• Correo ElectrónicoCorreo Electrónico
  • Dirección Nacional de Información AcadémicaDNINFOA - SIA
  • BibliotecaBibliotecas
  • ConvocatoriasConvocatorias
  • Identidad U.N.Identidad U.N.
Escudo de la República de ColombiaEscudo de la República de Colombia
  • English 
    • español
    • English
    • português (Brasil)
  • Aspirantes
  • Estudiantes
  • Egresados
  • Docentes
  • Administrativos
repositorio.unal.edu.co
Bibliotecas
  • Mapa de sedes
  • Amazonía
  • Bogotá
  • Caribe
  • Manizales
  • Medellín
  • Orinoquía
  • Palmira
Biblioteca Digital
  • Repositorio Institucional
  • Entrega de tesis y publicación en línea
  • Digitalización de documentos
  • Normatividad publicación en línea
  • Portal de Revistas UN
  • Suscripción a contenidos UN
  • Contáctenos
Recursos Bibliográficos
  • Recursos electrónicos
  • Catálogo UN
  • Diccionarios y enciclopedias
  • Herramientas bibliográficas
  • Libros electrónicos
  • Descubridor
  • Índices bibliográficos
  • Adquisicion de material bibliografico
Formación
  • Agenda de formación
  • Solicitud de nuevo taller
  • Guía de autoarchivo de documentos
Acerca de
  • Misión y visión
  • Dirección Nacional de Bibliotecas
  • Convenios y redes
  • Video del Sinab
  • Preguntas frecuentes
Sedes
  • Amazonia
  • Bogotá
  • Caribe
  • De La Paz
  • Manizales
  • Medellín
  • Orinoquia
  • Palmira
  • Tumaco
Servicios
Perfiles
Home
    • español
    • English
    • português (Brasil)
  • Login
View Item 
  •   Institutional Repository of Universidad Nacional
  • 1- Tesis y Disertaciones
  • Sede Medellín
  • Facultad de Minas
  • Departamento de la Computación y la Decisión
  • View Item
  •   Institutional Repository of Universidad Nacional
  • 1- Tesis y Disertaciones
  • Sede Medellín
  • Facultad de Minas
  • Departamento de la Computación y la Decisión
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modelo matemático como soporte para la planificación del transporte masivo de pasajeros aplicando una estrategia de cambio de resolución

Thumbnail
1017196669.2018.pdf (2.190Mb)
Date published
2018-06-02
Author
Henao Arango, Daniel
Metadata
Show full item record

Summary
En esta tesis se formula un modelo matemático de optimización para resolver de manera integrada las etapas de diseño de itinerarios y asignación de flota en un sistema de transporte aéreo de pasajeros utilizando una estrategia de cambio de resolución para disminuir el tamaño del problema resultante, en términos de la cantidad de variables de decisión y ecuaciones, así como del tiempo y de la cantidad de iteraciones requeridas para resolverlo. Para reducir el tamaño del modelo de optimización resultante se implementa una estrategia de clusterización de datos utilizando algoritmos de Aprendizaje de Máquina e Inteligencia Artificial. Estos algoritmos permiten agrupar datos en clústers de manera no trivial, de manera que los elementos pertenecientes a cada clúster son homogéneos entre sí, y los clústers contienen elementos heterogéneos entre ellos. Así, un conjunto original de datos pasa a ser reemplazado por los centroides de los clústers encontrados. Se desarrolla un caso de aplicación en el que, usando el modelo de optimización y la estrategia de cambio de resolución propuesta, se resuelven las dos etapas de la planeación mencionadas. Se plantea el modelo con y sin clusterización de datos y se concluye que la estrategia de clusterización, además de disminuir drásticamente el tiempo de resolución del modelo, mejora la calidad de la solución encontrada, ya que se obtiene una combinación de vuelos incluidos en el itinerario operada con un costo menor que el óptimo encontrado sin aplicar la clusterización de datos y con mejor conectividad entre ellos.
 
Abstract: In this thesis, a mathematical optimization model to solve the integrated problem of itinerary design and fleet assignment in a passenger air transportation system is formulated using a change-of-scale strategy to reduce the size of the resulting problem, in terms of the number of decision variables and constraints, as well as the time and number of iterations required to solve it. To reduce the size of the resulting model, a clustering strategy is implemented using Machine Learning and Artificial Intelligence algorithms. Such algorithms allow to group data in clusters, in a non-trivial way, so that the elements belonging to one cluster are similar among them, and the clusters contain dissimilar elements. This way, an original data set is replaced by the centroids of the clusters found. An application case is developed to solve the mentioned integrated problem using the proposed optimization model and change-of-scale strategy. The model is solved with and without data clustering. The data clustering strategy, besides drastically reducing the resolution time of the model, improves the quality of the solution found, due to a higher flexibility to find a combination of flights included in the final itinerary with higher connectivity between them and operated with a lower cost than the optimal found without the data clustering.
 
Subject
Clusterización ; Diseño de itinerarios ; Asignación de flota ; Clustering ; Itinerary design ; Fleet assignment ; Scheduling ;
URI
https://repositorio.unal.edu.co/handle/unal/68685
Collections
  • Departamento de la Computación y la Decisión [356]

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesKnowledge AreasThis CollectionBy Issue DateAuthorsTitlesKnowledge Areas

My Account

LoginRegister

Statistics

View Google Analytics Statistics
Régimen Legal
Talento humano
Contratación
Ofertas de empleo
Rendición de cuentas
Concurso docente
Pago Virtual
Control interno
Calidad
Buzón de notificaciones
Correo institucional
Mapa del sitio
Redes Sociales
FAQ
Quejas y reclamos
Atención en línea
Encuesta
Contáctenos
Estadísticas
Glosario

Contacto página web:
Carrera 45 # 26-85
Edif. Uriel Gutiérrez
Bogotá D.C., ; Colombia
(+57 1) 316 5000

© Copyright 2014
Algunos derechos reservados.
mediosdigitales@unal.edu.co
Acerca de este sitio web

Actualización: 04/10/19

Orgullo UNOrgullo UNAgencia de noticiasAgencia de noticias
Trámites en líneaContaduría General de la República