Model Theory of representations of operator algebras
Loading...
Authors
Argoty Pulido, Camilo Enrique
Director
Villaveces Niño, Andrés
Content type
Trabajo de grado - Doctorado
Document language
EspañolPublication date
2015-12-14
Journal Title
Journal ISSN
Volume Title
PDF documents
Abstract
En esta tesis se construyen las bases de una teoría de modelos de un espacio de Hilbert H con tres expansiones: H como una representación con operadores acotados de una C*-álgebra, H expandido con un operador cerrado autoadjunto no acotado y H con una familia de operadores que forman una *-álgebra. Se trabaja en dos marcos principales: Lógica continua y Clases Elementales Abstractas Métricas (MAEC por sus siglas en inglés). Se obtienen resultados en estabilidad, axiomatizabilidad y caracterización de la no bifurcación para los casos anteriormente descritos (TExto tomado de la fuente).
In this thesis we build the basis of the model theory of the expansion of a Hilbert space by operators in three main cases: H with a C ∗ -algebra of bounded operators, H expanded with an unbounded self-adjoint operator and H a ∗ -representation of a ∗ -algebra. We work in two main frameworks: Continuous logic and the Metric Abstract Elementary Classes (MAECS). We get results on stability, axiomatizability and characterization of forking for these settings.
In this thesis we build the basis of the model theory of the expansion of a Hilbert space by operators in three main cases: H with a C ∗ -algebra of bounded operators, H expanded with an unbounded self-adjoint operator and H a ∗ -representation of a ∗ -algebra. We work in two main frameworks: Continuous logic and the Metric Abstract Elementary Classes (MAECS). We get results on stability, axiomatizability and characterization of forking for these settings.