Aplicación de técnicas de analítica de datos para identificar los factores que afectan la participación ciudadana en Medellín
Cargando...
Archivos
Autores
López Buitrago, Juan Pablo
Director
Tipo de contenido
Document language:
Español
Fecha
Título de la revista
ISSN de la revista
Título del volumen
Documentos PDF
Resumen
Teniendo en marcha la tercera medición del Índice de Participación Ciudadana, y aprovechando la experiencia consolidada a lo largo de los años en el cálculo e interpretación de los indicadores, una de las premisas obtenidas para la presente medición era la necesidad de dar un paso más en esta dirección. Teniendo esto como punto de partida, se propuso la exploración de herramientas de Analítica y Ciencia de Datos para garantizar un mejor aprovechamiento de los datos almacenados producto de las diferentes mediciones, y a la vez generar valor y conocimiento a partir de los datos que faciliten el ejercicio de toma de decisiones. Como resultado, se construyó un modelo de Aprendizaje Automatizado a partir del algoritmo Random Forest Classifier. Con el objetivo de identificar las variables que más influyen en el puntaje final del IPCM se utilizaron herramientas de Feature Importance, dando lugar a inferencias, conclusiones y recomendaciones que brindarán una base sólida e informada para la elaboración de programas, proyectos y políticas públicas orientadas a mejorar el ejercicio de la participación en Medellín. (Texto tomado de la fuente)
Abstract
Having underway the third measurement of the Citizen Participation Index, and taking advantage of the experience consolidated over the years in the calculation and interpretation of the indicators, one of the premises obtained for the present measurement was the need to take a step further in this direction. With this as a starting point, the exploration of Analytics and Data Science tools was proposed to guarantee a better use of the data stored as a result of the different measurements, and at the same time generate value and knowledge from the data to facilitate the decision-making exercise. As a result, a Machine Learning model was built based on the Random Forest Classifier algorithm. In order to identify the variables that most influence the final IPCM score, Feature Importance tools were used, leading to inferences, conclusions and recommendations that will provide a solid and informed basis for the development of programs, projects and public policies aimed at improving the exercise of participation in Medellin.
Palabras clave propuestas
Descripción
ilustaciones, diagramas