Implementación de modelo computacional para la detección de ingeniería social basado en aprendizaje de máquina y procesamiento de lenguaje natural

Miniatura

Autores

López Solano, Juan Camilo

Director

Camargo Mendoza, Jorge Eliecer

Tipo de contenido

Trabajo de grado - Maestría

Idioma del documento

Español

Fecha de publicación

2022

Título de la revista

ISSN de la revista

Título del volumen

Documentos PDF

Resumen

La seguridad informática o ciberseguridad se encarga de la protección de datos y servicios ante individuos no autorizados y protege las características de la información como la integridad, la confidencialidad y la disponibilidad. Existen múltiples amenazas y ataques que ponen en riesgo la seguridad informática como el ransomware, el malware o programas malignos, los ataques de denegación de servicios, las fallas de inyección, la ingeniería social, entre otros. En muchas ocasiones la parte más vulnerable de los sistemas son los usuarios, por este motivo los ciberdelincuentes usan la ingeniería social para adquirir información de forma ilícita de los usuarios. La ingeniería social consiste en la manipulación de los individuos mediante el engaño para que divulguen información privada o confidencial. Este tipo de ciberataque es muy difícil de detectar ya que puede ser ejecutado por cualquier individuo en cualquier momento y explota aspectos psicológicos de los humanos para engañarlos. En el presente trabajo se presenta la implementación de un modelo computacional basado en técnicas de Procesamiento de Lenguaje Natural para extraer características en textos y alimentar tres algoritmos de Aprendizaje de Máquina (redes neuronales, máquinas de vector de soporte y bosques aleatorios) para detectar posibles ataques de ingeniería social en textos. Los tres algoritmos fueron entrenados y evaluados, mostrando resultados que superan el 80% de exactitud en la detección de ataques de ingeniería social. (Texto tomado de la fuente).

Abstract

Computer security or cybersecurity is responsible for the protection of data and services against unauthorized people and protects information characteristics such as integrity, confidentiality, and availability. There are multiple threats and attacks that put computer security at risk such as ransomware, malware, denial of services attacks, injection failures, social engineering, among others. In many cases, the most vulnerable part of systems are users, for this reason cybercriminals use social engineering to illegally acquire information from users. Social engineering consists of the manipulation of people through deception to make them disclose private or confidential information. This type of cyber-attack is very difficult to detect since it can be executed by any individual at any time and exploits psychological aspects of humans to deceive them. This paper presents the implementation of a computational model based on Natural Language Processing techniques to extract characteristics in texts and used to train three Machine Learning algorithms (Neural Network, Support Vector Machine and Random Forest) to detect possible social engineering attacks in texts. The three algorithms were trained and tested showing an accuracy over 80% in the task of detecting social engineering attacks.

Descripción Física/Lógica/Digital

ilustraciones, gráficas, tablas

Palabras clave

Citación