Application of Time-Frequency Transformations in Polarimetric Ultra-Wideband MIMO-GPR signals for Detection of Colombian Improvised Explosive Devices
Type
Trabajo de grado - Doctorado
Document language
EspañolPublication Date
2019-08-15Metadata
Show full item recordSummary
Abstract. In this thesis, a new radar technique for GPR detection and discrimination of Improvised Explosive Devices is presented and validated. Data processing, consisting of adaptive filters and time-frequency transformations, are applied to polarimetric GPR data, in order to construct feature vectors of the targets. These vectors are used as inputs of a support vector machine algorithm, in order to discriminate buried targets either as improvised explosive device (IED) or clutter. The main contributions of this thesis are as follows. First, the permittivity of improvised ANFO explosives is measured. This information is used for manufacturing inert surrogates of IEDs. Second, we proposed the construction of target feature vectors (TFVs) from polarimetric GPR measurements. Third, recursive algorithms and background removal are combined to improve the clutter removal. Data processing methods are assembled, combining clutter removal stage, time-frequency transformation and singular value decomposition. In total, eight data processing methods are proposed. Moreover, for every method, 13 TFVs are assembled. Then, the TFVs are used to train and test support vector machines (SVM) under a binary classification approach. Classification results are validated by using the leave-two-out cross-validation. Accuracy of 87.02% in the best classifier was obtained. The main conclusion of this thesis is that combining polarimetric GPR measurements, feature extraction using time-frequency transformations, and SVM classifications allows obtaining discriminating features that improve the IED detection rates compared with metal detector performance. Furthermore, the proposed approach can be implemented in a hand-held detection device and to be used in a humanitarian demining scenario. Keywords: Classification of improvised explosive devices, feature extraction, ground penetrating radar, permittivity of explosives, polarimetric measurements, support vector machines, ultra-wideband MIMO radar.Summary
Resumen En esta tesis, se presenta y valida una nueva técnica de radar para realizar mediciones GPR. Se proponen estructuras de procesamiento de datos GPR que utilizan filtros adaptativos y transformaciones tiempo-frecuencia como parte de la construcción de vectores de características de los objetos. Estos vectores son utilizados como entradas de un algoritmo de máquinas de soporte vectorial para discriminar los objetos enterrados como un artefacto explosivo improvisado (IED) o como un objeto aleatorio (Non-IED). Los principales aportes de esta tesis son los siguientes. Primero, se mide y se reporta la permitividad de explosivos improvisados de tipo ANFO, información que posteriormente es usada para la fabricación de objetos inertes sustitutos de los IEDs. Segundo, se propone utilizar medidas polarimétricas GPR de objetos enterrados para la construcción de vectores de características (TFVs). Tercero, dentro de las técnicas de procesamiento de las medidas polarimétricas, se propone combinar los algoritmos recursivos y la supresión de señales de fondo para mejorar la eliminación de las señales no deseadas (clutter). Además, se ensamblan ocho métodos diferentes de procesamiento de señales, los cuales combinan la fase de eliminación del clutter, transformadas de tiempo-frecuencia y la descomposición de valores singulares. Adicionalmente, para cada método, se ensamblaron 13 TFVs. Posteriormente, se utilizan estos TFVs para entrenar y probar máquinas de soporte vectorial que funcionan bajo una estructura de clasificación binaria. Los resultados de clasificación son corroborados utilizando la validación cruzada leave-two-out (“dejar dos fuera”). El mejor clasificador que se obtuvo tiene una exactitud de 87.02%. La principal conclusión de esta tesis es que al combinar las medidas GPR polarimétricas, la extracción de características mediante transformaciones tiempo-frecuencia y las máquinas de soporte vectorial, se pueden obtener características discriminatorias que mejoran las tasas de detección de IEDs, en comparación con un detector de metales. Adicionalmente, el enfoque propuesto puede ser implementado en un dispositivo de detección portátil y usarse en un escenario de desminado humanitario. Palabras clave: Clasificación de artefactos explosivos improvisados, extracción de características, radar de penetración terrestre, permitividad de explosivos, máquinas de soporte vectorial, medidas polarimétricas, radar MIMO de banda ultra ancha.Keywords
Collections
This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit