Estimation and Inference for 2k-p Experiments with Beta Response
Type
Trabajo de grado - Doctorado
Document language
EspañolPublication Date
2015Metadata
Show full item recordSummary
Fractional factorial experiments are widely used in industry and engineering. The most common interest in these experiments is to identify a subset of the factors with the greatest effect on the response. With respect to data analysis for these experiments, the most used methods include linear regression, transformations, and the Generalized Linear Model (GLM). This thesis focuses on experiments whose response is measured continuously in the (0,1) interval (if y ∈(a,b), then (y-a)/(b-a) ∈ (0,1)). Analyses for factorial experiments in (0,1) are rarely found in the literature. In this work, advantages and drawbacks of the three mentioned methods for analyzing data from experiments in (0,1) are described. Here, as the beta distribution assumes values in (0,1), the beta regression model (BRM) is proposed for analyzing these kinds of experiments. More specifically, the necessity of considering variable dispersion (VD) and using linear restrictions on parameters are justified in data from 2k and 2k and 2k-p experiments. Thus, the first result in this thesis is to propose, develop, and apply a restricted VDBRM. The restricted VDBRM is developed from frequentist perspective: a penalized likelihood (by means of Lagrange multipliers), restricted maximum likelihood estimators with their respective Fisher Information Matrix, hypothesis tests, and a diagnostic measure. Upon applying the restricted VDBRM, good results were obtained for simulated data, and it is shown that the hypothesis related to 2k and 2k-p experiments are a special case of the restricted model. The second result of this thesis is to explore an integrated Bayesian/likelihood proposal for analyzing data from factorial experiments using the (Bayesian and frequentist) simple BRM's. This was done upon employing at prior distributions in the Bayesian BRM. Thus, comparisons between confidence intervals (frequentist case) and credibility intervals (Bayesian case) on the mean response are done with good and promisory results in real experiments. This work also explores a technique for choosing the best model among several candidates which combine the Half-normal plots (given by the BRM) and the inferential results. Starting from the active factors chosen from each plot, subsequently the respective regression models are fitted and, finally, by means of information criteria, the best model is chosen. This technique was explored with the following models: normal, transformation, generalized linear, and simple beta regression for real 2k and 2k- p experiments: into the greater part of the examples considered for the Bayesian and frequentist BRM's, results were very similar (using at prior distributions). Moreover, four link functions for the mean response in the BRM are compared: results highlight the importance to study each problem at hand.Summary
Resumen. Los experimentos factoriales fraccionados se usan ampliamente en la industria y en la Ingeniería. El interés más común en estos experimentos es identificar el subconjunto de factores que tiene mayor efecto sobre la respuesta. Con respecto al análisis de datos de dichos experimentos, los métodos más usados incluyen regresión lineal, transformaciones y Modelo Lineal Generalizado (MLG). Esta Tesis se enfoca en experimentos cuya respuesta está medida continuamente en el intervalo (0,1), (si y ∈ (a,b), entonces y (y-a)/(b-a) ∈ (0,1)). En la literatura se encuentran pocos análisis de experimentos con esta respuesta. En este trabajo, se describen ventajas y desventajas de las tres metodologías mencionadas en experimentos con esta respuesta. Acá, como la distribución beta asume valores en (0,1), se propone el modelo de regresión beta (MRB) para analizar estos datos. Más específicamente, se justifica la necesidad de modelar la dispersión variable y usar restricciones sobre los parámetros se justifican en datos de experimentos 2k y 2k-p. De este modo, el primer resultado de esta Tesis es proponer, desarrollar y aplicar un modelo de regresión beta con dispersión variable y restricciones en los parámetros (MRBDV restringido). El modelo es desarrollado desde la perspectiva clásica: una función de verosimilitud penalizada (con multiplicadores de Lagrange), estimadores de máxima verosimilitud restringidos con su respectiva matriz de Información de Fisher, tests de hipótesis y una medidad de bondad de ajuste. Al aplicar el MRBDV restringido, se obtuvieron buenso resultados para datos simulados y se mostró que las hipótesis asociadas con experimentos 2k y 2k-p son un caso especial del modelo restringido. El segundo resultado de esta Tesis es explorar una propuesta integrada bayesiana/verosimil para analizar datos de experimentos factoriales usando los dos MRB (bayesiano y clásico). Esto se hizo al emplear distribuciones a priori planas (poco informativas) en el modelo bayesiano. Así, las comparaciones entre intervalos de confianza y de credibilidad presentaron buenos resultados y promisorios en experimentos factoriales reales. Esta Tesis tambien explora una técnica para elegir el mejor modelo entre varios candidatos, el cual combina los Half-normal plots (dados por el BRM) y resultados inferenciales. Partiendo de los efectos activos según cada gráfico, posteriormente se ajustan los modelos de regresión respectivos y, finalmente, por medio de criterios de información, se escoge el mejor modelo. Esta técnica fue explorada con los siguientes modelos: normal, transformaciones, MLG y MRB simple para datos reales de experimentos 2k y 2kKeywords
Collections
