• Correo ElectrónicoCorreo Electrónico
  • Dirección Nacional de Información AcadémicaDNINFOA - SIA
  • BibliotecaBibliotecas
  • ConvocatoriasConvocatorias
  • Identidad U.N.Identidad U.N.
Escudo de la República de ColombiaEscudo de la República de Colombia
  • English 
    • español
    • English
    • português (Brasil)
  • Aspirantes
  • Estudiantes
  • Egresados
  • Docentes
  • Administrativos
repositorio.unal.edu.co
Bibliotecas
  • Mapa de sedes
  • Amazonía
  • Bogotá
  • Caribe
  • Manizales
  • Medellín
  • Orinoquía
  • Palmira
Biblioteca Digital
  • Repositorio Institucional
  • Entrega de tesis y publicación en línea
  • Digitalización de documentos
  • Normatividad publicación en línea
  • Portal de Revistas UN
  • Suscripción a contenidos UN
  • Contáctenos
Recursos Bibliográficos
  • Recursos electrónicos
  • Catálogo UN
  • Diccionarios y enciclopedias
  • Herramientas bibliográficas
  • Libros electrónicos
  • Descubridor
  • Índices bibliográficos
  • Adquisicion de material bibliografico
Formación
  • Agenda de formación
  • Solicitud de nuevo taller
  • Guía de autoarchivo de documentos
Acerca de
  • Misión y visión
  • Dirección Nacional de Bibliotecas
  • Convenios y redes
  • Video del Sinab
  • Preguntas frecuentes
Sedes
  • Amazonia
  • Bogotá
  • Caribe
  • De La Paz
  • Manizales
  • Medellín
  • Orinoquia
  • Palmira
  • Tumaco
Servicios
Perfiles
Home
    • español
    • English
    • português (Brasil)
  • Login
View Item 
  •   Institutional Repository of Universidad Nacional
  • 1- Tesis y Disertaciones
  • Sede Manizales
  • Facultad de Ingeniería y Arquitectura
  • Departamento de Ingeniería Eléctrica y Electrónica
  • View Item
  •   Institutional Repository of Universidad Nacional
  • 1- Tesis y Disertaciones
  • Sede Manizales
  • Facultad de Ingeniería y Arquitectura
  • Departamento de Ingeniería Eléctrica y Electrónica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

EEG-based Neuroimaging using Data-Driven Spatio-Temporal Constraints for Non Stationary Brain Activity Reconstruction

Thumbnail
7112008.2013.pdf (4.580Mb)
Date published
2014
Author
Castaño Candamil, Juan Sebastián
Metadata
Show full item record

Summary
El mapeo cerebral basado en señales de electroencefalografía (EEG), es una técnica muy usada para explorar la actividad cerebral de forma no invasiva. Una de las ventajas que provee la utilización de señales EEG para analizar la actividad cerebral es su bajo costo y su sobresaliente resolución temporal. Sin embargo la cantidad de puntos de medición (electrodos) es extremadamente baja comparada con la cantidad de puntos discretizados dentro del cerebro sobre los cuales se debe realizar la estimación de la actividad. Esto conlleva a un problema mal condicionado comúnmente conocido como el problema inverso de EEG. Para resolver este tipo de problemas, información apriori debe ser supuesta para así obtener una solución única y óptima. En el presente trabajo investigativo, se proponen distintas aproximaciones a la solución del problema con el objetivo de mejorar la precisión e interpretabilidad de las estimaciones de actividad cerebral. En primer lugar se propone un método que incluye un modelo auto-regresivo, no lineal, realista y variante en el tiempo para restringir las dinámicas temporales de la solución a dicho modelo. En segundo lugar, se propone un algoritmo que permite relajar la suposición de estacionariedad que comúnmente se hace en este tipo de problemas, esto se logra a través de la creación de una matriz de covarianza variante en el tiempo que permite adaptarse a los cambios espacio temporales de la dinámica cerebral. Por último se propone un algoritmo en el cual se representa la actividad cerebral a través de un conjunto de funciones espacio-temporales las cuales son construidas teniendo en cuenta el contexto fisiológico del problema. Los métodos propuestos son comparados tanto con técnicas clásicas como con métodos del estado del arte usando señales simuladas, y finalmente son validados usando datos EEG reales. En general, los métodos propuestos son eficientes y competitivos en comparación a los métodos usados como referencia
 
Abstract : Electroencephalogram(EEG)-based neuroimaging is a widely used technique that allows to non invasively explore brain activity. One of the most prominent advantages of using EEG measures to analyze brain activity is its low cost and outstanding temporal resolution. However, spatial measurement points (electrodes) are relatively low -a couple hundreds in the best case-, while the discretized brain activity generators-termed current dipoles or sources- are several thousands. This leads to a heavily ill-posed mathematical problem commonly known as the EEG inverse problem. To solve such problems, additional information must be a-priori assumed in order to obtain an unique and optimal solution. In the present work, several approaches to improve the accuracy and interpretability of the inverse problem solution are proposed, using physiologically motivated assumptions. Firstly, a method including a realistic time varying autoregressive model is proposed, aiming to explicitly constraining temporal evolution of brain activity. Secondly, another methodology is proposed to relax the brain activity stationarity assumption that is usually made in state-of-art algorithms, this is done by assuming a physiologically motivated time-varying a-priori covariance matrix. Finally, a novel method constraining the solution to a sparse representation in the space-time-frequency domain is introduced. The proposed methods are compared with classic and state-of-art techniques in a simulated environment, and afterwards, are validated using real world data. In general, the contributed approaches are efficient and competitive compared to state-of-art brain mapping methods
 
Subject
señales de electroencefalografía (EEG) ; Problema inverso ; Mapeo cerebral ; electroencephalography signals (EEG) ; Inverse problem ; Brain mapping ;
URI
https://repositorio.unal.edu.co/handle/unal/21451
Collections
  • Departamento de Ingeniería Eléctrica y Electrónica [367]

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesKnowledge AreasThis CollectionBy Issue DateAuthorsTitlesKnowledge Areas

My Account

LoginRegister

Statistics

View Google Analytics Statistics
Régimen Legal
Talento humano
Contratación
Ofertas de empleo
Rendición de cuentas
Concurso docente
Pago Virtual
Control interno
Calidad
Buzón de notificaciones
Correo institucional
Mapa del sitio
Redes Sociales
FAQ
Quejas y reclamos
Atención en línea
Encuesta
Contáctenos
Estadísticas
Glosario

Contacto página web:
Carrera 45 # 26-85
Edif. Uriel Gutiérrez
Bogotá D.C., ; Colombia
(+57 1) 316 5000

© Copyright 2014
Algunos derechos reservados.
mediosdigitales@unal.edu.co
Acerca de este sitio web

Actualización: 04/10/19

Orgullo UNOrgullo UNAgencia de noticiasAgencia de noticias
Trámites en líneaContaduría General de la República