Electric transport through c-nanotubes and grapheme nanoribbons double quantum dots coupled by a superconductor
Cargando...
Archivos
Autores
Guerra Castro, Juan Manuel
Director
Tipo de contenido
Document language:
Español
Fecha
Título de la revista
ISSN de la revista
Título del volumen
Documentos PDF
Resumen
Abstract. Graphene has become a promising material for technological applications and research in fundamental physics due to its rich physical properties. A detailed study of its hexagonal crystalline structure has been performed and has revealed its unusual electronic properties of great interest in nanotechnology and quantum electronics[1, 2, 3]. Charge carriers exitations with energies near the Fermi can be approximated by an effective Weyl-Dirac Hamiltonian thus implying relativistic behavior. As a consequence, chiral or Klein tunneling is present in transport in which electrons can tunnel a barrier with unit probability. We will review the physical properties of bulk graphene, but we will concentrate in graphene nanoribbons and carbon nanotubes in zigzag configuration and their electronic properties[4]. While ideal nanoribbons are always metallic, a band gap arises as a consequence of the curvature in nanotubes due to overlap of perpendicular orbitals and spin-orbit coupling, thus manifesting semi-metallic and semiconducting regimes according to geometry parameters[5]. These curvature effects raise valley and spin degeneracies present in graphene therefore becoming a more suitable material for quantum control applications. In nanotubes, periodicity along circumferential direction implies quantization of transverse momentum and thus to 0-dimensional energy channels available for transport. Chiral tunneling reduces electronic confinement in metallic materials, but as the energy gap increases, separated regions of the same material can be decoupled by means of a electrostatic barrier, such as a series double quantum dot. In practice, transport through single-channel carbon nanotubes double quantum dos coupled in series and tunable in-situ has been measured and has revealed the processes involved in normal- to super-current conversion. Nonlocal components of transport, i.e., Andreev processes at separated regions, evidence the possibility of producing entangled electronic states in a 2-level molecular system (qubit), fundamental for quantum computation[6]. A minimal model of transport thorugh this device has shown that there under certain physical configurations the system can reach a splitting efficiency of about unity[7].
El grafeno se ha convertido en un material prometedor para aplicaciones tecnológicas y de investigación en física fundamental debido a su rica propiedades físicas. Un estudio detallado de su hexagonal estructura cristalina se ha realizado y ha revelado sus propiedades electrónicas inusuales de gran interés en la nanotecnología y la electrónica cuántica [1, 2, 3]. portadores de carga exitations con energías próximas a la de Fermi pueden aproximarse mediante una efectiva Weyl-Dirac Hamilton lo que implica un comportamiento relativista. Como consecuencia, quiral o Klein túnel está presente en transporte en la que los electrones pueden túnel de una barrera con la unidad de probabilidad. Vamos a revisar las propiedades físicas del grafeno a granel, pero nos concentraremos en nanocintas grafeno y los nanotubos de carbono en configuración en zigzag y su electrónica propiedades [4]. Mientras nanocintas ideales son siempre metálico, una banda prohibida surge como consecuencia de la curvatura en nanotubos debido al solapamiento de orbitales perpendiculares y acoplamiento spin-órbita, manifestando así semi-metálicos y semiconductores regímenes de acuerdo a la geometría parámetros [5]. Estos efectos de la curvatura plantean valle y centrifugado degeneraciones presente en por lo tanto, convertirse en el grafeno un material más adecuado para aplicaciones de control cuánticos. En los nanotubos, la periodicidad a lo largo de la dirección circunferencial implica la cuantificación de transversal impulso y por lo tanto a los canales de energía 0-dimensionales disponibles para el transporte. túnel quiral reduce confinamiento electrónico en materiales metálicos, pero a medida que la brecha de energía aumenta, regiones separadas del mismo material pueden ser desacoplados por medio de una barrera electrostática, tal como una serie de puntos doble cuántica. En la práctica, el transporte a través de carbón monocanal nanotubos dos dobles cuánticos acoplados en serie y sintonizable in-situ ha sido medidos y ha puesto de manifiesto los procesos involucrados en normal- a la conversión súper actual. no local componentes de transporte, es decir, Andreev procesos en regiones separadas, evidenciar la posibilidad de producir estados electrónicos entrelazados en un sistema molecular de 2 niveles (qubit), fundamental para la computación cuántica [6]
El grafeno se ha convertido en un material prometedor para aplicaciones tecnológicas y de investigación en física fundamental debido a su rica propiedades físicas. Un estudio detallado de su hexagonal estructura cristalina se ha realizado y ha revelado sus propiedades electrónicas inusuales de gran interés en la nanotecnología y la electrónica cuántica [1, 2, 3]. portadores de carga exitations con energías próximas a la de Fermi pueden aproximarse mediante una efectiva Weyl-Dirac Hamilton lo que implica un comportamiento relativista. Como consecuencia, quiral o Klein túnel está presente en transporte en la que los electrones pueden túnel de una barrera con la unidad de probabilidad. Vamos a revisar las propiedades físicas del grafeno a granel, pero nos concentraremos en nanocintas grafeno y los nanotubos de carbono en configuración en zigzag y su electrónica propiedades [4]. Mientras nanocintas ideales son siempre metálico, una banda prohibida surge como consecuencia de la curvatura en nanotubos debido al solapamiento de orbitales perpendiculares y acoplamiento spin-órbita, manifestando así semi-metálicos y semiconductores regímenes de acuerdo a la geometría parámetros [5]. Estos efectos de la curvatura plantean valle y centrifugado degeneraciones presente en por lo tanto, convertirse en el grafeno un material más adecuado para aplicaciones de control cuánticos. En los nanotubos, la periodicidad a lo largo de la dirección circunferencial implica la cuantificación de transversal impulso y por lo tanto a los canales de energía 0-dimensionales disponibles para el transporte. túnel quiral reduce confinamiento electrónico en materiales metálicos, pero a medida que la brecha de energía aumenta, regiones separadas del mismo material pueden ser desacoplados por medio de una barrera electrostática, tal como una serie de puntos doble cuántica. En la práctica, el transporte a través de carbón monocanal nanotubos dos dobles cuánticos acoplados en serie y sintonizable in-situ ha sido medidos y ha puesto de manifiesto los procesos involucrados en normal- a la conversión súper actual. no local componentes de transporte, es decir, Andreev procesos en regiones separadas, evidenciar la posibilidad de producir estados electrónicos entrelazados en un sistema molecular de 2 niveles (qubit), fundamental para la computación cuántica [6]