Catálisis de la hidrogenación del ácido levulínico a γ-valerolactona con nanopartículas de oro soportadas en sílice mesoporosa

dc.contributor.advisorGuerrero Fajardo, Carlos Alberto
dc.contributor.authorRodriguez Gonzalez, Carolina
dc.contributor.researchgroupAprovechamiento Energético de Recursos Naturalesspa
dc.date.accessioned2022-08-08T17:27:29Z
dc.date.available2022-08-08T17:27:29Z
dc.date.issued2022
dc.descriptionfotografías en color, gráficas, ilustraciones, tablasspa
dc.description.abstractActualmente, obtener productos de interés industrial a partir de fuentes renovables ha adquirido relevancia, debido al impacto ambiental que generan los métodos de obtención tradicional y al inminente agotamiento de las fuentes fósiles. Esto ha dado paso al surgimiento de diversos procesos de valorización, con los cuales se obtienen productos de alto valor agregado a partir de biomasa. Sin embargo, una de las principales limitantes en dicha valorización es la obtención de productos con aplicación directa en la industria, debido a que la transformación de biomasa por hidrólisis, procesos termoquímicos, fermentación, entre otros métodos, da como resultado la obtención de compuestos conocidos como moléculas plataforma, que si bien son un paso adelante en el proceso de valorización, requieren un proceso de transformación adicional que permita la obtención de productos con aplicación directa. Tal es el caso del ácido levulínico, como molécula plataforma obtenida a partir de biomasa lignocelulósica, que puede valorizarse hacia γ-valerolactona, un compuesto de interés para la industria de alimentos y de biocombustibles. Por medio de esta tesis de maestría se evaluó la obtención de γ-valerolactona a partir de ácido levulínico, por medio de una reacción de hidrogenación utilizando un catalizador heterogéneo de nanopartículas de oro soportadas en sílice mesoporosa. Para esto se realizó la síntesis de la sílice mesoporosa con el método sol-gel, luego se depositaron las nanopartículas de oro (1-5% Au) empleando el método deposición-precipitación, y los catalizadores obtenidos se caracterizaron por medio de FTIR, XRD y espectroscopia Raman. Con este método, se obtuvieron efectivamente catalizadores con nanopartículas de oro (8-21 nm) cristalinas, soportadas en sílice mesoporosa, posteriormente empleados para la hidrogenación del ácido levulínico. Esta reacción se desarrolló utilizando un diseño experimental factorial multinivel en donde se evaluaron tres factores: % Au en el catalizador (0-5%), temperatura (93-177 °C) y tiempo de reacción (1-6 h), con una alimentación constante de H2, y dos variables de respuesta: conversión del ácido levulínico y selectividad de la reacción hacia γ-valerolactona. Los productos de la reacción se cuantificaron por HPLC. Como resultado se obtuvo una conversión total (100%) del ácido levulínico en temperaturas entre 135 °C y 177 °C y tiempos entre 2 h y 5 h, y una selectividad hacia γ-valerolactona del 99.49% empleando como condiciones de reacción: catalizador 5% Au, 135 °C y 3.5 h. (Texto tomado de la fuente)spa
dc.description.abstractCurrently, obtaining products of interest for industry from renewable sources has gained relevance due to the environmental impact generated by traditional production methods and the imminent depletion of fossil fuels. This has given way to the emergence of various valorization processes, with which high value-added products are obtained from biomass. However, one of the main limitations of such valorization is obtaining products with direct application in industry, because the transformation of biomass by hydrolysis, thermochemical processes, fermentation, among other methods, results in obtaining compounds known as platform molecules, which, although they are a step forward in the valorization process, require an additional transformation process that allows obtaining products with direct application. Such is the case of levulinic acid, a platform molecule obtained from lignocellulosic biomass, which can be valorized to γ-valerolactone, a compound of interest in the food and biofuel industry. By means of this master thesis, the obtaining of γ-valerolactone from levulinic acid was evaluated by a hydrogenation reaction using a heterogeneous catalyst of gold nanoparticles supported on mesoporous silica. For catalyst, the synthesis of the mesoporous silica was carried out with sol-gel method, then gold nanoparticles (1-5% Au) were deposited using deposition-precipitation method, and the catalysts obtained were dcharacterized by FTIR, XRD and Raman spectroscopy. With this method, catalysts with crystalline gold nanoparticles (8-21 nm), supported on mesoporous silica, were effectively obtained and subsequently used for the hydrogenation of levulinic acid. Hydrogenation reaction was developed using a multilevel factorial experimental design where three factors were evaluated: % Au in the catalyst (0-5%), temperature (93-177 °C) and reaction time (1-6 h), with a constant H2 feed, and two response variables: levulinic acid conversion and selectivity of the reaction to γ-valerolactone. Reaction products were quantified by HPLC. As result, a total conversion (100%) of levulinic acid was obtained at temperatures between 135 °C and 177 °C and times between 2 h and 5 h, and selectivity to γ-valerolactone of 99.49% using as reaction conditions: 5% Au catalyst, 135 °C and 3.5 h. (Text taken of the source)eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaProcesos catalíticos y petroquímicosspa
dc.format.extentxix, 109 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81803
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Química y Ambientalspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesS. K. Maity, “Opportunities, recent trends and challenges of integrated biorefinery: Part i,” Renewable and Sustainable Energy Reviews, vol. 43. Elsevier Ltd, pp. 1427–1445, 01-Mar-2015.spa
dc.relation.referencesS. Kang, J. Fu, and G. Zhang, “From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis,” Renewable and Sustainable Energy Reviews, vol. 94. Elsevier Ltd, pp. 340–362, 01-Oct-2018.spa
dc.relation.referencesI. T. Horváth, H. Mehdi, V. Fábos, L. Boda, and L. T. Mika, “γ-Valerolactone-a sustainable liquid for energy and carbon-based chemicals,” Green Chem., vol. 10, no. 2, pp. 238–242, Feb. 2008.spa
dc.relation.referencesN. Savage, “Fuel options: The ideal biofuel,” Nature, vol. 474, no. 7352 SUPPL., pp. S9–S11, Jun. 2011.spa
dc.relation.referencesJ. Zhang, S. Wu, B. Li, and H. Zhang, “Advances in the Catalytic Production of Valuable Levulinic Acid Derivatives,” ChemCatChem, vol. 4, no. 9, pp. 1230–1237, Sep. 2012.spa
dc.relation.referencesP. A. Son, S. Nishimura, and K. Ebitani, “Production of γ-valerolactone from biomass-derived compounds using formic acid as a hydrogen source over supported metal catalysts in water solvent,” RSC Adv., vol. 4, no. 21, pp. 10525–10530, Feb. 2014.spa
dc.relation.referencesZ. Zhang, “Synthesis of γ-Valerolactone from Carbohydrates and its Applications,” ChemSusChem, vol. 9, no. 2. Wiley-VCH Verlag, pp. 156–171, 21-Jan-2016.spa
dc.relation.referencesG. C. Bond, “Gold: A relatively new catalyst,” in Catalysis Today, 2002, vol. 72, no. 1–2, pp. 5–9.spa
dc.relation.referencesA. S. K. Hashmi, “Homogeneous catalysis by gold,” Gold Bull., vol. 37, no. 1–2, pp. 51–65, 2004.spa
dc.relation.referencesA. Z. Moshfegh, “Nanoparticle catalysts,” J. Phys. D. Appl. Phys., vol. 42, no. 23, 2009.spa
dc.relation.referencesP. W. N. M. van Leeuwen, Homogeneous Catalysis. Springer Netherlands, 2004.spa
dc.relation.referencesB. Hvolbæk, T. V. W. Janssens, B. S. Clausen, H. Falsig, C. H. Christensen, and J. K. Nørskov, “Catalytic activity of Au nanoparticles,” Nano Today, vol. 2, no. 4. Elsevier, pp. 14–18, 01-Aug-2007.spa
dc.relation.referencesC. Sievers, S. L. Scott, Y. Noda, L. Qi, E. M. Albuquerque, and R. M. Rioux, “Phenomena affecting catalytic reactions at solid−Liquid interfaces,” ACS Catal., vol. 6, no. 12, 2016.spa
dc.relation.referencesX. Li, L. Zhang, S. Wang, and Y. Wu, “Recent Advances in Aqueous-Phase Catalytic Conversions of Biomass Platform Chemicals Over Heterogeneous Catalysts,” Frontiers in Chemistry, vol. 7. Frontiers Media S.A., p. 948, 07-Feb-2020.spa
dc.relation.referencesM. B. Cortie, “The weird world of nanoscale gold,” Gold Bull., vol. 37, no. 1–2, pp. 12–19, 2004.spa
dc.relation.referencesC. N. R. Rao, G. U. Kulkarni, P. J. Thomas, and P. P. Edwards, “Metal nanoparticles and their assemblies,” Chem. Soc. Rev., vol. 29, no. 1, pp. 27–35, 2000.spa
dc.relation.referencesR. Meyer, C. Lemire, S. K. Shaikhutdinov, and H. J. Freund, “Surface chemistry of catalysis by gold,” Gold Bull., vol. 37, no. 1–2, pp. 72–124, 2004.spa
dc.relation.referencesC. Articles and R. Results, “Web of Knowledge [ v . 5 . 5 ] - All Databases Citing Articles Web of Knowledge [ v . 5 . 5 ] - All Databases Citing Articles,” Chem. Rev., vol. 7641, pp. 1–5, 2012.spa
dc.relation.referencesA. Thirumurugan, S. Ramachandran, and A. Shiamala Gowri, “Combined effect of bacteriocin with gold nanoparticles against food spoiling bacteria - an approach for food packaging material preparation,” Int. Food Res. J., vol. 20, no. 4, pp. 1909–1912, 2013.spa
dc.relation.referencesM. L. Sánchez-Martínez, M. P. Aguilar-Caballos, and A. Gómez-Hens, “Homogeneous immunoassay for soy protein determination in food samples using gold nanoparticles as labels and light scattering detection,” Anal. Chim. Acta, vol. 636, no. 1, pp. 58–62, Mar. 2009.spa
dc.relation.referencesM. Falahati et al., “Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine,” Biochimica et Biophysica Acta - General Subjects, vol. 1864, no. 1. Elsevier B.V., p. 129435, 01-Jan-2020.spa
dc.relation.referencesA. S. Emrani, N. M. Danesh, P. Lavaee, M. Ramezani, K. Abnous, and S. M. Taghdisi, “Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles,” Food Chem., vol. 190, pp. 115–121, May 2016.spa
dc.relation.referencesM. Nilam, A. Hennig, W. M. Nau, and K. I. Assaf, “Gold nanoparticle aggregation enables colorimetric sensing assays for enzymatic decarboxylation,” Anal. Methods, vol. 9, no. 19, pp. 2784–2787, May 2017.spa
dc.relation.referencesC. Cheng, H. Y. Chen, C. S. Wu, J. S. Meena, T. Simon, and F. H. Ko, “A highly sensitive and selective cyanide detection using a gold nanoparticle-based dual fluorescence-colorimetric sensor with a wide concentration range,” Sensors Actuators, B Chem., vol. 227, pp. 283–290, May 2016.spa
dc.relation.referencesC. C. Chang, C. P. Chen, C. Y. Chen, and C. W. Lin, “DNA base-stacking assay utilizing catalytic hairpin assembly-induced gold nanoparticle aggregation for colorimetric protein sensing,” Chem. Commun., vol. 52, no. 22, pp. 4167–4170, Mar. 2016.spa
dc.relation.referencesJ. Tashkhourian, M. Afsharinejad, and A. R. Zolghadr, “Colorimetric chiral discrimination and determination of S-citalopram based on induced aggregation of gold nanoparticles,” Sensors Actuators, B Chem., vol. 232, pp. 52–59, Sep. 2016.spa
dc.relation.referencesA. Safavi, R. Ahmadi, and Z. Mohammadpour, “Colorimetric sensing of silver ion based on anti aggregation of gold nanoparticles,” Sensors Actuators, B Chem., vol. 242, pp. 609–615, Apr. 2017.spa
dc.relation.referencesJ. Yang et al., “Analyte-triggered autocatalytic amplification combined with gold nanoparticle probes for colorimetric detection of heavy-metal ions,” Chem. Commun., vol. 53, no. 54, pp. 7477–7480, Jul. 2017.spa
dc.relation.referencesD. Zhang et al., “Colorimetric detection of bisphenol A based on unmodified aptamer and cationic polymer aggregated gold nanoparticles,” Anal. Biochem., vol. 499, pp. 51–56, Apr. 2016.spa
dc.relation.referencesY. Huo, L. Qi, X. J. Lv, T. Lai, J. Zhang, and Z. Q. Zhang, “A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles,” Biosens. Bioelectron., vol. 78, pp. 315–320, Apr. 2016.spa
dc.relation.referencesY. Mao et al., “A simple and sensitive aptasensor for colorimetric detection of adenosine triphosphate based on unmodified gold nanoparticles,” Talanta, vol. 168, pp. 279–285, Jun. 2017.spa
dc.relation.referencesH. yan Shi et al., “A gold nanoparticle-based colorimetric strategy coupled to duplex-specific nuclease signal amplification for the determination of microRNA,” Microchim. Acta, vol. 184, no. 2, pp. 525–531, Feb. 2017.spa
dc.relation.referencesS. Thatai, P. Khurana, S. Prasad, S. K. Soni, and D. Kumar, “Trace colorimetric detection of Pb2+ using plasmonic gold nanoparticles and silica-gold nanocomposites,” Microchem. J., vol. 124, pp. 104–110, Jan. 2016.spa
dc.relation.referencesM. K. Lam et al., “Tuning Toehold Length and Temperature to Achieve Rapid, Colorimetric Detection of DNA from the Disassembly of DNA-Gold Nanoparticle Aggregates,” Langmuir, vol. 32, no. 6, pp. 1585–1590, Feb. 2016.spa
dc.relation.referencesR. Kumvongpin et al., “High sensitivity, loop-mediated isothermal amplification combined with colorimetric gold-nanoparticle probes for visual detection of high risk human papillomavirus genotypes 16 and 18,” J. Virol. Methods, vol. 234, pp. 90–95, Aug. 2016.spa
dc.relation.referencesY. S. Borghei, M. Hosseini, M. Dadmehr, S. Hosseinkhani, M. R. Ganjali, and R. Sheikhnejad, “Visual detection of cancer cells by colorimetric aptasensor based on aggregation of gold nanoparticles induced by DNA hybridization,” Anal. Chim. Acta, vol. 904, pp. 92–97, Jan. 2016.spa
dc.relation.referencesX. Liu, Z. Wu, Q. Zhang, W. Zhao, C. Zong, and H. Gai, “Single Gold Nanoparticle-Based Colorimetric Detection of Picomolar Mercury Ion with Dark-Field Microscopy,” Anal. Chem., vol. 88, no. 4, pp. 2119–2124, Feb. 2016.spa
dc.relation.referencesA. I. Dar, S. Walia, and A. Acharya, “Citric acid-coated gold nanoparticles for visual colorimetric recognition of pesticide dimethoate,” J. Nanoparticle Res., vol. 18, no. 8, pp. 1–8, Aug. 2016.spa
dc.relation.referencesN. Fahimi-Kashani and M. R. Hormozi-Nezhad, “Gold-nanoparticle-based colorimetric sensor array for discrimination of organophosphate pesticides,” Anal. Chem., vol. 88, no. 16, pp. 8099–8106, Aug. 2016.spa
dc.relation.referencesL. Gong et al., “Colorimetric aggregation assay for arsenic(III) using gold nanoparticles,” Microchim. Acta, vol. 184, no. 4, pp. 1185–1190, Apr. 2017.spa
dc.relation.referencesH. Du, R. Chen, J. Du, J. Fan, and X. Peng, “Gold nanoparticle-based colorimetric recognition of creatinine with good selectivity and sensitivity,” Ind. Eng. Chem. Res., vol. 55, no. 48, pp. 12334–12340, 2016.spa
dc.relation.referencesP. Huang, J. Li, X. Liu, and F. Wu, “Colorimetric determination of aluminum(III) based on the aggregation of Schiff base-functionalized gold nanoparticles,” Microchim. Acta, vol. 183, no. 2, pp. 863–869, Feb. 2016.spa
dc.relation.referencesJ. Du, H. Du, X. Li, J. Fan, and X. Peng, “In-situ colorimetric recognition of arylamine based on chemodosimeter-functionalized gold nanoparticle,” Sensors Actuators, B Chem., vol. 248, pp. 318–323, Sep. 2017.spa
dc.relation.referencesY. Wu, M. R. K. Ali, K. Chen, N. Fang, and M. A. El-Sayed, “Gold nanoparticles in biological optical imaging,” Nano Today, vol. 24. Elsevier B.V., pp. 120–140, 01-Feb-2019.spa
dc.relation.referencesM. R. K. Ali, I. M. Ibrahim, H. R. Ali, S. A. Selim, and M. A. El-Sayed, “Treatment of natural mammary gland tumors in canines and felines using gold nanorods-assisted plasmonic photothermal therapy to induce tumor apoptosis,” Int. J. Nanomedicine, vol. 11, pp. 4849–4863, Sep. 2016.spa
dc.relation.referencesS. Dhar, E. Maheswara Reddy, A. Shiras, V. Pokharkar, and B. L. V. Prasad, “Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations,” Chem. - A Eur. J., vol. 14, no. 33, pp. 10244–10250, Nov. 2008.spa
dc.relation.referencesK. S. Chen, T. S. Hung, H. M. Wu, J. Y. Wu, M. T. Lin, and C. K. Feng, “Preparation of thermosensitive gold nanoparticles by plasma pretreatment and UV grafted polymerization,” in Thin Solid Films, 2010, vol. 518, no. 24, pp. 7557–7562.spa
dc.relation.referencesT. S. Rezende, G. R. S. Andrade, L. S. Barreto, N. B. Costa, I. F. Gimenez, and L. E. Almeida, “Facile preparation of catalytically active gold nanoparticles on a thiolated chitosan,” Mater. Lett., vol. 64, no. 7, pp. 882–884, Apr. 2010.spa
dc.relation.referencesM. Okumura, T. Akita, and M. Haruta, “Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts,” in Catalysis Today, 2002, vol. 74, no. 3–4, pp. 265–269.spa
dc.relation.referencesA. Hugon, L. Delannoy, and C. Louis, “Supported gold catalysts for selective hydrogenation of 1,3-butadiene in the presence of an excess of alkenes,” Gold Bull., vol. 41, no. 2, pp. 127–138, 2008.spa
dc.relation.referencesP. A. Son, D. H. Hoang, and K. T. Canh, “The Role of Gold Nanoparticles on Different Supports for the In-Air Conversion of Levulinic Acid into γ-Valerolactone with Formic Acid as an Alternative Hydrogen Source,” Russ. J. Appl. Chem., vol. 92, no. 9, pp. 1316–1323, Sep. 2019.spa
dc.relation.referencesX. L. Du et al., “Hydrogen-independent reductive transformation of carbohydrate biomass into γ-valerolactone and pyrrolidone derivatives with supported gold catalysts,” Angew. Chemie - Int. Ed., vol. 50, no. 34, pp. 7815–7819, Aug. 2011.spa
dc.relation.referencesG. Budroni and A. Corma, “Gold and gold-platinum as active and selective catalyst for biomass conversion: Synthesis of γ-butyrolactone and one-pot synthesis of pyrrolidone,” J. Catal., vol. 257, no. 2, pp. 403–408, Jul. 2008.spa
dc.relation.referencesF. Cárdenas-Lizana, S. Gómez-Quero, and M. A. Keane, “Ultra-selective gas phase catalytic hydrogenation of aromatic nitro compounds over Au/Al2O3,” Catal. Commun., vol. 9, no. 3, pp. 475–481, Mar. 2008.spa
dc.relation.referencesK. Shanmugaraj, T. M. Bustamante, C. H. Campos, and C. C. Torres, “Liquid phase hydrogenation of pharmaceutical interest nitroarenes over gold-supported alumina nanowires catalysts,” Materials (Basel)., vol. 13, no. 4, p. 925, Feb. 2020.spa
dc.relation.referencesG. Zhao, H. Hu, M. Deng, M. Ling, and Y. Lu, “Au/Cu-fiber catalyst with enhanced low-temperature activity and heat transfer for the gas-phase oxidation of alcohols,” Green Chem., vol. 13, no. 1, pp. 55–58, Jan. 2011.spa
dc.relation.referencesL. A. Parreira et al., “Nanocrystalline gold supported on Fe-, Ti- and Ce-modified hexagonal mesoporous silica as a catalyst for the aerobic oxidative esterification of benzyl alcohol,” Appl. Catal. A Gen., vol. 397, no. 1–2, pp. 145–152, Apr. 2011.spa
dc.relation.referencesD. Han, T. Xu, J. Su, X. Xu, and Y. Ding, “Gas-Phase Selective Oxidation of Benzyl Alcohol to Benzaldehyde with Molecular Oxygen over Unsupported Nanoporous Gold,” ChemCatChem, vol. 2, no. 4, pp. 383–386, Apr. 2010.spa
dc.relation.referencesM. Kokate, S. Dapurkar, K. Garadkar, and A. Gole, “Magnetite-silica-gold nanocomposite: One-pot single-step synthesis and its application for solvent-free oxidation of benzyl alcohol,” J. Phys. Chem. C, vol. 119, no. 25, pp. 14214–14223, Jun. 2015.spa
dc.relation.referencesY. Liu et al., “Mesoporous Co3O4-supported gold nanocatalysts: Highly active for the oxidation of carbon monoxide, benzene, toluene, and o-xylene,” J. Catal., vol. 309, pp. 408–418, Jan. 2014.spa
dc.relation.referencesY. Liu, H. Tsunoyama, T. Akita, S. Xie, and T. Tsukuda, “Aerobic oxidation of cyclohexane catalyzed by size-controlled au clusters on hydroxyapatite: Size effect in the sub-2 nm regime,” ACS Catal., vol. 1, no. 1, pp. 2–6, Jan. 2011.spa
dc.relation.referencesL. Aschwanden, T. Mallat, M. Maciejewski, F. Krumeich, and A. Baiker, “Development of a new generation of gold catalysts for amine oxidation,” ChemCatChem, vol. 2, no. 6, pp. 666–673, Jun. 2010.spa
dc.relation.referencesM. Comotti, C. Della Pina, R. Matarrese, M. Rossi, and A. Siani, “Oxidation of alcohols and sugars using Au/C catalysts: Part 2. Sugars,” in Applied Catalysis A: General, 2005, vol. 291, no. 1–2, pp. 204–209.spa
dc.relation.referencesT. Ishida, S. Okamoto, R. Makiyama, and M. Haruta, “Aerobic oxidation of glucose and 1-phenylethanol over gold nanoparticles directly deposited on ion-exchange resins,” Appl. Catal. A Gen., vol. 353, no. 2, pp. 243–248, Feb. 2009.spa
dc.relation.referencesT. Ishida, K. Kuroda, N. Kinoshita, W. Minagawa, and M. Haruta, “Direct deposition of gold nanoparticles onto polymer beads and glucose oxidation with H2O2,” J. Colloid Interface Sci., vol. 323, no. 1, pp. 105–111, Jul. 2008.spa
dc.relation.referencesS. Wei, W. W. Wang, X. P. Fu, S. Q. Li, and C. J. Jia, “The effect of reactants adsorption and products desorption for Au/TiO2 in catalyzing CO oxidation,” J. Catal., vol. 376, pp. 134–145, Aug. 2019.spa
dc.relation.referencesC. N. Jia, Y. Liu, H. Bongard, and F. Schüth, “Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH)2 and MgO,” J. Am. Chem. Soc., vol. 132, no. 5, pp. 1520–1522, Feb. 2010.spa
dc.relation.referencesM. Comotti, W. C. Li, B. Spliethoff, and F. Schüth, “Support effect in high activity gold catalysts for CO oxidation,” J. Am. Chem. Soc., vol. 128, no. 3, pp. 917–924, Jan. 2006.spa
dc.relation.referencesY. Guo et al., “Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship,” Nanoscale, vol. 7, no. 11, pp. 4920–4928, Mar. 2015.spa
dc.relation.referencesS. Wei, X. P. Fu, W. W. Wang, Z. Jin, Q. S. Song, and C. J. Jia, “Au/TiO2 Catalysts for CO Oxidation: Effect of Gold State to Reactivity,” J. Phys. Chem. C, vol. 122, no. 9, pp. 4928–4936, Mar. 2018.spa
dc.relation.referencesJ. Oliver-Meseguer, J. R. Cabrero-Antonino, I. Domínguez, A. Leyva-Pérez, and A. Corma, “Small gold clusters formed in solution give reaction turnover numbers of 107at room temperature,” Science (80-. )., vol. 338, no. 6113, pp. 1452–1455, Dec. 2012.spa
dc.relation.referencesS. F. R. Taylor, J. Sá, and C. Hardacre, “Friedel-Crafts Alkylation of Aromatics with Benzyl Alcohol over Gold-Modified Silica,” ChemCatChem, vol. 3, no. 1, pp. 119–121, Jan. 2011.spa
dc.relation.referencesC. H. Tang, L. He, Y. M. Liu, Y. Cao, H. Y. He, and K. N. Fan, “Direct one-pot reductive N-alkylation of nitroarenes by using alcohols with supported gold catalysts,” Chem. - A Eur. J., vol. 17, no. 26, pp. 7172–7177, Jun. 2011.spa
dc.relation.referencesX. L. Du, Q. Y. Bi, Y. M. Liu, Y. Cao, and K. N. Fan, “Conversion of biomass-derived levulinate and formate esters into γ-valerolactone over supported gold catalysts,” ChemSusChem, vol. 4, no. 12, pp. 1838–1843, Dec. 2011.spa
dc.relation.references“United States Patent - Dittgen et al.,” 2001.spa
dc.relation.referencesG. C. Bond and P. A. Sermon, “Gold catalysts for olefin hydrogenation - Transmutation of catalytic properties,” Gold Bull., vol. 6, no. 4, pp. 102–105, 1973.spa
dc.relation.referencesM. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide,” J. Catal., vol. 115, no. 2, pp. 301–309, 1989.spa
dc.relation.referencesG. J. Hutchings, “Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts,” J. Catal., vol. 96, no. 1, pp. 292–295, 1985.spa
dc.relation.referencesR. Ciriminna, E. Falletta, C. Della Pina, J. H. Teles, and M. Pagliaro, “Industrial Applications of Gold Catalysis,” Angewandte Chemie - International Edition, vol. 55, no. 46. pp. 14210–14217, 07-Nov-2016.spa
dc.relation.referencesJ. H. Teles, S. Brode, and M. Chabanas, “Cationic gold(I) complexes: Highly efficient catalysts for the addition of alcohols to alkynes,” Angew. Chemie - Int. Ed., vol. 37, no. 10, pp. 1415–1418, Jun. 1998.spa
dc.relation.referencesT. Ishida, M. Nagaoka, T. Akita, and M. Haruta, “Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols,” Chem. - A Eur. J., vol. 14, no. 28, pp. 8456–8460, Sep. 2008.spa
dc.relation.referencesQ. Shi, Z. Qin, H. Xu, and G. Li, “Heterogeneous cross-coupling over gold nanoclusters,” Nanomaterials, vol. 9, no. 6. MDPI AG, p. 838, 01-Jun-2019.spa
dc.relation.referencesJ. H. Kim, J. S. Park, H. W. Chung, B. W. Boote, and T. R. Lee, “Palladium nanoshells coated with self-assembled monolayers and their catalytic properties,” RSC Adv., vol. 2, no. 9, pp. 3968–3977, Apr. 2012.spa
dc.relation.referencesY. Hui, S. Zhang, and W. Wang, “Recent Progress in Catalytic Oxidative Transformations of Alcohols by Supported Gold Nanoparticles,” Advanced Synthesis and Catalysis, vol. 361, no. 10. Wiley-VCH Verlag, pp. 2215–2235, 14-May-2019.spa
dc.relation.referencesIUPAC Compendium of Chemical Terminology. IUPAC, 2009.spa
dc.relation.referencesO. C. Gobin, “SBA-16 Materials Synthesis, Diffusion and Sorption Properties,” Thesis, no. January, p. 80, 2006.spa
dc.relation.referencesR. Ryoo, C. H. Ko, M. Kruk, V. Antochshuk, and M. Jaroniec, “Block-copolymer-templated ordered mesoporous silica: Array of uniform mesopores or mesopore-micropore network?,” J. Phys. Chem. B, vol. 104, no. 48, pp. 11465–11471, Dec. 2000.spa
dc.relation.referencesM. Haruta, “Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications,” Gold Bull., vol. 37, no. 1–2, pp. 27–36, 2004.spa
dc.relation.referencesB. L. Moroz, P. A. Pyrjaev, V. I. Zaikovskii, and V. I. Bukhtiyarov, “Nanodispersed Au/Al2O3 catalysts for low-temperature CO oxidation: Results of research activity at the Boreskov Institute of Catalysis,” Catal. Today, vol. 144, no. 3–4, pp. 292–305, Jun. 2009.spa
dc.relation.referencesT. Takei, I. Okuda, K. K. Bando, T. Akita, and M. Haruta, “Gold clusters supported on La(OH)3 for CO oxidation at 193 K,” Chem. Phys. Lett., vol. 493, no. 4–6, pp. 207–211, Jun. 2010.spa
dc.relation.referencesT. Ishida, H. Watanabe, T. Bebeko, T. Akita, and M. Haruta, “Aerobic oxidation of glucose over gold nanoparticles deposited on cellulose,” Appl. Catal. A Gen., vol. 377, no. 1–2, pp. 42–46, Apr. 2010.spa
dc.relation.referencesK. Miyazaki et al., “Influence of supporting materials on catalytic activities of gold nanoparticles as CO-tolerant catalysts in DMFC,” Electrochemistry, vol. 75, no. 2, pp. 217–220, Feb. 2007.spa
dc.relation.referencesX. D. Luong et al., “Facile Synthesis of MnO2@SiO2/Carbon Nanocomposite-based Gold Catalysts from Rice Husk for Low-Temperature CO Oxidation,” Catal. Letters, vol. 150, no. 9, pp. 2726–2733, Sep. 2020.spa
dc.relation.referencesL. X. Dien et al., “Supported gold cluster catalysts prepared by solid grinding using a non-volatile organogold complex for low-temperature CO oxidation and the effect of potassium on gold particle size,” Appl. Catal. B Environ., vol. 241, pp. 539–547, 2019.spa
dc.relation.referencesS. Hermes et al., “Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition,” Angew. Chemie - Int. Ed., vol. 44, no. 38, pp. 6237–6241, Sep. 2005.spa
dc.relation.referencesT. Fujitani and I. Nakamura, “Mechanism and Active Sites of the Oxidation of CO over Au/TiO2,” Angew. Chemie, vol. 123, no. 43, pp. 10326–10329, Oct. 2011.spa
dc.relation.referencesB. Cojocaru, Ş. Neaţu, E. Sacaliuc-Pârvulescu, F. Lévy, V. I. Pârvulescu, and H. Garcia, “Influence of gold particle size on the photocatalytic activity for acetone oxidation of Au/TiO2 catalysts prepared by dc-magnetron sputtering,” Appl. Catal. B Environ., vol. 107, no. 1–2, pp. 140–149, Aug. 2011.spa
dc.relation.referencesZ. Ma, S. Brown, J. Y. Howe, S. H. Overbury, and S. Dai, “Surface modification of Au/TiO2 catalysts by SiO2 via atomic layer deposition,” J. Phys. Chem. C, vol. 112, no. 25, pp. 9448–9457, Jun. 2008.spa
dc.relation.referencesW. Luo, W. Cao, P. C. A. Bruijnincx, L. Lin, A. Wang, and T. Zhang, “Zeolite-supported metal catalysts for selective hydrodeoxygenation of biomass-derived platform molecules,” Green Chem., vol. 21, no. 14, pp. 3744–3768, 2019.spa
dc.relation.referencesT. Takei et al., “Heterogeneous Catalysis by Gold,” in Advances in Catalysis, vol. 55, Academic Press Inc., 2012, pp. 1–126.spa
dc.relation.referencesY. Sunagawa, K. Yamamoto, H. Takahashi, and A. Muramatsu, “Liquid-phase reductive deposition as a novel nanoparticle synthesis method and its application to supported noble metal catalyst preparation,” Catal. Today, vol. 132, no. 1–4, pp. 81–87, Mar. 2008.spa
dc.relation.referencesM. B. E. Griffiths, P. J. Pallister, D. J. Mandia, and S. T. Barry, “Atomic Layer Deposition of Gold Metal,” Chem. Mater., vol. 28, no. 1, pp. 44–46, 2016.spa
dc.relation.referencesA. Villa et al., “Characterisation of gold catalysts,” Chemical Society Reviews, vol. 45, no. 18. Royal Society of Chemistry, pp. 4953–4994, 21-Sep-2016.spa
dc.relation.referencesS. K. Kulkarni, Nanotechnology: Principles and Practices. Springer, 2014.spa
dc.relation.referencesI. E. Wachs and C. A. Roberts, “Monitoring surface metal oxide catalytic active sites with Raman spectroscopy,” Chem. Soc. Rev., vol. 39, no. 12, pp. 5002–5017, Nov. 2010.spa
dc.relation.referencesC. E. Wyman, B. E. Dale, R. T. Elander, M. Holtzapple, M. R. Ladisch, and Y. Y. Lee, “Coordinated development of leading biomass pretreatment technologies,” Bioresour. Technol., vol. 96, no. 18 SPEC. ISS., pp. 1959–1966, Dec. 2005.spa
dc.relation.referencesD. M. Alonso, S. G. Wettstein, and J. A. Dumesic, “Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass,” Green Chemistry, vol. 15, no. 3. Royal Society of Chemistry, pp. 584–595, 25-Feb-2013.spa
dc.relation.referencesJ. C. Serrano-Ruiz, R. Luque, and A. Sepúlveda-Escribano, “Transformations of biomass-derived platform molecules: From high added-value chemicals to fuels via aqueous-phase processing,” Chemical Society Reviews, vol. 40, no. 11. The Royal Society of Chemistry, pp. 5266–5281, 17-Nov-2011.spa
dc.relation.referencesS. Fernando, S. Adhikari, C. Chandrapal, and N. Murali, “Biorefineries: Current status, challenges, and future direction,” Energy and Fuels, vol. 20, no. 4. American Chemical Society, pp. 1727–1737, Jul-2006.spa
dc.relation.referencesL. R. Lynd, C. Wyman, M. Laser, D. Johnson, and R. Landucci, “Strategic Biorefinery Analysis: Analysis of Biorefineries,” Subcontract Rep. NREL/SR-510-35578, no. October, p. 40, 2005.spa
dc.relation.referencesT. Werpy and G. Petersen, “Top Value Added Chemicals from Biomass Volume I-Results of Screening for Potential Candidates from Sugars and Synthesis Gas Produced by the Staff at Pacific Northwest National Laboratory (PNNL) National Renewable Energy Laboratory (NREL) Office of Biomass,” 2004.spa
dc.relation.referencesK. Yan, T. Lafleur, C. Jarvis, and G. Wu, “Clean and selective production of γ-valerolactone from biomass-derived levulinic acid catalyzed by recyclable Pd nanoparticle catalyst,” J. Clean. Prod., vol. 72, pp. 230–232, Jun. 2014.spa
dc.relation.referencesH. Mehdi, V. Fábos, R. Tuba, A. Bodor, L. T. Mika, and I. T. Horváth, “Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass: From sucrose to levulinic acid, γ-valerolactone, 1,4-pentanediol, 2-methyl-tetrahydrofuran, and alkanes,” in Topics in Catalysis, 2008, vol. 48, no. 1–4, pp. 49–54.spa
dc.relation.referencesL. Deng, J. Li, D. M. Lai, Y. Fu, and Q. X. Guo, “Catalytic conversion of biomass-derived carbohydrates into γ-valerolactone without using an external h2 supply,” Angew. Chemie - Int. Ed., vol. 48, no. 35, pp. 6529–6532, Aug. 2009.spa
dc.relation.referencesL. D. Almeida, A. L. A. Rocha, T. S. Rodrigues, and P. A. Robles-Azocar, “Highly selective hydrogenation of levulinic acid catalyzed by Ru on TiO2-SiO2 hybrid support,” Catal. Today, vol. 344, pp. 158–165, Mar. 2020.spa
dc.relation.referencesH. Xiong, H. N. Pham, and A. K. Datye, “Hydrothermally stable heterogeneous catalysts for conversion of biorenewables,” Green Chemistry, vol. 16, no. 11. Royal Society of Chemistry, pp. 4627–4643, 01-Nov-2014.spa
dc.relation.referencesY. Zhang, X. Cui, F. Shi, and Y. Deng, “Nano-gold catalysis in fine chemical synthesis,” Chemical Reviews, vol. 112, no. 4. American Chemical Society, pp. 2467–2505, 11-Apr-2012.spa
dc.relation.referencesW. Luo et al., “High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone,” Nat. Commun., vol. 6, no. 1, pp. 1–10, Mar. 2015.spa
dc.relation.referencesH. Zhang, M. Zhao, T. Zhao, L. Li, and Z. Zhu, “Hydrogenative cyclization of levulinic acid into γ-valerolactone by photocatalytic intermolecular hydrogen transfer,” Green Chem., vol. 18, no. 8, pp. 2296–2301, Apr. 2016.spa
dc.relation.referencesK. Dhanalaxmi et al., “Magnetic Nanohybrid Decorated Porous Organic Polymer: Synergistic Catalyst for High Performance Levulinic Acid Hydrogenation,” ACS Sustain. Chem. Eng., vol. 5, no. 1, pp. 1033–1045, Jan. 2017.spa
dc.relation.referencesJ. Feng et al., “Hydrogenation of levulinic acid to γ-valerolactone over Pd@UiO-66-NH2 with high metal dispersion and excellent reusability,” Microporous Mesoporous Mater., vol. 294, p. 109858, Mar. 2020.spa
dc.relation.referencesA. M. R. Galletti, C. Antonetti, V. De Luise, and M. Martinelli, “A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid,” Green Chem., vol. 14, no. 3, pp. 688–694, Mar. 2012.spa
dc.relation.referencesB. Zhang et al., “A Robust Ru/ZSM-5 Hydrogenation Catalyst: Insights into the Resistances to Ruthenium Aggregation and Carbon Deposition,” ChemCatChem, vol. 9, no. 19, pp. 3646–3654, Oct. 2017.spa
dc.relation.referencesO. Abdelrahman, A. Heyden, J. B.-A. catalysis, and undefined 2014, “Analysis of kinetics and reaction pathways in the aqueous-phase hydrogenation of levulinic acid to form γ-valerolactone over Ru/C,” ACS Publ.spa
dc.relation.referencesS. C. Moldoveanu and V. David, “Short Overviews of the Main Analytical Techniques Containing a Separation Step,” in Selection of the HPLC Method in Chemical Analysis, Elsevier, 2017, pp. 55–85.spa
dc.relation.referencesS. C. Moldoveanu and V. David, “Basic Information Regarding the HPLC Techniques,” in Selection of the HPLC Method in Chemical Analysis, Elsevier, 2017, pp. 87–187.spa
dc.relation.referencesF. S. M. Hashemi et al., “Thermal atomic layer deposition of gold nanoparticles: Controlled growth and size selection for photocatalysis,” Nanoscale, vol. 12, no. 16, pp. 9005–9013, Apr. 2020.spa
dc.relation.referencesC. Balachandran, J. F. Muñoz, and T. Arnold, “Characterization of alkali silica reaction gels using Raman spectroscopy,” Cem. Concr. Res., vol. 92, pp. 66–74, Feb. 2017.spa
dc.relation.referencesB. Sadeghi, M. Mohammadzadeh, and B. Babakhani, “Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability,” J. Photochem. Photobiol. B Biol., vol. 148, pp. 101–106, Jul. 2015.spa
dc.relation.referencesP. Wu, P. Bai, Z. Yan, and G. X. S. Zhao, “Gold nanoparticles supported on mesoporous silica: Origin of high activity and role of Au NPs in selective oxidation of cyclohexane,” Sci. Rep., vol. 6, no. 1, pp. 1–11, Jan. 2016.spa
dc.relation.referencesR. A. Mitran, C. Matei, and D. Berger, “Correlation of mesoporous silica structural and morphological features with theoretical three-parameter model for drug release kinetics,” J. Phys. Chem. C, vol. 120, no. 51, pp. 29202–29209, 2016.spa
dc.relation.referencesN. Syazaliyana Azali, N. Hidayatul Nazirah Kamarudin, J. Adira Jaafar, S. Najiha Timmiati, and M. Shaiful Sajab, “Modification of mesoporous silica nanoparticles with pH responsive polymer poly (2-vinylpyrrolidone) for the release of 5-Florouracil,” Mater. Today Proc., Oct. 2020.spa
dc.relation.referencesS. A. Speakman, “Estimating Crystallite Size Using XRD Using XRD Using XRD Using XRD,” p. 105, 2011.spa
dc.relation.referencesH. J. Yvon, “Raman Spectroscopy for Analysis and Monitoring,” Horiba Jobin Yvon, Raman Appl. Note, pp. 1–2, 2017.spa
dc.relation.referencesA. S. Alshammari, “Heterogeneous gold catalysis: From discovery to applications,” Catalysts, vol. 9, no. 5. Multidisciplinary Digital Publishing Institute, p. 402, 29-Apr-2019.spa
dc.relation.referencesI. Sádaba, M. López Granados, A. Riisager, and E. Taarning, “Deactivation of solid catalysts in liquid media: the case of leaching of active sites in biomass conversion reactions,” Green Chem., vol. 17, no. 8, pp. 4133–4145, Aug. 2015.spa
dc.relation.referencesJ. P. Lange, “Renewable Feedstocks: The Problem of Catalyst Deactivation and its Mitigation,” Angew. Chemie - Int. Ed., vol. 54, no. 45, pp. 13187–13197, Nov. 2015.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc546 - Química inorgánicaspa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.ddc542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.ddc661 - Tecnología de químicos industrialesspa
dc.subject.ddc668 - Tecnología de otros productos orgánicosspa
dc.subject.proposalValorización de biomasaspa
dc.subject.proposalácido levulínicospa
dc.subject.proposalhidrogenaciónspa
dc.subject.proposalγ-valerolactonaspa
dc.subject.proposalnanopartículas de orospa
dc.subject.proposalsílice mesoporosa.spa
dc.subject.proposalBiomass valorizationeng
dc.subject.proposallevulinic acideng
dc.subject.proposalhydrogenationeng
dc.subject.proposalγ-valerolactoneeng
dc.subject.proposalgold nanoparticleseng
dc.subject.proposalmesoporous silica.eng
dc.titleCatálisis de la hidrogenación del ácido levulínico a γ-valerolactona con nanopartículas de oro soportadas en sílice mesoporosaspa
dc.title.translatedGold nanoparticles supported on mesoporous silica as catalyst for the production of γ-valerolactone by levulinic acid hydrogenation catalystseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015450117.2022.pdf
Tamaño:
2.34 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: