• Correo ElectrónicoCorreo Electrónico
  • Dirección Nacional de Información AcadémicaDNINFOA - SIA
  • BibliotecaBibliotecas
  • ConvocatoriasConvocatorias
  • Identidad U.N.Identidad U.N.
Escudo de la República de ColombiaEscudo de la República de Colombia
  • English 
    • español
    • English
    • português (Brasil)
  • Aspirantes
  • Estudiantes
  • Egresados
  • Docentes
  • Administrativos
repositorio.unal.edu.co
Bibliotecas
  • Mapa de sedes
  • Amazonía
  • Bogotá
  • Caribe
  • Manizales
  • Medellín
  • Orinoquía
  • Palmira
Biblioteca Digital
  • Repositorio Institucional
  • Entrega de tesis y publicación en línea
  • Digitalización de documentos
  • Normatividad publicación en línea
  • Portal de Revistas UN
  • Suscripción a contenidos UN
  • Contáctenos
Recursos Bibliográficos
  • Recursos electrónicos
  • Catálogo UN
  • Diccionarios y enciclopedias
  • Herramientas bibliográficas
  • Libros electrónicos
  • Descubridor
  • Índices bibliográficos
  • Adquisicion de material bibliografico
Formación
  • Agenda de formación
  • Solicitud de nuevo taller
  • Guía de autoarchivo de documentos
Acerca de
  • Misión y visión
  • Dirección Nacional de Bibliotecas
  • Convenios y redes
  • Video del Sinab
  • Preguntas frecuentes
Sedes
  • Amazonia
  • Bogotá
  • Caribe
  • De La Paz
  • Manizales
  • Medellín
  • Orinoquia
  • Palmira
  • Tumaco
Servicios
Perfiles
Home
    • español
    • English
    • português (Brasil)
  • Login
View Item 
  •   Institutional Repository of Universidad Nacional
  • 1- Tesis y Disertaciones
  • Sede Bogotá
  • Facultad de Ingeniería
  • Departamento de Ingeniería de Sistemas e Industrial
  • View Item
  •   Institutional Repository of Universidad Nacional
  • 1- Tesis y Disertaciones
  • Sede Bogotá
  • Facultad de Ingeniería
  • Departamento de Ingeniería de Sistemas e Industrial
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Método computacional para la identificación de proteínas secretadas por vía no clásica / Computational method for the classification of non classical secreted protein

Thumbnail
299714.2010.pdf (1.194Mb)
Date published
2010
Author
Restrepo Montoya, Daniel
Metadata
Show full item record

Summary
Este trabajo propuso un método computacional innovador para la clasificación de proteínas secretadas por vía no clásica. De forma específica se presenta una aproximación novedosa tanto en la comprensión y uso de los métodos basados en aprendizaje de máquina como en la solución a un problema complejo previamente reportado por la comunidad científica. La nueva metodología denominada SIG+SVM fue validada con datos evaluados experimentalmente superando las aproximaciones previamente reportadas para la clasificación de proteínas que cumplen con esta condición. Así mismo, se proponen transformaciones innovadoras a partir de procesos eficaces, reportando excelentes resultados, lo cual se ve reflejado de manera directa en el área de las ciencias de la vida a nivel mundial, abriendo un espacio único para el Departamento de Ingeniería de Sistemas. / Abstract. This work proposed novel computational method for classifying Gram-positive proteins that are secreted via the nonclassical secretory pathway, denoted as SIG+SVM: secretion independent Gram-positive supported vector machine. SIG+SVM implements novel approaches, both in the use and understanding of Kernel methods as well as for the solution of a biological problem. It is composed by 4 Kernel-based classifiers (frequencies, dipeptides, physicochemical factors and PSSM), each of which is based on different vectorial representations obtained by applying different amino acid sequence transformations to the input data. The method performed better than previously reported approaches proposed for classifying nonclassically secreted proteins when being tested with an experimentally validated protein dataset.
Subject
Bioinformática ; Aprendizaje de máquina ; Bacterias ; Gram-Positiva ; Clasificadores ; Métodos de Kernel ; Bioinformatics ; Machine Learning ; Gram-Positive bacteria ; Classifiers ; Kernel methods ;
URI
https://repositorio.unal.edu.co/handle/unal/70339
Collections
  • Departamento de Ingeniería de Sistemas e Industrial [566]

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesKnowledge AreasThis CollectionBy Issue DateAuthorsTitlesKnowledge Areas

My Account

LoginRegister

Statistics

View Google Analytics Statistics
Régimen Legal
Talento humano
Contratación
Ofertas de empleo
Rendición de cuentas
Concurso docente
Pago Virtual
Control interno
Calidad
Buzón de notificaciones
Correo institucional
Mapa del sitio
Redes Sociales
FAQ
Quejas y reclamos
Atención en línea
Encuesta
Contáctenos
Estadísticas
Glosario

Contacto página web:
Carrera 45 # 26-85
Edif. Uriel Gutiérrez
Bogotá D.C., ; Colombia
(+57 1) 316 5000

© Copyright 2014
Algunos derechos reservados.
mediosdigitales@unal.edu.co
Acerca de este sitio web

Actualización: 04/10/19

Orgullo UNOrgullo UNAgencia de noticiasAgencia de noticias
Trámites en líneaContaduría General de la República