Método de detección de distorsiones de la arquitectura de la glándula mamaria a partir de imágenes radiológicas
Type
Trabajo de grado - Maestría
Document language
EspañolPublication Date
2012-08Metadata
Show full item recordSummary
Este documento de tesis presenta la planeación, implementación y pruebas de un nuevo método que sirve como soporte para la detección de distorsiones de la arquitectura en la glándula mamaria a partir de imágenes de radiología de mama. El método asiste a los especialistas en el proceso de decisión diagnóstica como segundo intérprete en el análisis de mamografías, mediante la integración de cuatro etapas principales: preprocesamiento, detección de regiones de interés que sean candidatas a la posible presencia de distorsión de la arquitectura de la glándula mamaria, extracción y selección de características de las regiones de interés detectadas y finalmente clasificación de esas regiones de interés con base en las características extraídas de las mismas. El método propuesto se valida mediante el análisis de imágenes mamográficas de la base de datos DDSM, logrando valores de precisión general hasta de un 90.7% lo cual lo convierte en una base importante en la búsqueda de la reducción del alto número de diagnósticos errados que conducen a las altas tasas de morbilidad por cáncer de mama que se presentan en el mundo./Abstract. This thesis presents the design, implementation and test of a new method that serves as support for the detection of architectural distortion in the mammary gland from breast radiology images. The method proposed here assists the specialists in the diagnosis of breast cáncer through four main phases: preprocessing, detection of regions of interest that are candidates for the possible presence of architectural distortion of the mammary gland, feature selection and extraction and finally classification of these regions of interest based on the extracted features. The method proposed in this thesis is validated through the analysis of mammographic images from DDSM obtaining values of 90.7% in the overall accuracy. This result is a very important contribution and encourage the research in order to reduce the high number of misdiagnoses that are currently presented and lead to high rates of morbidity from breast cáncer.Keywords
Mamografía ; Distorsión de la arquitectura de la glándula mamaria ; Falso positivo ; Diagnóstico asistido por computador ; Neoplastia de la mama ; Procesamiento digital de imágenes ; Mammography ; Architectural Distortion ; Breast Neoplasms ; Misdiagnoses ; Computer Assisted Diagnosis ; Image Interpretation ;
Collections
