Parameter selection in least squares-support vector machines regression oriented, using generalized cross-validation

Cargando...
Miniatura

Autores

Álvarez-Meza, Andrés Marino
Daza Santacoloma, Genaro
Acosta Mejia, Carlos
Castallanos Dominguez, German

Director

Tipo de contenido

Artículo de revista

Idioma del documento

Español

Fecha de publicación

2012

Título de la revista

ISSN de la revista

Título del volumen

Documentos PDF

Resumen

In this work a new methodology for automatic selection of the free parameters in the Least Squares–Support Vector Machines (LS-SVM) regression oriented algorithm is proposed. We employ a multidimensional Generalized Cross-Validation analysis in the linear equation system of LS-SVM. Our approach does not require a prior knowledge about the influence of the LS-SVM free parameters in the results. The methodology is tested on two artificial and two real-world data sets. According to the results our methodology computes suitable regressions with competitive relative errors.

Abstract

Descripción Física/Lógica/Digital

Palabras clave

Citación

Colecciones