An approximation to the scale-up of batch processes using phenomenological-based models
Type
Trabajo de grado - Maestría
Document language
EspañolPublication Date
2014-05-16Metadata
Show full item recordSummary
This work presents a methodology for scaling up Batch Processes (BPs) using a Phenomenological-Based Semiphysical Model (PBSM) and the Hankel matrix as tools for maintaining the Operating Regime (OR) at each stage of the process when scaling it up. To do this, a review on the scale-up methods differentiating batch from continuous processing is made, finding that: traditional scale-up approaches do not consider BPs characteristics; many particular successful cases of BPs scale-up have been reported, but no formal procedure has been developed for scaling up these processes; traditional scale-up approaches do not guarantee a good commercial unit design; and a phenomenological-based model of the process is a fundamental tool for carrying out the scale-up task. Taking into account these facts, the proposed scale-up methodology is presented in which a PBSM of the process and an extension of the discrete form of the Hankel matrix to BPs are used for analyzing the dynamic behavior of the process and scaling it up, including the effect of the design variables as a whole over each state variable by computing the State Impactability Index (SII). The latter allows determining the most impacted dynamics (the main dynamics) by scale changes at each stage of the batch and, by means of its calculation, the establishment of the critical point of the Operating Trajectory (OT) at which the batch must be scaled-up. Finally, the methodology is applied to a non-isothermal batch suspension polymerization reactor, finding the scale factors for keeping the same polymer molecular weight when increasing the scale. It is also shown that by means of the SII calculation, it is possible to identify if a process unit is over or under sized.Summary
Resumen: En este trabajo se presenta una metodología para escalar Procesos por Lotes (PpL) usando un Modelo Semifísico de Base Fenomenológica (MSBF) y la matriz de Hankel como herramientas para mantener el Régimen de Operación (RdeO) en cada una de las etapas que atraviesa un proceso por lotes. Para ello, se hace una revisión de literatura acerca de los métodos de escalado diferenciando los procesos discontinuos de los continuos, encontrando que: los métodos tradicionales de escalado no consideran las características de los PpL; se han reportado diversos casos particulares de ´éxito en el escalado de PpL pero no se ha desarrollado un procedimiento formal para escalar estos procesos; los métodos tradicionales de escalado no garantizan que el diseño a escala industrial tenga un buen desempeño; y un modelo de base fenomenológica del proceso es una herramienta fundamental para llevar a cabo la tarea de escalado. Teniendo en cuenta esto, se presenta la metodología de escalado propuesta en la que un MSBF del proceso y la extensión de la forma discreta de la matriz de Hankel a PpL se utilizan para analizar el comportamiento dinámico del proceso y escalarlo, incluyendo el efecto de las variables de diseño como un todo sobre cada de las variables de estado a partir del cálculo del Índice de Estado Impactable (IEI). Este ´ultimo permite determinar la dinámica más impactada (la dinámica principal) por los cambios de escala en cada etapa del lote y, por medio de su cálculo, establecer el punto crítico de la Trayectoria de Operación (TdeO) en el cual se debe escalar el lote. Finalmente, la metodología propuesta se aplica a un reactor no isotérmico de polimerización en suspensión por lotes, encontrando los factores de escala para mantener el mismo peso molecular del polímero al aumentar la escala. Se muestra, adicionalmente, que mediante del cálculo IEI es posible identificar si una unidad de proceso tiene tamaño mayor o menor al requeridoKeywords
Collections
This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit