• Correo ElectrónicoCorreo Electrónico
  • Dirección Nacional de Información AcadémicaDNINFOA - SIA
  • BibliotecaBibliotecas
  • ConvocatoriasConvocatorias
  • Identidad U.N.Identidad U.N.
Escudo de la República de ColombiaEscudo de la República de Colombia
  • English 
    • español
    • English
    • português (Brasil)
  • Aspirantes
  • Estudiantes
  • Egresados
  • Docentes
  • Administrativos
repositorio.unal.edu.co
Bibliotecas
  • Mapa de sedes
  • Amazonía
  • Bogotá
  • Caribe
  • Manizales
  • Medellín
  • Orinoquía
  • Palmira
Biblioteca Digital
  • Repositorio Institucional
  • Entrega de tesis y publicación en línea
  • Digitalización de documentos
  • Normatividad publicación en línea
  • Portal de Revistas UN
  • Suscripción a contenidos UN
  • Contáctenos
Recursos Bibliográficos
  • Recursos electrónicos
  • Catálogo UN
  • Diccionarios y enciclopedias
  • Herramientas bibliográficas
  • Libros electrónicos
  • Descubridor
  • Índices bibliográficos
  • Adquisicion de material bibliografico
Formación
  • Agenda de formación
  • Solicitud de nuevo taller
  • Guía de autoarchivo de documentos
Acerca de
  • Misión y visión
  • Dirección Nacional de Bibliotecas
  • Convenios y redes
  • Video del Sinab
  • Preguntas frecuentes
Sedes
  • Amazonia
  • Bogotá
  • Caribe
  • De La Paz
  • Manizales
  • Medellín
  • Orinoquia
  • Palmira
  • Tumaco
Servicios
Perfiles
Home
    • español
    • English
    • português (Brasil)
  • Login
View Item 
  •   Institutional Repository of Universidad Nacional
  • 1- Tesis y Disertaciones
  • Sede Medellín
  • Facultad de Ciencias
  • Escuela de estadística
  • View Item
  •   Institutional Repository of Universidad Nacional
  • 1- Tesis y Disertaciones
  • Sede Medellín
  • Facultad de Ciencias
  • Escuela de estadística
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluación del Bootstrap para la estimación de percentiles extremos. Aplicación en intervalos de referencia

Thumbnail
94331882._2011.pdf (1.640Mb)
Date published
2011
Author
Guzmán González, Pablo Andrés
Metadata
Show full item record

Summary
En medicina clÍnica (o de laboratorio), un intervalo de referencia (IR), para alguna variable biológica (e.g., la concentració n de hemoglobina), es un conjunto de valores cuyos límites corresponden a dos percentiles simétricos con respecto a la mediana (usualmente, los percentiles 2.5 y 97.5) y es la herramienta de decisión más ampliamente usada en medicina para catalogar un sujeto como \saludable" o no. Debido a su importancia, diferentes técnicas estadísticas paramétricas y no paramétricas se han propuesto para su estimación. Este trabajo comparó, por simulación, el desempeño del bootstrap con el de otros métodos disponibles para estimar los límites del IR. En la comparación se propone aplicar una aproximación bayesiana donde el bootstrap se usa para estimar la verosimilitud del percentil, que al ser combinada con una distribución a priori adecuada, produce una densidad a posteriori estimada del percentil de interés. Esta densidad a posteriori puede ser usada para hacer las estimaciones respectivas. El bootstrap se encontró con un menor error cuadrático medio que los otros métodos disponibles en poblaciones con menor sesgo. De otro lado, el enfoque bayesiano mostró igual o menor error cuadrático medio que todos los otros métodos evaluados, incluyendo el bootstrap. En la simulación se usaron aprioris medianamente informativas. Los resultados sugieren que el método bayesiano propuesto es una alternativa viable cuando se tienen tamaños de muestra pequeños (30 _o 40) y una información apriori insesgada y con baja dispersion./Abstract: In clinical medicine, a reference interval (IR), for some biological variable (e.g., hemoglobin concentration), is a set of values whose boundaries correspond to two symmetric percentiles from the median (usually, the percentiles 2.5 and 97.5); then, IR's are decision tool the most widely used in medicine to classify a subject as \healthy" or not. Because of its importance, deferent techniques parametric and nonparametric statistics have been proposed for estimation. This study compared, by simulation, the performance of the bootstrap with the other available methods to estimate the reference limits. It also plans to implement a Bayesian approach where the bootstrap is used to estimate the likelihood of the percentile, which when combined with a proper prior distribution, produces a posterior density estimate of the percentile of interest. This posterior density can be used to make the respective estimates. The bootstrap was found with a lower MSE than other methods available in less biased populations. On the other hand, the Bayesian approach showed equal or lower RMSE tan all other methods evaluated, including the bootstrap. The simulation used aprioris fairly informative. The results suggest that the proposed Bayesian method is a viable alternative when you have small sample sizes (30 or 40) and a priori information unbiased and low dispersion.
Subject
Percentil extremo ; Bootstrap ; Estimación ; Intervalo de referencia ; Bayes ; Estimación Robusta. ;
URI
https://repositorio.unal.edu.co/handle/unal/8090
Collections
  • Escuela de estadística [120]

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesKnowledge AreasThis CollectionBy Issue DateAuthorsTitlesKnowledge Areas

My Account

LoginRegister

Statistics

View Google Analytics Statistics
Régimen Legal
Talento humano
Contratación
Ofertas de empleo
Rendición de cuentas
Concurso docente
Pago Virtual
Control interno
Calidad
Buzón de notificaciones
Correo institucional
Mapa del sitio
Redes Sociales
FAQ
Quejas y reclamos
Atención en línea
Encuesta
Contáctenos
Estadísticas
Glosario

Contacto página web:
Carrera 45 # 26-85
Edif. Uriel Gutiérrez
Bogotá D.C., ; Colombia
(+57 1) 316 5000

© Copyright 2014
Algunos derechos reservados.
mediosdigitales@unal.edu.co
Acerca de este sitio web

Actualización: 04/10/19

Orgullo UNOrgullo UNAgencia de noticiasAgencia de noticias
Trámites en líneaContaduría General de la República