Supervised group connectivity analysis for enhancing the interpretability of brain activity
Author
Type
Trabajo de grado - Doctorado
Document language
InglésPublication Date
2021Metadata
Show full item recordSummary
En este documento se presenta una metodología de análisis de conectividad cerebral, en la cual deben abordarse tres problemas principales, el primer problema para superar es el comportamiento no estacionario de la actividad cerebral, el segundo problema es la alta dimensión de las matrices de conectividad y finalmente el agrupamiento para seleccionar los sujetos de cada conjunto de análisis. Para llevar a cabo esta metodología, fueron empleadas 3 bases de datos, la primera relacionada con estímulos auditivos y visuales bajo el paradigma oddball, la segunda y la tercera una base de datos son motor imagery con diferente número de sujetos. Los resultados obtenidos demuestran que la segmentación de los registros en el tiempo, favorece la estimación de conectividad, además, la propuesta de una regla supervisada para reducir dimensión, garantiza la interpretabilidad fisiológica de los resultados que se obtienen. Finalmente se verificó que la actividad cerebral obtenida depende de los grupos de sujetos que se conformen. Se verificó la metodología teniendo en cuenta criterios de costo computacional, estabilidad numérica, probabilidad de error, así como interpretabilidad de los resultados obtenidos.Keywords
Non-stationary ; Change point detection ; Functional connectivity ; Supervised model ; Dimensionality reduction ; Clustering ; Brain connectivity ; Thresholding ; No-estacionariedad ; Detección de puntos de cambio ; Conectividad funcional ; Modelo supervisado ; Reducción de dimensión ; Clustering ; Conectividad cerebral ;
Physical description
Figuras, tablas This document presents a supervised group connectivity analysis methodology, in which three main problems must be addressed, the first problem to overcome is the non-stationary behavior of brain activity, the second problem is the high dimension
of the connectivity matrices, and finally, the grouping to select the subjects of each set of analyzes. To carry out this methodology, three databases were used, the first related to auditory and visual stimuli under the oddball paradigm, the second and the third a database with motor imagery with a different number of subjects. The results obtained show that the segmentation of the recordings in time favors the estimation of connectivity, in addition, the proposal of a supervised rule to reduce dimension, guarantees the physiological interpretability of the results obtained. Finally, it was verified that the brain activity obtained depends on the groups of subjects that conform. The methodology was verified taking into account criteria of computational cost, numerical stability, probability of error, as well as the interpretability of the results obtained.
Collections
