• Correo ElectrónicoCorreo Electrónico
  • Dirección Nacional de Información AcadémicaDNINFOA - SIA
  • BibliotecaBibliotecas
  • ConvocatoriasConvocatorias
  • Identidad U.N.Identidad U.N.
Escudo de la República de ColombiaEscudo de la República de Colombia
  • English 
    • español
    • English
    • português (Brasil)
  • Aspirantes
  • Estudiantes
  • Egresados
  • Docentes
  • Administrativos
repositorio.unal.edu.co
Bibliotecas
  • Mapa de sedes
  • Amazonía
  • Bogotá
  • Caribe
  • Manizales
  • Medellín
  • Orinoquía
  • Palmira
Biblioteca Digital
  • Repositorio Institucional
  • Entrega de tesis y publicación en línea
  • Digitalización de documentos
  • Normatividad publicación en línea
  • Portal de Revistas UN
  • Suscripción a contenidos UN
  • Contáctenos
Recursos Bibliográficos
  • Recursos electrónicos
  • Catálogo UN
  • Diccionarios y enciclopedias
  • Herramientas bibliográficas
  • Libros electrónicos
  • Descubridor
  • Índices bibliográficos
  • Adquisicion de material bibliografico
Formación
  • Agenda de formación
  • Solicitud de nuevo taller
  • Guía de autoarchivo de documentos
Acerca de
  • Misión y visión
  • Dirección Nacional de Bibliotecas
  • Convenios y redes
  • Video del Sinab
  • Preguntas frecuentes
Sedes
  • Amazonia
  • Bogotá
  • Caribe
  • De La Paz
  • Manizales
  • Medellín
  • Orinoquia
  • Palmira
  • Tumaco
Servicios
Perfiles
Home
    • español
    • English
    • português (Brasil)
  • Login
View Item 
  •   Institutional Repository of Universidad Nacional
  • 1- Tesis y Disertaciones
  • Sede Manizales
  • Facultad de Ingeniería y Arquitectura
  • Departamento de Ingeniería Eléctrica y Electrónica
  • View Item
  •   Institutional Repository of Universidad Nacional
  • 1- Tesis y Disertaciones
  • Sede Manizales
  • Facultad de Ingeniería y Arquitectura
  • Departamento de Ingeniería Eléctrica y Electrónica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reducción de espacios de entrenamiento empleando modelos ocultos de Markov basados en entrenamiento discriminativo = Reduction of training spaces using MCE- based hidden Markov models

Thumbnail
Juliandavidariaslondono.2007.pdf (1.061Mb)
Date published
2007
Author
Arias Londoño, Julián David
Metadata
Show full item record

Summary
Es común en el reconocimiento de patrones que los mayores esfuerzos se realicen en las etapas de medición-extracción de características y de clasificación. En diversos problemas de reconocimiento se encuentra que los parámetros resultantes de la medición de variables presentan una dinámica temporal y que esta dinámica en sí misma, es la que contiene mayor parte de la información discriminante. Las técnicas típicamente utilizadas en la etapa de extracción de características, están diseñadas para variables estáticas, es decir, variables que no presentan ningún tipo de dinámica. Este es el caso de técnicas como PCA y LDA. Surge entonces la necesidad de generar metodologías de extracción de características que tengan en cuenta la información dinámica de las variables. Por otro lado, es conocido que los criterios utilizados en las técnicas de extracción de características difieren del criterio de encontrar mínimo error de clasificación; este hecho genera incompatibilidad entre el criterio utilizado en la etapa de extracción de características y la etapa de clasificación y puede degradar el desempeño del sistema. Se presenta por lo tanto una metodología de diseño simultáneo de una etapa de extracción de características y un clasificador basado en modelos ocultos de Markov - HMM, por medio del algoritmo de mínimo error de clasificación - MCE. La extracción de características es dependiente de los estados del modelo y es optimizada utilizando el mismo criterio de ajuste de parámetros del HMM. La metodología es validada sobre un problema de reconocimiento de patologías de voz. Los resultados muestran que el entrenamiento de HMM por medio del algoritmo MCE mejora el reconocimiento en comparación con el método de entrenamiento clásico por el criterio de máxima verosimilitud. Además, la metodologia propuesta disminuye la similitud entre modelos de clases diferentes y mejora el desempeño del sistema / Abstract: In pattern recognition is often common that the most of the attention is centered in the measure-extraction and classification stages. In several recognition problems, the obtained measures display a time-variant dynamic and this one contains a high level of the discriminant information. The classical techniques for feature extraction are designed for static features. PCA and LDA are examples of this. At this point becomes necessary the development of dynamic feature extraction methodologies. On the other hand, it is well known that the classical features extraction techniques make use of optimization criteria that are different from the classifier’s minimum classification error criterion. This fact may cause inconsistency between feature extraction and the classification stages and consequently, degrade the performance of systems. For all this reasons, a hidden Markov models (HMM) - based methodology for simultaneous desing of extraction and classification stages is presented. Such a methodology is based on the minimum classification error (MCE) algorithm. The feature extraction is model state - dependent and is optimized using the same criterion of parameter estimation of the HMM. Validation is carried out over a automatic detection of pathological voices problem. The result shows that the MCE training improves the accuracy against the classical maximum likelihood training. In addition, the proposed methodology diminished the similarity between models of different classes and improves the performance systems.
Subject
Reconocimiento óptico de modelos ; Reconocimiento automático de la voz ; Procesos estocásticos ;
URI
https://repositorio.unal.edu.co/handle/unal/69988
Collections
  • Departamento de Ingeniería Eléctrica y Electrónica [370]

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesKnowledge AreasThis CollectionBy Issue DateAuthorsTitlesKnowledge Areas

My Account

LoginRegister

Statistics

View Google Analytics Statistics
Régimen Legal
Talento humano
Contratación
Ofertas de empleo
Rendición de cuentas
Concurso docente
Pago Virtual
Control interno
Calidad
Buzón de notificaciones
Correo institucional
Mapa del sitio
Redes Sociales
FAQ
Quejas y reclamos
Atención en línea
Encuesta
Contáctenos
Estadísticas
Glosario

Contacto página web:
Carrera 45 # 26-85
Edif. Uriel Gutiérrez
Bogotá D.C., ; Colombia
(+57 1) 316 5000

© Copyright 2014
Algunos derechos reservados.
mediosdigitales@unal.edu.co
Acerca de este sitio web

Actualización: 04/10/19

Orgullo UNOrgullo UNAgencia de noticiasAgencia de noticias
Trámites en líneaContaduría General de la República