Structure and charge transfer processes at the Pt(111)/solid polymer electrolyte interface: a mesoscopic approach
Author
Type
Trabajo de grado - Doctorado
Document language
EspañolPublication Date
2014-02-03Metadata
Show full item recordSummary
Abstract: Modified electrodes are a very active area of electrochemistry, with multiple and widespread uses. They are a central component in many electrochemical devices, in which usually a thin membrane covers the electrode, as in Proton Exchange Fuel cells. Thus, understanding the structure and molecular processes at electrode/membrane interfaces constitutes an important issue for an efficient development of these devices. In this work, Nafion® coated Pt(111) electrodes were studied and experimental results were explained in light of two different theoretical approaches. Initially, the structure and dynamics of the electrode/SPE interface was described in terms of the acid/base equilibrium and the different mobility of membrane ionic groups. Later, the reaction kinetics of a fundamental electrochemical surface reaction, such as the CO oxidation, was analyzed on basis of the effect of the adsorbed species segregation induced by the membrane’s two-phase nature. Results showed a strong interaction between Pt(111)and Nafion® membrane, giving rise to a preferential orientation, electric field driven, of polymer hydrophilic regions. The membrane apparently introduces a new charge transfer process, pH-dependent, around 0.50 V in the cyclic voltammogram (CV). However, the lack of a wavenumber blue-shift of both protonated and dissociated Nafion®’s sulfonic groups with increasing the electrode potential would suggest that sulfonate anions are not specifically adsorbed but populate the double layer (DL). In agreement, proposed model predicts local maxima and minima in the capacitance, as consequence of either the change in the total interaction energy experienced by an ion inside the membrane with the applied potential or the acid/base dissociation process and the different ion mobility inside the membrane. The model extends the conceptual framework for the interpretation of CVs for these systems and the general theory for electrified interfaces. Additionally, it provides a tool towards the understanding of the electrocatalytic activity on modified electrodes. In general, the membrane close to the electrode surface may inhibit the electron transfer rate (ETR) of electrochemical reactions that strongly depend on the structure of the DL, well because blocks surface sites or because of the smaller potential drop at the Outer Helmholtz Plane. However, in some cases, the ETR can be enhanced. Experimentally, hydrogen and OH adsorption/desorption regions on Nafion® coated electrodes are significantly blocked, probably because a fraction of the Pt(111) surface is covered by the membrane backbone and becomes electrochemically inactive. Additionally, CO stripping experiments revealed a modification on the CO-adlayer structure and a slower reaction rate, which occurs in a sharper peak, and shifted to higher potential values, than on bare Pt (111) electrodes. Mean Field Approximate theory and Dynamic Monte Carlo Simulations suggest that Nafion® membrane modifies the “effective” interactions between adsorbed molecules: CO ads, OH ads and water, turning them into a more “attractive” character than in the case of a bare electrode and so, promoting surface segregation.Summary
Resumen: Los electrodos modificados son un área muy active en electroquímica, con muchas y variadas aplicaciones. Ellos son el componente central de numerosos dispositivos electrónicos, en los cuales usualmente el electrodo se encuentra recubierto por una delgada capa de una membrana, como en el caso de celdas de combustibles de intercambio protónico. Por lo tanto, entender la estructura y los procesos moleculares en las interfaces electrodo/membrana es un importante asunto para un desarrollo eficiente de estos aparatos. En este trabajo, se estudian electrodos de Pt(111) recubiertos con Nafion® y los resultados experimentales son explicados con base en dos aproximaciones teóricas. Inicialmente, la estructura y la dinámica de la interface se describen en términos del equilibrio ácido/base y la diferente movilidad de los grupos iónicos en la membrana. Luego, la cinética de reacción de una reacción electroquímica fundamental, como la oxidación de CO, es analizada con base en la segregación superficial inducida por la naturaleza bifásica de la membrana. Los resultados muestran una interacción fuerte entre el electrodo y la membrana, que da origen a una orientación preferente de las regiones hidrofílicas del polímero, impulsada por el campo eléctrico. Aparentemente, la membrana induce un nuevo proceso de transferencia de carga, dependiente del pH, alrededor de 0.5 V en el voltamograma cíclico (CV). Sin embargo, la carencia de un corrimiento al azul en la longitud de onda de los grupos sulfónicos de la membrana, protonados o no, sugiere que estos aniones no están adsorbidos específicamente, sino acumulados en la doble capa. Análogamente, el modelo propuesto para la interface predice mínimos y máximos locales en la capacitancia, debido bien sea al cambio en la energía total de interacción de los iones que penetran en la membrana con el potencial aplicado, o a la disociación acido/base y la diferente movilidad iónica al interior de la membrana. El modelo propuesto amplia el marco conceptual para la interpretación de los CVs para estos sistemas y en general la teoría para las interfaces electrificadas. Adicionalmente, es una herramienta para la comprensión de la actividad electrocatalítica de electrodos modificados. En general, la presencia de la membrana cerca al electrodo puede inhibir la transferencia electrónica de aquellas reacciones electroquímicas que dependen fuertemente de la estructura de la doble capa, bien porque bloquee sitios superficiales o por una menor caída de potencial en el plano externo de Helmholtz. Sin embargo, en algunos casos, la transferencia electrónica puede ser mejorada. Experimentalmente, el Nafion® bloquea la adsorción de hidrógeno y la disociación del agua, probablemente porque una fracción de la superficie está recubierta con regiones hidrofóbicas del polímero. Adicionalmente, experimentos de despojamiento de CO revelan modificaciones en la estructura de la capa adsorbida y una menor velocidad de reacción, la cual ocurre en un pico de corriente más agudo y desplazado hacia potenciales más positivos que en electrodos no recubiertos. Simulaciones empleando la teoría de campo medio y Monte Carlo Dinámico sugieren que la membrana modifica las interacciones netas entre las moléculas adsorbidas: CO, OH y agua, haciéndolas más atractivas. Por lo tanto, la presencia de la membrana promueve la segregación superficial y la formación de islas.Keywords
Electrodos modificados ; Membranas electrolíticas ; Doble capa eléctrica ; Interface Pt(111)/Nafion® ; Oxidación de CO ; Mecanismo Langmuir-Hinshelwood ; Modified electrodes ; Solid polymer electrolyte membranes ; Electrical double layer ; Pt(111)/Nafion® interface ; CO oxidation ; Langmuir-Hinshelwood mechanism ;
Collections
This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit