Form-Invariance of the Non-Regular Exponential Family of Distributions

Thumbnail Image

Authors

Ghorbanpour, Samereh
Chinipardaz, Rahim
Alavi, Seyed Mohammad Reza

Director

Content type

Artículo de revista

Document language

Español

Publication date

2018-07-01

Journal Title

Journal ISSN

Volume Title

PDF documents

Abstract

The weighted distributions are used when the sampling mechanism records observations according to a nonnegative weight function. Sometimes the form of the weighted distribution is the same as the original distribution except possibly for a change in the parameters that is called the form-invariant weighted distribution. In this paper, by identifying a general class of weight functions, we introduce an extended class of form-invariant weighted distributions belonging to the non-regular exponential family which included two common families of distribution: exponential family and non-regular family as special cases. Some properties of this class of distributions such as the sufficient and minimal sufficient statistics, maximum likelihood estimation and the Fisher information matrix are studied.
Las distribuciones ponderadas son usadas cuando el mecanismo de muestreo registra observaciones de acuerdo a una función no negativa. En ocasiones la forma de la función ponderada es igual a la original, excepto, posiblemente, en un cambio de parámetros y se denominan distribuciones ponderadas de forma invariante. En este artículo identificamos una clase general de funciones ponderadas e introducimos una forma extendida de distribuciones ponderadas de forma invariante, la cual incluye dos familias comunes: la familia exponencial y la familia no regular como caso particular. Algunas propiedades de estas distribuciones como las estadísticas suficientes y máximas suficientes, la estimación de máxima verosimilitud y la matriz de información de Fisher son estudiadas.

Abstract

Physical/Logical/Digital Description

Keywords

Citation