 74, 255–258.spa
dc.relation.referencesVance, V. B. (1991). Replication of Potato Virus X RNA Is Altered in Coinfections with Potato Virus Y. Virology Journal, 494, 486–494.spa
dc.relation.referencesVillamil-Garzón, A, Cuellas, W., & Guzmán-Barney, M. (2014). Co-infección natural de Potato yellow vein virus y potivirus en cultivos de Solanum tuberosum en Colombia. Agronomia Colombiana, 32, 213–223.spa
dc.relation.referencesVillamil-Garzón, Angela, Cuellar, W. J., & Guzmán-Barney, M. (2014). Co-infección natural de potato yellow vein virus y potivirus en cultivos de Solanum tuberosum en Colombia. Agronomia Colombiana, 32(2), 213–223. https://doi.org/10.15446/agron.colomb.v32n2.43968spa
dc.relation.referencesVillegas, M. D., Montoya, M. M., & Gutiérrez, P. A. (2017). Genome comparison and primer design for detection of Tamarillo leaf malformation virus ( TaLMV ). Archives of Phytopathology and Plant Protection, 5408(September), 1–14. https://doi.org/10.1080/03235408.2017.1370934spa
dc.relation.referencesWang, B., Ma, Y., Zhang, Z., Wu, Z., Wu, Y., Wang, Q., & Li, M. (2011). Potato viruses in China. Crop Protection, 30(9), 1117–1123. https://doi.org/10.1016/j.cropro.2011.04.001spa
dc.relation.referencesWilm, A., Poh, P., Aw, K., Bertrand, D., Hui, G., Yeo, T., Ong, S. H., Wong, C. H., Khor, C. C., Petric, R., Hibberd, M. L., & Nagarajan, N. (2012). LoFreq : a sequence-quality aware , ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acid Research, 40(22), 11189–11201. https://doi.org/10.1093/nar/gks918spa
dc.relation.referencesXu, C., Sun, X., Taylor, A., Jiao, C., Xu, Y., Cai, X., Whang, X., Ge, C., Pan, G., Whang, Q., Fei, Z., & Wang, Q. (2017). Diversity , Distribution , and Evolution of Tomato Viruses en China Uncovered by Small RNA Sequencing. Journal of Virology, 91(11), 1–14. https://doi.org/10.1128/JVI.00173-17spa
dc.relation.referencesYadav, R., Rathi, M., Pednekar, A., & Rewachandani, Y. (2016). A DETAILED REVIEW ON SOLANACEAE FAMILY. Europan Journal of Pharmaceutical and Medical Research, 3(1), 369–378.spa
dc.relation.referencesYang, I., & Kim, S. (2015). Analysis of Whole Transcriptome Sequencing Data: Workflow and Software. Genomics & Informatics, 13, 119–125.spa
dc.relation.referencesYang, L., Nie, B., Liu, J., & Song, B. (2013). A Reexamination of the Effectiveness of Ribavirin on Eradication of Viruses in Potato Plantlets in vitro Using ELISA and Quantitative RT-PCR. American Journal of Potato Research, 91(3), 304–311. https://doi.org/10.1007/s12230-013-9350-zspa
dc.relation.referencesYang, L., Nie, B., Liu, J., & Song, B. (2014). A Reexamination of the Effectiveness of Ribavirin on Eradication of Viruses in Potato Plantlets in vitro Using ELISA and Quantitative RT-PCR. American Journal of Potato Research, 91(3), 304–311. https://doi.org/10.1007/s12230-013-9350-zspa
dc.relation.referencesZapata, J., Saldarriaga, A., Londoño, M., & Díaz, C. (2002). Manejo del cultivo de la uchuva en Colombia. Repositorio agrosavia. Disponible: http://hdl.handle.net/20.500.12324/12833spa
dc.relation.referencesZhang, W., Zhang, Z., Fan, G., Gao, Y., & Wen, J. (2017). Development and application of a universal and simplified multiplex RT-PCR assay to detect five potato viruses. Journal of General Plant Pathology, 83(1), 33–45. https://doi.org/10.1007/s10327-016-0688-1spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalSecuenciación de alto rendimientospa
dc.subject.proposalDetection, RT-PCReng
dc.subject.proposalHigh performance sequencingeng
dc.subject.proposalSolanaceaeeng
dc.subject.proposalPlant viruseseng
dc.titleCaracterización molecular del viroma de plantas solanáceas de importancia económica en Antioquiaspa
dc.title.alternativeMolecular virome characterization of solanaceous crops of economic importance in Antioquiaspa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
43973978.2020.pdf
Tamaño:
16.03 MB
Formato:
Adobe Portable Document Format
Descripción:
Doctorado en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: