Sistema de hardware electrónico robusto basado en quorum sensing
Type
Trabajo de grado - Doctorado
Document language
EspañolPublication Date
2017-09-12Metadata
Show full item recordSummary
Abstract. Electronic systems designed by man have a high level of complexity. This feature joined with its sequential operation has enabled the susceptibility to failures. In critical applications, this problem has been traditionally attacked duplicating the entire system (redundancy), and using a central control system. The term robust, word appearing in the formulation and in the title of this research, refers to the system's ability to withstand damage (usually physical) without losing its functionality or operation. This research proposes a different design scheme inspired by a mechanism of gene expression control, mechanism which is dependent on cell density, and has been recently observed and characterized in the field of systemic biology, in medical research regarding the efficacy of antibiotics; gene expression responsible for social behaviors of independent cells (bacteria) using extracellular signals. In the biological model, the cell-cell communication is performed through the exchange of chemical molecules called auto inducers. This process, called Quorum Sensing (QS), allows bacteria to monitor their environment for the presence of other bacteria, and thus, to respond to fluctuations in the number and/or species present. The great parallelism of this kind of systems involves a great robustness, since it avoids the sequential structure and dependence on a central control system. In this research, a mathematical model of this process (QS) is proposed, and then, the use of this model to design some initial electronic applications, specifically in the area of robotics is shown. This model starts with the overall system behavior, and then, it focuses in an individual-level model. This design strategy allows, from the application criteria, to define the rules of behavior of each bacterium, which are the same throughout the community, in a similar way as occurs with cellular automata. In principle, the algorithm can be used in signal processing problems as originally formulated in the proposal, if these problems are formulated as a search problem. In this research the algorithm is implemented in some problems of navigation of robots establishing the navigation route as the search problem. The research objective is not to create hardware with evolving capacities, but to propose a scheme of hardware design that reflects a redundant structure. This means formulating a behavioral algorithm that can be implemented functionally on a hardware (microprocessors, microcontrollers, CPLDs, FPGAs, robots, etc.). For this purpose, research proposes the use of different platforms on which different levels of collective bacterial structures are evaluated, while maintaining the premise of QS local communication.Summary
Resumen. Los sistemas electrónicos diseñados por el hombre presentan un elevado nivel de complejidad. Esto unido con su característica de operación secuencial, ha permitido que en general se incremente la susceptibilidad a fallos. En aplicaciones críticas, este problema se ha atacado tradicionalmente con la duplicación de todo el sistema (redundancia), y el uso de un sistema de control central. El termino robusto, término que aparece en la formulación y en el título de ésta investigación, se refiere a la capacidad del sistema de soportar daños (en general físicos) sin perder su funcionalidad u operación. Esta investigación propone un esquema de diseño diferente inspirado en un mecanismo de control de expresiones genéticas dependiente de la densidad celular, observado y caracterizado recientemente en el campo de la biología sistémica, durante investigaciones médicas en relación con la eficacia de antibióticos. Este fenómeno es el responsable de que un conjunto de células independientes (bacterias), bajo la generación de señales extra celulares, desarrolle comportamientos sociales coordinados. En el modelo biológico, la comunicación de célula a célula se realiza a través del intercambio de moléculas químicas llamadas auto inductores. Este proceso, denominado quorum sensing (QS), permite que las bacterias supervisen su ambiente para detectar la presencia de otras bacterias, y responder así a las fluctuaciones en el número y/o especies presentes. El gran paralelismo de éste tipo de sistemas conlleva una gran robustez, dado que evita la estructura secuencial y la dependencia a un sistema de control central. Aquí se plantea un modelo matemático de éste proceso (QS), y se utiliza luego éste modelo para el diseño de algunas primeras aplicaciones electrónicas, específicamente en el área de robótica. El modelo que se propone parte del comportamiento global del sistema, y luego se enfoca a un modelo a nivel de individuo. Esta estrategia de diseño permite, a partir de los criterios de la aplicación, definir las reglas de comportamiento propias de cada bacteria, que serán las mismas de toda la comunidad, de forma similar a como ocurre con los autómatas celulares. En principio, el algoritmo puede utilizarse en problemas de procesamiento de señales como originalmente se formuló en la propuesta, si estos problemas se formulan como un problema de búsqueda. En esta investigación el algoritmo se implementa en algunos problemas de navegación de robots estableciendo la ruta de navegación como el problema de búsqueda. El objetivo de la investigación no es crear hardware con capacidad evolutiva, sino proponer un esquema de diseño de hardware que refleje una estructura redundante. Esto significa formular un algoritmo de comportamiento que pueda ser implementado funcionalmente sobre un hardware (microprocesadores, microcontroladores, CPLDs, FPGAs, robots, etc.). Para ello, la investigación propone el uso de diferentes plataformas sobre las cuales se evalúan diferentes niveles de estructuras bacteriales colectivas, manteniendo siempre la premisa de comunicación local del QS.Keywords
Collections
This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit