Higher-order time derivative theories. Interpretation, instability and possible stabilization
Type
Trabajo de grado - Maestría
Document language
EspañolPublication Date
2017-11-20Metadata
Show full item recordSummary
Higher-derivative field theories are well known to propagate ghost degrees of freedom (DOFs), an instability known as of Ostrogradsky. However, recent advances proposing conditions to stabilize this kind of models, with finitely many unstable DOFs in a non-minimal way, by including a stabilizer DOF and a kinetic coupling between both, have opened the question whether an extension of this methodology to relativistic field theories, also works. In this thesis, the Pais-Uhlenbeck Lagrangian density with a higher derivative scalar field, which leads to an unstable theory, is considered as a basis for a toy model. Upon the requirement for the Lagrangian to be a Lorentz scalar, as well as for the transformation properties of both, the unstable and the stabilizer DOF, to be consistent with a kinetic constraint that controls the instability, it is first concluded that at the level of a free theory the stabilizer must be a vector field. The latter is also motivated to make plausible an extension to interacting higher derivative theories. This is, the kinetic instability should be controled already at the free theory, in such a way that the Feynman propagator does not show a ghost DOF. A Hamiltonization with constraints is considered in order to deal with the imposed kinetic- constraint, which is at the core of the stabilization. This approach allows to examine the properties of the Ostrogradskian instability as it has been done up until now in the literature, therefore making evident the successful extension of the stabilization properties, at least in this toy model. Furthermore, the physical DOFs propagated by the theory are found, and the physical Hamiltonian written in terms of these, turns out to be positive definite and bounded from below in certain region of parameter space. In particular, a very interesting relation between the coupling parameter (α) of the higher-derivative term of the scalar field and the mass of the stabilizer field (m), arises as a requirement for the stabilization. The condition is a lower bound on the former, of the form α 1/m. Such relation was completely unexpected but more meaningful for the physical interpretation of the new higher-derivative structure, because it would show the energy scale at which these new terms may become important.Summary
Resumen Las teorías de campos con derivadas altas propagan grados de libertad inestables, ghost DOFs, una inestabilidad conocida como de Ostrogradsky. Sin embargo, avances recientes en que se proponen condiciones para estabilizar modelos de este tipo, con finitos grados de libertad inestables (DOFs), en una extensión no trivial, incluyendo un DOF estabilizador y un acople cinético entre ambos, han abierto nuevamente la pregunta de si una extensión de esta metodología a teorías de campos relativista, también funciona. En esta tesis, la densidad Lagrangiana de Pais-Uhlenbeck con un campo escalar con derivadas altas, que da lugar a un modelo inestable, es considerada como base para un modelo de juguete. Demandando que el Lagrangiano sea un escalar de Lorentz, así como de requerir que las propiedades de transformación de ambos, DOFs inestable y estabilizador, sean consistentes con la ligadura cinética que controla la inestabilidad, se concluye en primera instancia que el campo estabilizador debe ser de hecho un campo vectorial. Esto último es motivado para hacer plausible una extensión a teorías interactuantes con derivadas altas. Es decir, la inestabilidad cinética debe ser controlada al nivel de la teoría libre, de tal manera que el propagador de Feynman no evidencie un ghost DOF. Debido a que la ligadura cinética que se impone al modelo es clave para la estabilización, una formulación Hamiltoniana con ligaduras es adoptada para el análisis. Esta aproximación permite evaluar las propiedades de la inestabilidad de Ostrogradsky como se ha hecho previamente en la literatura, por tanto, haciendo evidente una extensión exitosa de las propiedades de estabilización, al menos en el modelo de juguete considerado. Adicionalmente, se identifican los grados de libertad físicos propagados por la teoría y el Hamiltoniano físico escrito en términos de estos últimos, resulta ser postivo y acotado inferiormente en cierta región del espacio de parámetros. En particular, de demandar la estabilización, resulta una relación muy interesante entre el parámetro de acople del término con derivadas altas (α) del campo escalar inestable y la masa del campo estabilizador (m). La condición es una cota inferior para el primero, del tipo α 1/m. Esta última relación, aunque completamente inesperada, resulta más enriquecedora para la interpretación de la nueva estructura de derivadas altas, porque esta daría idea de la escala de energías a la que estos nuevos términos podrían resultar importantes.Keywords
Collections
