Analytical solution for the soil-structure interaction of a non-uniform section pile on non-homogeneous soil conditions
Archivos
Autores
Meza Abalo, Maria de los Angeles Clariet
Director
Zapata Medina, David Guillermo
Vega Posada, Carlos Alberto
Tipo de contenido
Trabajo de grado - Maestría
Idioma del documento
InglésFecha de publicación
2022-12
Título de la revista
ISSN de la revista
Título del volumen
Documentos PDF
Resumen
Las pilas no prismáticas suelen ser utilizadas para resistir grandes cargas laterales. En muchas de estas aplicaciones dichos elementos se implementan en suelos estratificados parcial o totalmente embebidos para mejorar la transferencia de carga al suelo con una distribución de la resistencia más eficiente, debido al incremento de la sección transversal en la parte superior del elemento. Sin embargo, requieren un análisis y diseño más complejo y exhaustivo que los elementos uniformes. Esta investigación presenta la derivación de la matriz de rigidez y el vector de carga de una solución analítica para pilotes de sección no uniforme total y parcialmente embebidos en un suelo no homogéneo. La metodología presentada permite, i) realizar análisis estáticos y de estabilidad de pilas no prismáticas circulares (i.e., pilas cónicas, pilas escalonadas, etc.), ii) considerar la variación del suelo en profundidad con distribuciones lineales y trapezoidales del módulo de reacción del suelo, iii) evaluar pilas completa y parcialmente embebidas en suelos multi capa, iv) considerar conexiones parcial y completamente restringidas, v) tener en cuenta un modelo de fundación Pasternak. (texto tomado de la fuente)
Abstract
Non-prismatic piles are typically used in cases where large lateral loads must be resisted.
In many applications, these elements are implemented in partially and fully-embedded
layered soils to improve the load transfer to the soil with a more efficient strength
distribution due to their larger cross-sectional area at the top of the element. However, they
require complex and more comprehensive analysis and design than uniform elements.
This investigation presents the derivation of the stiffness matrix and load vector of an
analytical solution for non-uniform section piles fully and partially embedded on non-homogeneous soils. The methodology presented herein allows to i) perform static and
stability analyses of non-prismatic circular piles (i.e., tapered piles, stepped-tapered piles,
etc.), ii) consider soil variation along depth with a linear and trapezoidal distribution of the
modulus of subgrade reaction, iii) evaluate fully and partially embedded piles in
multilayered soils by just neglecting the soil contribution in the unembedded section, iv)
consider partially and fully restricted connections, v) account for a Pasternak soil
foundation.
The Differential Transformation Method (DTM) was used to solve the governing differential
equation and determine the polynomial terms that satisfy the boundary conditions. Then,
compatibility conditions were applied at the bounds of each pile segment to derive the
stiffness matrix and load vector.
Four examples are presented to evaluate the lateral response of tapered, stepped and
prismatic piles: 1) Fully-embedded tapered and prismatic pile in two homogeneous soil
layers; 2) Influence a non-homogeneous layer in the lateral deformation on tapered and
prismatic piles; 3) Deformation, rotation, moment, and shear profile of a tapered pile in a
four layers soil; 4) Prismatic pile and non-prismatic piles partially embedded in a two-layered soil.
The reliability of the proposed method is validated using finite element analysis in SAP2000
for the above-mentioned examples. The results show excellent agreement with the FE
analyses at a lower computational cost, and it is observed that lateral deformations are
mainly affected by the taper ratio of the pile and the thickness and stiffness relationship of
the layers.