Comportamiento experimental de mampostería de bloques de arcilla de perforación horizontal confinada mediante pórtico de acero conformado en frío

dc.contributor.advisorTakeuchi Tam, Caori Patricia
dc.contributor.advisorTamasco Torres, Juan
dc.contributor.authorNieto Cárdenas, Jaime Xavier
dc.contributor.googlescholarNieto Cárdenas, Jaime Xavier [wAeZIbEAAAAJ&view]
dc.contributor.orcidNieto Cárdenas, Jaime Xavier [0000000263439622]
dc.contributor.researchgateNieto Cárdenas, Jaime Xavier [Xavier-Nieto-Cardenas-2]
dc.contributor.researchgroupAnálisis, Diseño y Materiales Gies
dc.contributor.scopusNieto Cárdenas, Jaime Xavier [58722551400]
dc.coverage.countryColombia
dc.date.accessioned2025-09-08T15:48:14Z
dc.date.available2025-09-08T15:48:14Z
dc.date.issued2025
dc.descriptionilustraciones (principalmente a color), diagramas, fotografíasspa
dc.description.abstractEl presente trabajo evalúa el comportamiento experimental en el plano de muros de mampostería no estructural confinada mediante pórticos con perfiles de lámina delgada, sometidos a cargas cíclicas reversibles sobre especímenes a media escala. El objetivo es clasificar el desempeño estructural de este sistema combinado conforme a la metodología ACI 374. Se ensayan tipologías con y sin elementos adicionales de refuerzo, como conectores de cortante en la mampostería y placas de zinc simulando muros de cortante de acero. La justificación del presente estudio se basa en la necesidad de reducir la vulnerabilidad sísmica de las edificaciones que se generan por autoconstrucción o sin supervisión técnica. La incorporación de perfiles de acero de lámina delgada representa una alternativa viable y de bajo costo para mejorar la respuesta estructural de estas viviendas. Los resultados experimentales evidenciaron que los sistemas con refuerzos metálicos incrementan la rigidez, la capacidad de disipación de energía y el índice de ductilidad. Se identificaron puntos característicos en las curvas de Carga-Desplazamiento y Carga-Deriva, permitiendo evaluar de forma comparativa el desempeño de cada espécimen. Finalmente se concluye, que el uso de perfiles de lámina delgada mejora el comportamiento sísmico de la mampostería no estructural. Además, se probó la aplicabilidad de la metodología ACI 374 para clasificar el comportamiento de muros combinados, destacando su utilidad como herramienta de evaluación estructural. (Texto tomado de la fuente)spa
dc.description.abstractThis study evaluates the in-plane experimental behavior of non-structural masonry walls confined by frames made of cold-formed steel sections, subjected to reversed cyclic loading on half-scale specimens. The objective is to classify the structural performance of this combined system according to the ACI 374 methodology. Configurations with and without additional reinforcement elements were tested, including shear connectors embedded in the masonry and zinc plates simulating steel shear walls. The rationale behind this study lies in the need to reduce the seismic vulnerability of buildings constructed through self-construction practices or without technical supervision. The incorporation of cold-formed steel elements represents a feasible and low-cost alternative to enhance the structural response of such housing. Experimental results showed that systems with steel reinforcements exhibited increased stiffness, energy dissipation capacity, and ductility index. Characteristic points were identified on the Load-Displacement and Load-Drift curves, enabling a comparative evaluation of each specimen´s performance. It is concluded that the use of cold-formed steel elements significantly improves the seismic behavior of non-structural masonry. Furthermore, the applicability of the ACI 374 methodology for classifying the behavior of combined wall systems was confirmed, highlighting its usefulness as a structural assessment tool.eng
dc.description.curricularareaIngeniería Civil y Agrícola.Sede Bogotá
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Estructuras
dc.description.researchareaDiseño Estructural
dc.format.extentxvii, 123 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88636
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Estructuras
dc.relation.referencesACI 374. (2013). Guide for Testing Reinforced Concrete Structural Elements under Slowly Applied Simulated Seismic Loads (Vol. 3, Issue 2). American Concrete Instituto. http://repositorio.unan.edu.ni/2986/1/5624.pdf
dc.relation.referencesAgencia Suiza para el desarrollo y la cooperación COSUDE. (2017). Guía para la construcción de viviendas sismo-resistentes en mampostería confinada.
dc.relation.referencesAISC. (2020). ANSI / AISC 358-16 / 358s1-18 358s"-20: Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, incluiding Supplements No. 1 and No. 2.
dc.relation.referencesAISC. (2022). ANSI/AISC 341-22: Seismic Provisions for Structural Steel Buildings Supersedes the Seismic Provisions for Structural Steel Buildings.
dc.relation.referencesAISI. (2015). North American Standard for Seismic Design of Cold-Formed steel Structural Systems, AISI S400 (Washington).
dc.relation.referencesAlcocer, S., Hernández, H., & Sandoval, H. (2013). ENVOLVENTE DE RESISTENCIA LATERAL DE PISO PARA ESTRUCTURAS DE MAMPOSTERÍA CONFINADA. REVISTA DE INGENIERÍA SISMICA, 54(89), 24–54.
dc.relation.referencesAmerican Instituto of Steel Construction. (2016). Specification for Structural Steel Buildings.
dc.relation.referencesAncon. (2021). Wall ties and restraint fixings for the construction industry (pp. 0–28).
dc.relation.referencesASCE. (2017). Seismic Evaluation and Retrofit of Existing Buildings. ASCE/SEI 41-17. American Society of Civil Engineers.
dc.relation.referencesAsociación Colombiana de Ingeniería Sísmica. (2010). Reglamento Colombiano de Construcción Sismo Resistente NSR-10
dc.relation.referencesAstroza I., M., & Schmidt A., A. (2004). Capacidad de deformación de muros de albañilería confinada para distintos niveles de desempeño. Revista de Ingeniería Sísmica, 70, 59–75.
dc.relation.referencesATC-24. (1992). Guidelines for Cyclic Seismic Testing of Components of Steel Structures.
dc.relation.referencesBaloevic, G., Radnic, J., Matesan, D., Grgic, N., & Banovic, I. (2016). Comparison of Developed Numerical Macro and Micro Masonry Models for Static and Dynamic Analysis of Masonry-infilled Steel Frames. Latin American Journal of Solids and Structures, 2251–2265.
dc.relation.referencesBarahona, B. (2022). Evaluación de alternativas de reforzamiento externo para mampostería de bloque de perforación horizontal [Tesis de Maestría]. Universidad Nacional de Colombia.
dc.relation.referencesBazán, E., & Meli, R. (2015). Diseño sísmico de Edificios (Editorial LIMUSA S.A., Ed.).
dc.relation.referencesCarrillo, J., & Alcocer, S. (2010). Evaluación del comportamiento a cortante de muros de concreto para vivienda por medio de ensayos dinámicos. Universidad Nacional Autónoma de México.
dc.relation.referencesCarrillo, J., Arteta, C. A., & Vera, X. (2024). Post-earthquake safety assessment of schools after the 2016 Ecuador M7.8 earthquake. Soil Dynamics and Earthquake Engineering, 179. https://doi.org/10.1016/j.soildyn.2024.108561
dc.relation.referencesCement concrete & aggregates Australia. (2008). Technical note. Articulated walling.
dc.relation.referencesChoi, S. H., Lee, S. H., Kim, J. H., Heo, I., Jeong, H., & Su Kim, K. (2024). Experimental study on replaceable precast concrete beam-column connections. Earthquake and Structures, 26(1), 49–58. https://doi.org/10.12989/eas.2024.26.1.049
dc.relation.referencesCrisafulli, F. J. (2018). Diseño sismorresistente de construcciones de acero. Alacero.
dc.relation.referencesDu, Y., Zhang, M., Cao, Y., & Xue, L. (2024). Degradation of Seismic Performance of Thin Steel Plate Shear Walls in Earthquakes. Buildings, 14(4). https://doi.org/10.3390/buildings14040888
dc.relation.referencesFEMA 356, & ASCE. (2000). Prestandard and commentary for the Seismic Rehabilitation of Buildings.
dc.relation.referencesFEMA 440. (2005). Improvement of Nonlinear Static Seismic Analysis Procedures (Issue June).
dc.relation.referencesFEMA, P., ATC, & NEHRP. (2009). Effects of Strength and Stiffness Degradation on Seismic Response. www.ATCouncil.org
dc.relation.referencesFEMA, P.-749, ATC, & NEHRP. (2022). Earthquake-Resistant Design Concepts. www.ATCouncil.org
dc.relation.referencesFEMA450. (2003). NEHRP Recommended provisions for seismic regulations for New Buildings and others structures. www.bssconline.org
dc.relation.referencesGamba, C. (2019). Reforzamiento por una cara de muros de mampostería de arcilla con unidades de perforación horizontal [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/77673/1049631625.2020.pdf?sequence=1&isAllowed=y
dc.relation.referencesGarcia-Ramonda, L., Pelà, L., Roca, P., & Camata, G. (2023). Experimental and numerical insights on the in-plane behaviour of unreinforced and TRM/SRG retrofitted brick masonry walls by diagonal compression and shear-compression testing. Construction and Building Materials, 402. https://doi.org/10.1016/j.conbuildmat.2023.132997
dc.relation.referencesGoretti, A., Molina Hutt, C., & Hedelund, L. (2017). Post-earthquake safety evaluation of buildings in Portoviejo, Manabí province, following the Mw7.8 Ecuador earthquake of April 16, 2016. International Journal of Disaster Risk Reduction, 24(June), 271–283. https://doi.org/10.1016/j.ijdrr.2017.06.011
dc.relation.referencesGuzmán, A., Guzmán, O., Arteta, C., & Carrillo, J. (2021). Experimental study of the influence of welding space in cold-formed built-up box flexural members. Engineering Structures, 228. https://doi.org/10.1016/j.engstruct.2020.111541
dc.relation.referencesICONTEC. (2000). NTC 296: Ingeniería Civil y Arquitectura. Dimensiones modulares de unidades de mampostería de arcilla cocida, ladrillos y bloques cerámicos.
dc.relation.referencesICONTEC. (2001). NTC 4925: Método de ensayo para determinar la resistencia a la tracción diagonal (cortante) en muretes de mampostería.
dc.relation.referencesICONTEC. (2004). NTC 111 Cementos; Especificaciones para la mesa de flujo usada en ensayos de cemento hidráulico.
dc.relation.referencesICONTEC. (2009). NTC 4205-1: Unidades de mampostería de arcilla cocida, ladrillos y bloques cerámicos.
dc.relation.referencesICONTEC. (2018). NTC 4017: Métodos para muestreo y ensayos de unidades de mampostería y otros productos de arcilla.
dc.relation.referencesICONTEC. (2019). NTC 5784 Cementos: Método para determinar la fluidez de mortero de cemento hidráulico.
dc.relation.referencesICONTEC. (2022). NTC 2: Ensayo a tracción de materiales metálicos.
dc.relation.referencesInstituto de Seguridad de las Construcciones en el Distrito Federal Gobierno de la Ciudad de México. (2018). Comentarios y ejemplos de las Normas Técnicas complementarias para el diseño y construcción de estructuras de mampostería del Gobierno de la Ciudad de México.
dc.relation.referencesIuorio, O., Macillo, V., Terracciano, M. T., Pali, T., Fiorino, L., & Landolfo, R. (2014). Seismic response of Cfs strap-braced stud walls: Experimental investigation. Thin-Walled Structures, 85, 466–480. https://doi.org/10.1016/j.tws.2014.09.008
dc.relation.referencesKhodadadi Koodiani, H., Majlesi, A., Shahriar, A., & Matamoros, A. (2023). Non-linear modeling parameters for new construction RC columns. Frontiers in Built Environment, 9. https://doi.org/10.3389/fbuil.2023.1108319
dc.relation.referencesKim, J. H., Choi, S. H., Hwang, J. H., Jeong, H., Han, S. J., & Kim, K. S. (2021). Experimental study on lateral behavior of post-tensioned precast beam-column joints. Structures, 33, 841–854. https://doi.org/10.1016/j.istruc.2021.04.095
dc.relation.referencesLeal-Graciano, J. M., Pérez-Gavilán, J. J., Reyes-Salazar, A., Valenzuela-Beltrán, F., Bojórquez, E., & Bojórquez, J. (2022). Experimental Study of Infill Walls with Joint Reinforcement Subjected to In-Plane Lateral Load. Buildings, 12(3). https://doi.org/10.3390/buildings12030259
dc.relation.referencesLee, Y. H., Tan, C. S., Mohammad, S., Tahir, M., & Shek, P. N. (2014). Review on Cold-Formed Steel Connections. The Scientific World Journal, 2014, 11. https://doi.org/10.1155/2014/951216
dc.relation.referencesLi, Z., Ge, L., Qi, Y., Miao, J., & Jun Teng. (2025). Experimental investigation of prefabricated buckling-restrained steel coupling beam with modified buckling-restrained RC panel. Structures, 72. https://doi.org/https://doi.org/10.1016/j.istruc.2025.108252
dc.relation.referencesLiao, W. C., Perceka, W., & Wang, M. (2017). Experimental study of cyclic behavior of high-strength reinforced concrete columns with different transverse reinforcement detailing configurations. Engineering Structures, 153, 290–301. https://doi.org/10.1016/j.engstruct.2017.10.011
dc.relation.referencesMartínez Reyes, V., & Nungaray Pérez, C. (2019). Seismic performance evaluation of steel rigid frame buildings in Honduran high seismic hazard zones. Informes de La Construccion, 71(556), 1–14. https://doi.org/10.3989/ic.64333
dc.relation.referencesMena, Á., Franco, J., Miguel, D., Mínguez, J., Jiménez, A. C., González, D. C., & Vicente, M. Á. (2020). Experimental campaign of a low-cost and replaceable system for passive energy dissipation in precast concrete structures. Applied Sciences (Switzerland), 10(4). https://doi.org/10.3390/app10041213
dc.relation.referencesMohebbi, S., Mirghaderi, S. R., Farahbod, F., Bagheri Sabbagh, A., & Torabian, S. (2016). Experiments on seismic behaviour of steel sheathed cold-formed steel shear walls cladded by gypsum and fiber cement boards. Thin-Walled Structures, 104, 238–247. https://doi.org/10.1016/j.tws.2016.03.015
dc.relation.referencesMojtabaei, S. M., Kabir, M. Z., Hajirasouliha, I., & Kargar, M. (2018). Analytical and experimental study on the seismic performance of cold-formed steel frames. Journal of Constructional Steel Research, 143, 18–31. https://doi.org/10.1016/j.jcsr.2017.12.013
dc.relation.referencesMolina, M., & Ortiz, J. (2006). Determinación del comportamiento bajo cargas concentradas de perfiles de lámina delgada ( MM ). Revista Ingeniería E Investigación 2248-8723 0120-5609, 26(3), 12–25. http://www.bdigital.unal.edu.co/18815/
dc.relation.referencesMontaña, M. Á. (2010). Análisis “ Push-Over ” De Edificios con pórticos de acero en Bogotá. Universidad Politécnica de Cataluña.
dc.relation.referencesNaspud, P., Nieto-Cárdenas, X., Delgadillo, E., & Takeuchi, C. (2021). Simulación numérica de un pórtico con perfiles de acero formado en frío (CFS) ante carga lateral. XXII Jornadas Estructurales y XIX Geotécnicas, 10. https://sci.org.co/wp-content/uploads/file/me_jornadas_2021/articulo_11.pdf%0A
dc.relation.referencesNieto-Cárdenas, X. (2012). Diseño de una vivienda de dos plantas con soluciones prefabricadas. [Postgraduate Thesis]. Universidad de Cuenca.
dc.relation.referencesNieto-Cárdenas, X., & Takeuchi, C. (2019). Experimental behavior of combined frame under lateral load. In (Colombia) : ACOFI Bogotá (Ed.), Encuentro Internacional de Educación en Ingeniería EIEI ACOFI 2019. Retos en la formación de Ingenieros en la era digital: Memorías ACOFI (pp. 1–8). ACOFI ISSN:2665-5918. https://acofipapers.org/index.php/eiei/article/view/272
dc.relation.referencesNieto-Cárdenas, X., Takeuchi, C., & Carrillo, J. (2022). Rigidez de un muro mixto de mampostería y pórtico de lámina delgada. XXIII Congreso Nacional de Ingeniería Sísmica., 1, 1–8.
dc.relation.referencesNieto-Cárdenas, X., Takeuchi, C., Carrillo, J., & Cobos, C. (2023). Performance of non-structural masonry retrofitted with welded wire mesh and steel fibers under axial compression load. 7th World Multidisciplinary Civil Engineering - Architecture - Urban Planning Symposium 2022, 150034. https://doi.org/10.1063/5.0170782
dc.relation.referencesPapargyriou, I., & Hajirasouliha, I. (2021). More efficient design of CFS strap-braced frames under vertical and seismic loading. Journal of Constructional Steel Research, 185. https://doi.org/10.1016/j.jcsr.2021.106886
dc.relation.referencesPapargyriou, I., Hajirasouliha, I., Becque, J., & Pilakoutas, K. (2021). Performance-based assessment of CFS strap-braced stud walls under seismic loading. Journal of Constructional Steel Research, 183. https://doi.org/10.1016/j.jcsr.2021.106731
dc.relation.referencesPark, R. (1989). Structural Assemblages From Laboratory Testing. Bulletin of the New Zealand National Society for Earthquake Engineering, 22(3), 155–166.
dc.relation.referencesPekgokgoz, R. K., & Yakut, I. (2024). Investigation of Passive Controlled Post-Tensioning System on the Structural Behaviour of Precast Reinforced Concrete Beam–Column Connections. Buildings, 14(12). https://doi.org/10.3390/buildings14123910
dc.relation.referencesPenna, A., Magenes, G., Rota, M., & Mandirola, M. (n.d.). Enhancement of the seismic performance of AAC masonry by means of flat-truss bed-joint reinforcement.
dc.relation.referencesPérez, J., Flores, L., & Alcocer, S. (2013). Efecto De La Esbeltez En La Resistencia De Muros De Mampostería Confinada. Revista de Ingeniería Sísmica, 77(89), 55–76. https://doi.org/10.18867/ris.89.164
dc.relation.referencesPérez, J., & Manzano, A. (2013). EFECTO DEL MOMENTO FLEXIONANTE EN LA FUERZA CORTANTE QUE PRODUCE EL AGRIETAMIENTO POR TENSIÓN DIAGONAL EN MUROS DE MAMPOSTERÍA CONFINADA. REVISTA DE INGENIERÍA SISMICA, 22(88), 1–22.
dc.relation.referencesRahimibala, M., Rofooei, F. R., Farahbod, F., & Pourabdollah, O. (2023). Experimental-numerical assessment of laterally-loaded CFS frames with steel sheathing and K-shaped braces. Journal of Constructional Steel Research, 203. https://doi.org/10.1016/j.jcsr.2023.107792
dc.relation.referencesSandoval, O. (2022). Determinación de las características mecánicas de muretes de mampostería simple reforzados con malla de acero y conectores transversales sometidos a carga axial y tensión diagonal [Tesis de postgrado]. Universidad Nacional de Colombia.
dc.relation.referencesSandoval, O. J., Takeuchi, C., Carrillo, J., & Barahona, B. (2021). Performance of unreinforced masonry panels strengthened with mortar overlays reinforced with welded wire mesh and transverse connectors. Construction and Building Materials, 267, 121054. https://doi.org/10.1016/j.conbuildmat.2020.121054
dc.relation.referencesSantafé, L. (2019). Ficha Técnica Bloque #4 (Issue 74, p. 3190330). https://www.santafe.com.co/wp-content/uploads/2021/11/FT-BL4.pdf
dc.relation.referencesToledo Silva, A., & Silva, A. T. (2018). Cold formed steel semi rigid joints. CIVIL ENGINEERING, 71(4), 497–504.
dc.relation.referencesUngermann, D., Lemański, T., & Brune, B. (2023). A Eurocode-compliant design approach for cold-formed steel sections. Steel Construction. https://doi.org/10.1002/stco.202200039
dc.relation.referencesUsefi, N. (2020). Hybrid Cold-Formed Steel Structural Systems for Building [PhD Thesis]. Western Sydney University.
dc.relation.referencesVillar, S. (2007). Calificación de conexiones para pórticos de lámina delgada – 2a parte. Sergio Villar Salinas. Universidad Nacional de Colombia.
dc.relation.referencesWang, F., Yang, J., Wang, X. er, & Azim, I. (2021). Study on progressive collapse behaviour of steel-framed substructures with sheathed CFS stud infill walls. Journal of Building Engineering, 42. https://doi.org/10.1016/j.jobe.2021.102720
dc.relation.referencesWang, J., Zhou, T., Nie, S., Zhang, X., & Shao, Y. (2022). Behavior of CFS shear walls infilled with lightweight ceramsite concrete under cyclic loading. Structures, 45, 1833–1849. https://doi.org/10.1016/j.istruc.2022.09.099
dc.relation.referencesWang, S. Y., Chen, A. Y., & Wan, H. Y. (2021). Seismic behaviour of concrete-filled steel tube frames with external composite wall panels. Advanced Steel Construction, 17(1), 10–19. https://doi.org/10.18057/IJASC.2021.17.1.2
dc.relation.referencesWang, X., & Ye, J. (2016). Cyclic testing of two- and three-story CFS shear-walls with reinforced end studs. Journal of Constructional Steel Research, 121, 13–28. https://doi.org/10.1016/j.jcsr.2015.12.028
dc.relation.referencesWang, Z., Liu, Z., Yan, J. B., Ju, X., & Han, L. (2023). Experiments and Numerical Simulations on the Seismic Performance of Steel-Frame Composite Wallboard Shear Walls. Buildings, 13(2). https://doi.org/10.3390/buildings13020282
dc.relation.referencesWu, F. W., & Li, Y. Q. (2022). Multi-level simulation studies on seismic performance evaluation of steel-sheathed cold-formed steel framing shear walls. Journal of Building Engineering, 61. https://doi.org/10.1016/j.jobe.2022.105302
dc.relation.referencesXiong, G., Zhang, C., Yao, Y., Ran, X., & Zhang, H. (2022). Experiment investigation on lateral performance of CFS composite walls sheathed with magnesium crystal board. Thin-Walled Structures, 176, 109338. https://doi.org/10.1016/j.tws.2022.109338
dc.relation.referencesXu, Y., Xiong, G., Wu, J., Liu, J., & Jing, L. (2022). Experimental investigation of lateral resistance of CFS walls with rigid diagonal bracings. Journal of Constructional Steel Research, 198. https://doi.org/10.1016/j.jcsr.2022.107333
dc.relation.referencesXu, Z., Chen, Z., Osman, B. H., & Yang, S. (2018). Seismic performance of high-strength lightweight foamed concrete- fi lled cold-formed steel shear walls. Journal of Constructional Steel Research, 143, 148–161. https://doi.org/10.1016/j.jcsr.2017.12.027
dc.relation.referencesYe, J., Hajirasouliha, I., Becque, J., & Eslami, A. (2016). Optimum design of cold-formed steel beams using Particle Swarm Optimisation method. Journal of Constructional Steel Research, 122, 80–93. https://doi.org/10.1016/j.jcsr.2016.02.014
dc.relation.referencesYe, J., Wang, X., & Zhao, M. (2016). Experimental study on shear behavior of screw connections in CFS sheathing. Journal of Constructional Steel Research, 121, 1–12. https://doi.org/10.1016/j.jcsr.2015.12.027
dc.relation.referencesYu, W. (2000). Steel Design Third Edition (THIRD EDIT). John Wiley & Sons.
dc.relation.referencesYu, W., & LaBoube, R. A. (2010). Cold-Formed Steel Design (J. W. & Sons., Ed.; Fourth).
dc.relation.referencesZabala, F., Bustos, J. L., Masanet, A. R., & Santalucía, J. R. (n.d.). Ensayos De Comportamiento Sísmico De Muros De Mampostería [Universidad Nacional de San Juan.]. http://www.idia.unsj.edu.ar/ENSAYOS DE COMPORTAMIENTO S%CDSMICO.pdf
dc.relation.referencesZabala, F., Bustos, J. L., Masanet, A., & Santalucía, J. (2004). Experimental behavior of masonry structural walls used in Argentina. 13Th World Conference on Earthquake Engineering. Vancouver, B.C. Canadá., 1093. http://www.iitk.ac.in/nicee/wcee/article/13_1093.pdf
dc.relation.referencesZhang, Z., Singh, A., Derveni, F., Torabian, S., Peterman, K. D., Hutchinson, T. C., & Schafer, B. W. (2021). Cyclic experiments on isolated steel sheet connections for CFS framed steel sheet sheathed shear walls with new configurations. Engineering Structures, 244. https://doi.org/10.1016/j.engstruct.2021.112805
dc.relation.referencesZhou, J., Liang, T., Jiang, Y., & Yi, W. (2025). Horizontal hysteretic behavior of precast concrete-encased TSSHC composite shear walls under axial tension/compression. Structures, 72. https://doi.org/10.1016/j.istruc.2025.108222
dc.relation.referencesZhou, X., Kou, X., Peng, Q., & Cui, J. (2018). Influence of infill wall configuration on failure modes of RC frames. Shock and Vibration, 2018. https://doi.org/10.1155/2018/6582817
dc.relation.referencesZhou, Y., Chen, Z., Zhong, G., Lu, Y., Zhang, C., & Li, D. (2021). Experimental study on out-of-plane behaviour of an infilled masonry wall with damping layer joint. Engineering Structures, 246. https://doi.org/10.1016/j.engstruct.2021.112993
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.bneRiesgos sísmicosspa
dc.subject.bneEarthquake hazard analysiseng
dc.subject.bneEstructuras antisísmicasspa
dc.subject.bneEarthquake resistant designeng
dc.subject.bneEstructuras (Construcción) -- Dinámicaspa
dc.subject.bneStructural dynamicseng
dc.subject.bneAnálisis estructural (Ingeniería) -- Métodos de simulaciónspa
dc.subject.bneStructural analysis (Engineering) -- Simulation methodseng
dc.subject.bneResistencia de materialesspa
dc.subject.bneStrength of materialseng
dc.subject.bneEstructuras (Construcción) -- Cálculospa
dc.subject.bneStructural designeng
dc.subject.bneMateriales de construcciónspa
dc.subject.bneBuilding materialseng
dc.subject.ddc624.1533
dc.subject.lembMamposteríaspa
dc.subject.lembIngeniería civil -- Investigacionesspa
dc.subject.lembCivil engineering -- Researcheng
dc.subject.lembEstructuras soldadas de acerospa
dc.subject.lembWelded steel structureseng
dc.subject.otherPórticos estructuralesspa
dc.subject.otherStructural porticoeseng
dc.subject.otherStructural engineeringeng
dc.subject.otherIngeniería de estructurasspa
dc.subject.proposalPerfiles de lámina delgadaspa
dc.subject.proposalMuro de corte en acerospa
dc.subject.proposalMampostería no estructuralspa
dc.subject.proposalMedia escalaspa
dc.subject.proposalCarga cíclicaspa
dc.subject.proposalComportamiento en el planospa
dc.subject.proposalCold-Formed Steeleng
dc.subject.proposalShear wall steeleng
dc.subject.proposalNon-structural masonryeng
dc.subject.proposalHalf scaleeng
dc.subject.proposalCyclic loadeng
dc.subject.proposalIn-plane behavioreng
dc.subject.unamMuros -- Evaluación de riesgosspa
dc.subject.unamWalls -- Risk assessmenteng
dc.titleComportamiento experimental de mampostería de bloques de arcilla de perforación horizontal confinada mediante pórtico de acero conformado en fríospa
dc.title.translatedExperimental behavior of clay block masonry with horizontal hollows confined by cold-formed steel frame.eng
dc.title.translatedExperimental behavior of horizontally hollow clay masonry blocks confined by a Cold-Formed steel frameeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TesisMScJXNC.pdf
Tamaño:
33.57 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Estructuras

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: