Numerical simulation of the surface water – groundwater interaction in high mountain riverbeds
Type
Trabajo de grado - Maestría
Document language
EspañolPublication Date
2017-11-15Metadata
Show full item recordSummary
Abstract: Several recent advances have been made on the development of numerical simulations for the flow dynamics on the hyporheic zone of rivers, and generally, for the interaction of a channel flow over a permeable bed, where the mixing of surface and subsurface water is evident. This work has taken into account a revision of the different conceptual, numerical and experimental applications of these advances, identifying their different assumptions and simplifications, such as one-dimensional models of velocity fluctuation and coupled models of turbulent and laminar flow regimes. Special interest is shown in i) how the interface between the turbulent surface flow and the laminar flow in the porous media is managed, ii) the impacts of the imposed boundary conditions on the velocity and pressure fields and iii) the implementation of this model to idealized geometries for high-mountain river-beds. Consequently, a numerical model has been proposed and implemented in OpenFOAM® adopting the existence of pressure and velocity fluctuations coming from the turbulent surface flow of an idealized river, assuming a continuous computational domain containing both surface and porous flows, and characterizing the porous river bed using an apparent viscosity as a continuous space that represents the tortuosity of the flow inside the porous matrix. With this configuration, these simulations executed: 1) a flow over a permeable bed in order to visualize and quantify the dissipation of the velocity when entering into the porous bed, as well as to characterize the flow path within the hyporheic zone; 2) a multiphase flow simulation finding the free surface location of a flow in a flume with a permeable bed with sand river geometries, adapting a transport equation simulating a dye tracer that penetrates the porous bed. For both cases, the results suggest that, in order to correctly represent the flow over a permeable bed, the values of the apparent viscosity must be higher than the value calculated from Higashino’s deduction by at least three orders of magnitude. In addition, results suggest that the calculated velocity and pressure fields are clearly affected by the location and type of the boundary conditions imposed to the computational domain on the zone. From the multiphase flow simulation, the transport simulation of the dyed surface water was compared to a laboratory physical model reported in the literature. The results from this comparison insinuate that the proposed model is able to represent the interaction between the turbulent surface water flow and the groundwater inside a porous bed, finding that for the same orders of magnitude of the previous case, an hyporheic zone can be identified between 0.07cm and 0.12cm under the streambed dunes top.Summary
Resumen: Múltiples avances se han realizado para la simulación numérica de la hidrodinámica en la zona hiporreica de ríos, y en general para la interacción del flujo superficial sobre un lecho permeable, donde la mezcla del agua superficial y el agua subterránea es evidente. Este trabajo ha tenido en cuenta una revisión de diferentes aproximaciones conceptuales, modelos numéricas y físicos implementados, en los cuales se ha identificado sus suposiciones y simplificaciones, como modelos unidimensionales de para la disipación de fluctuaciones de velocidad o modelos acoplados de regímenes laminares y turbulentos. Un interés especial existe en i) la manera en la que es considerada la interfaz en la que el flujo turbulento pasa a un régimen laminar, ii) en las condiciones de borde adoptadas para los campos de presión y velocidad y iii) la implementación del modelo para casos con geometrías idealizadas de lechos de ríos de alta montaña. De esta manera, un modelo numérico ha sido propuesto e implementado en el paquete computacional OpenFOAM® en el cual se ha considerado la existencia de fluctuaciones en los campos de velocidad y presión generadas por la turbulencia del flujo superficial, adoptando un único dominio computacional que contiene ambas regiones de flujo a superficie libre y flujo subterráneo, en el cual se ha caracterizado el lecho poroso usando una viscosidad aparente que permite la continuidad de la solución y que representa la tortuosidad de un flujo en una matriz porosa. Las simulaciones ejecutadas fueron: i) un flujo sobre un lecho permeable en el cual se visualiza y cuantifica la disipación de la velocidad al entrar en el lecho poroso, caracterizando las líneas de flujo dentro de la zona hiporreica; ii) una simulación multifase con la cual se ubicó la superficie libre del flujo de agua sobre un lecho permeable compuesto por una secuencia de dunas de arena, adaptando una ecuación de transporte adicional para simular un trazador que penetra el lecho poroso. Para ambos casos se ha encontrado que el orden de magnitud de la viscosidad aparente calculado de ecuaciones propuestas en la literatura subestima el valor que este parámetro difusivo debe tener para representar correctamente el lecho permeable. Finalmente, una serie de conclusiones son hechas con respecto a las diferentes condiciones de borde evaluadas, la naturaleza de la zona de transición de las fluctuaciones turbulentas de los campos de velocidad y presión entre los subdominios superficial subterráneo, y los resultados que fueron encontrados de este modelo.Keywords
Collections
This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit