Dynamic line rating state estimation
Type
Trabajo de grado - Doctorado
Document language
EspañolPublication Date
2017-12-05Metadata
Show full item recordSummary
Nowadays, the assets of power systems face economic, social, technical and environmental challenges. These challenges arise as a consequence of energy system dynamics that need to increase their reliability and safety as well as to incorporate new sources of generation and loads. This requires loading transformers, substation equipment and transmission lines (OHLs) close to their operating limits. In addition, in most countries, much of these elements are reaching the end of their useful life, for these reasons, it is necessary to design and build new assets with high and long investments. Given that scenario, new technologies have been developed, in order to optimize these assets. Within these technologies, it is the real-time monitoring of OHL rating (DLR), which can increase the conductor ampacity between 10 and 30\% in critical lines (bottlenecks), especially when there is high penetration of renewable generation. To summarize, DLR seeks to estimate and predict the temperature in conductors used in OHLs in order to optimize control and operation of the system, and to increase the reliability during contingencies. Given DLR benefits, methodologies for direct and indirect measurement have been developed for real-time monitoring. The indirect measurements are based on weather models and/or weather measurements in the influence area of the OHL, obtaining an overview of the atmospheric conditions without requiring intervention on the line. On the other hand, with direct measurements thermal, mechanical, and geometric variables of a given span are monitored. Due to the complexity of sensing all spans in an OHL, only spans that restrict power flows (critical spans) are monitored, assuming risks in the spans that are not being monitored. The use of direct measurements has increased because they have greater precision in the calculation of conductor ampacity. In this research, taking advantages of indirect and direct methods, a methodology to estimate and predict temperature is proposed. The goal is to increase the reliability of OHLs thermal monitoring systems. The proposed methodology consists of two stages. In the first one, the conductor temperature is estimated in all spans of an OHL assuming thermal equilibrium. For this estimation, an algorithm based on weighted least square (WLS) was developed, by means of which the best estimates of temperature are obtained, allowing to identify critical spans. Subsequently, the second stage consists in estimating and predicting the temperature in critical spans during a thermal transient. For this, an algorithm based on an extended Kalman filter (EKF) was developed. Additionally, with the EKF is estimated the wind speed and the thermal parameters of the conductor in order to reach improvements in temperature prediction. Finally, the algorithms were evaluated through simulations and experiments. As a result, when the temperature was estimated and predicted with the developed algorithms, the errors and residuals were lower than when the temperature was computed with direct and/or indirect measurements.Summary
En la actualidad, los activos de los sistemas de potencia enfrentan desafíos económicos, sociales, técnicos y ambientales. Estos retos surgen debido a la dinámica de los sistemas de energía en los que se busca aumentar la confiabilidad y seguridad al mismo tiempo que incorporan nuevas fuentes de generación y cargas. Esto exige llevar al límite de operación trasformadores, equipos de subestaciones y líneas de transmisión (OHLs). Adicionalmente, en la mayoría de los países gran parte de estos activos se encuentran cerca al fin de su vida útil, requiriéndose diseñar y construir nuevos activos con altas inversiones dentro del sistema de potencia. Ante tal panorama, nuevas tecnologías se han desarrollado, buscando optimizar estos activos; dentro de las cuales se encuentra el monitoreo en tiempo real de la cargabilidad de OHLs (DLR). Esta tecnología permite aumentar la capacidad entre un 10 y 30\% en líneas críticas (cuellos de botella), especialmente cuando hay una alta penetración de generación renovable. Dadas las ventajas de la tecnología DLR, se han desarrollado metodologías de medición directa e indirecta con el fin de monitorear la capacidad de OHLs en tiempo real. Las mediciones indirectas se basan en modelos y/o mediciones atmosféricas sobre el área de influencia de la OHL, con la ventaja de no requerir una intervención directa sobre la línea. Por otro lado, las mediciones directas monitorean variables térmicas, mecánicas y geométricas de un determinado vano. Debido a la complejidad de monitorear todos los vanos de una OHL solo se monitorean aquellos que restringen el flujo de potencia (vanos críticos), asumiendo riesgos en los vanos que no están siendo monitoreados. El uso de mediciones directas ha aumentado debido a que poseen una mayor precisión en el cálculo de cargabilidad. Así, las mediciones indirectas permiten obtener una visión general de la temperatura del conductor a lo largo de la línea, y las mediciones directas poseen una alta precisión en el cálculo de la temperatura. En esta investigación se propone un modelo de estimación utilizando los dos tipos de mediciones, con el fin de aumentar la confiabilidad en el monitoreo térmico de OHLs. El modelo de estimación desarrollado se divide en dos etapas; la primera de ellas consiste en estimar la temperatura en todos los vanos de una OHL cuando el conductor se encuentra en estabilidad térmica. Para esta estimación, se desarrolló un algoritmo basado en WLS (weighted least square), mediante el cual se obtienen los mejores estimados de cargabilidad permitiendo identificar el vano crítico. Con esta estimación es posible optimizar el control y operación del sistema. La segunda etapa consiste en estimar y predecir la temperatura en el vano crítico durante un transitorio térmico junto con la estimación de la velocidad del viento y los parámetros del conductor. Para este cálculo se desarrolló un algoritmo basado en un filtro Kalman extendido (EKF). Con los valores pronosticados es posible aumentar la confiabilidad del sistema ante contingencias. Finalmente, el modelo de estimación fue evaluado mediante simulaciones y experimentos, dando como resultado, que cuando la temperatura se estima y predice con los algoritmos propuestos, se obtienen errores y residuos menores que al calcular la temperatura con mediciones directas o indirectas.Keywords
Collections
This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit