Show simple item record

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorSanabria González, Nancy Rocío
dc.contributor.advisorCardona Castaño, Julio Andres
dc.contributor.authorMarín González, Natalia
dc.date.accessioned2023-06-27T16:10:38Z
dc.date.available2023-06-27T16:10:38Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84079
dc.descriptiongraficas, tablas
dc.description.abstractUno de los contaminantes recalcitrantes que generan alto impacto en los cuerpos de agua son los colorantes sintéticos, especialmente los que contienen en su estructura molecular grupos azo, debido a que impiden los procesos fotosintéticos, reducen la concentración de oxígeno disuelto y afectan la dinámica del sistema acuático. Dada la compleja estructura química y tamaño molecular de los colorantes, la mayoría de estos compuestos no logran ser eliminados por los métodos convencionales para el tratamiento de aguas. El rojo allura, también conocido como rojo No. 40 o E129, es un colorante azoico ampliamente utilizado en la industria alimentaria para impartir coloración en helados, refrescos, dulces y productos de panadería. Su fórmula molecular es C18H14N2Na2O8S2 y se caracteriza por ser una molécula estable, con una vida media de 33.6 h bajo fotólisis directa (UVB). En la presente investigación se evaluó el potencial catalítico de la bentonita pilarizada con aluminio e impregnada con cobalto (Co/Al-PILC) para la oxidación del colorante rojo allura con el sistema BAP (por sus siglas en inglés, Bicarbonate-Activated Peroxide), bajo condiciones suaves de temperatura y presión (25 °C y presión atmosférica). Para todos los ensayos de oxidación se empleó una dosis de catalizador de 2.0 g/L y la concentración de cobalto impregnado fue del 1.0% en masa. El efecto de las concentraciones de H2O2, NaHCO3 y colorante sobre la decoloración y remociones de carbono total (CT) y nitrógeno total (NT) se analizó mediante un diseño central compuesto (DCC) y la metodología de superficie de respuesta (MSR). Empleando el sistema Co/Al-PILC-BAP se lograron decoloraciones de 99.43%, y remociones de NT y CT del 72.82 y 18.74%, respectivamente. Los datos experimentales de decoloración y remoción del CT y NT se ajustaron a modelos matemáticos de segundo orden, con coeficientes de determinación (R2) mayores a 0.9713. Las condiciones óptimas que maximizan la decoloración y mineralización se obtuvieron para concentraciones de colorante, H2O2 y NaHCO3 de 21.25 mg/L, 2.59 y 1.25 mM, respectivamente. Los datos de la cinética de decoloración 25 y 35 °C se ajustaron al modelo de pseudo primer orden, en tanto que a 45 °C el mejor ajuste fue al modelo de pseudo segundo orden. Algunos intermediarios y subproductos finales de reacción fueron identificados mediante análisis de cromatografía líquida (HPLC) y cromatografía de gases acoplada a espectrometría de masas (CG-EM). Los resultados de esta investigación mostraron que el sistema BAP catalizado con cobalto soportado sobre una arcilla pilarizada (Co/Al-PILC) es una alternativa para el tratamiento de aguas coloreadas, y puede ser empleado como tratamiento terciario o como pretratamiento para mejorar la biodegradabilidad del agua. (Texto tomado de la fuente)
dc.description.abstractOne of the recalcitrant pollutants that have a high impact on water bodies are synthetic dyes, especially those that contain azo groups in their molecular structure, because they impede photosynthetic processes, reduce the concentration of dissolved oxygen, and affect the dynamics of the aquatic system. Due to the complex chemical structure and molecular size of the dyes, most of these compounds cannot be removed by conventional water treatment methods. Allura red, also known as red No. 40 or E129, is an azo dye widely used in the food industry to impart coloration in ice cream, soft drinks, candies, and bakery products. Its molecular formula is C18H14N2Na2O8S2 and it is characterized by being a stable molecule, with a half-life of 33.6 h under direct photolysis (UVB). In the present investigation, the catalytic potential of cobalt-impregnated aluminum-pillarized bentonite (Co/Al-PILC) was evaluated for the oxidation of allura red dye with the Bicarbonate-Activated Peroxide (BAP) system under mild temperature and pressure conditions (25 °C and atmospheric pressure). For all oxidation tests, a catalyst dosage of 2.0 g/L was used, and the impregnated cobalt concentration was 1.0% by mass. The effect of H2O2, NaHCO3 and dye concentrations on decolorization and total carbon (TC) and total nitrogen (TN) removals was analyzed using a central composite design (CCD) and response surface methodology (RSM). Using the Co/Al-PILC-BAP system, discolorations of 99% and TC and TN removals of 18 and 72%, respectively, were achieved. The experimental data for TC and TN discoloration and removal were fitted to second-order mathematical models, with coefficients of determination (R2) greater than 0.9713. Optimal conditions maximizing decolorization and mineralization were obtained for dye, H2O2 and NaHCO3 concentrations of 21.25 mg/L, 2.59 and 1.25 mM, respectively. The decolorization kinetics data 25 and 35 °C were fitted to the pseudo first order model, while at 45 °C the best fit was to the pseudo second order model. Some intermediates and final reaction by-products were identified by liquid chromatography (HPLC) and gas chromatography coupled to mass spectrometry (GC-MS) analysis. The results of this research showed that the cobalt-catalyzed BAP system supported on a pillared clay (Co/Al-PILC) is an alternative for the treatment of colored water and can be employed as a tertiary treatment or as a pretreatment to improve the biodegradability of the water.
dc.format.extentii, 104 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc540 - Química y ciencias afines::543 - Química analítica
dc.titleOxidación catalítica en medio heterogéneo de un colorante azoico empleando el sistema peróxido activado con bicarbonato
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Química
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos, Catalíticos y Biotecnológicos - PQCB
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Química
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería y Arquitectura
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.referencesSanz, A. Química Orgánica Industrial. La Industria de los Colorantes y Pigmentos. Consultado el 10 de abril de 2021. Disponible en https://www.eii.uva.es/organica/qoi/tema-11.php.
dc.relation.referencesMarcano, D. (2018). Capítulo 2. Constitución Química de los Colorantes, In: Introducción a la Química de los Colorantes. Marcano, D. (Ed). Academia de Ciencias Físicas, Matemáticas y Naturales: Caracas, VEN, pg. 26-99.
dc.relation.referencesBożęcka, A. M., Orlof-Naturalna, M. M., Kopeć, M. (2021). Methods of dye removal from aqueous environment. Journal of Ecological Engineering, 22(9): 111-118.
dc.relation.referencesSharma, K., Dalai, A. K., Vyas, R. K. (2018). Removal of synthetic dyes from multicomponent industrial wastewaters. Reviews in Chemical Engineering, 34(1): 107-134.
dc.relation.referencesRobinson, T., McMullan, G., Marchant, R., Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3): 247-255.
dc.relation.referencesVacchi, F., Albuquerque, A., Vendemiatti, J., Morales, D., Ormond, A., Freeman, H., Zocolo, G., Zanoni, M., Umbuzeiro, G. (2012). Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture. The Science of the Total Environment, 442: 302-309.
dc.relation.referencesBarrios-Ziolo, L. F., Gaviria-Restrepo, L.-F., Agudelo, E. A., Cardona-Gallo, S. A. (2016). Estudio de la toxicidad asociada al vertimiento de aguas residuales con presencia de colorantes y pigmentos en el área metropolitana del Valle de Aburrá. EIA, 13(26): 61-74.
dc.relation.referencesCelik, S., Duman, N., Sayin, F., Tunali Akar, S., Akar, T. (2021). Microbial cells immobilized on natural biomatrix as a new potential ecofriendly biosorbent for the biotreatment of reactive dye contamination. Journal of Water Process Engineering, 39: 101731.
dc.relation.referencesSiddiqui, S. I., Ravi, R., Rathi, G., Tara, N., Islam, S. U., Chaudhry, S. A. (2018). Chapter 6. Decolorization of Textile Wastewater Using Composite Materials, In: Nanomaterials in the Wet Processing of Textiles. ul-Islam, S., Butola, B. S. (Eds). Scrivener Publishing LLC: IND, pg. 187-218.
dc.relation.referencesKatheresan, V., Kansedo, J., Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4): 4676-4697.
dc.relation.referencesNamasivayam, C., Jeyakumar, R., Yamuna, R. T. (1994). Dye removal from wastewater by adsorption on ‘waste’ Fe(III)/Cr(III) hydroxide. Waste Management, 14(7): 643-648.
dc.relation.referencesAtalay, S., Ersöz, G. (2015). Chapter 3. Advanced Oxidation Processes for Removal of Dyes from Aqueous Media, In: Green Chemistry for Dyes Removal from Waste Water: Research Trends and Applications. Sharma, S. K. (Ed). Scrivener Publishing LLC: Massachusetts, USA, pg. 83-117.
dc.relation.referencesDomènech, X., Jardim, W. F., Litter, M. I. (2001). Capítulo 1. Procesos Avanzados de Oxidación para la Eliminación de Contaminantes, In: Eliminación de Contaminantes por Fotocatálisis Heterogénea. Blesa, M. A. (Ed). Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo - CYTED: La Plata, ARG, pg. 3-25.
dc.relation.referencesOrtiz, I., Rivero, M., Margallo, M. (2019). Chapter 6. Advanced Oxidative and Catalytic Processes, In: Sustainable Water and Wastewater Processing. Galanakis, C., Agrafioti, E. (Eds). Elsevier Inc: ESP, pg. 161-201.
dc.relation.referencesDomingues, E., Gomes, J., Quina, M., Quinta-Ferreira, R., Martins, R. (2018). Detoxification of olive mill wastewaters by Fenton’s process. Catalysts, 8(12): 662.
dc.relation.referencesGoldstein, S., Meyerstein, D., Czapski, G. (1993). The Fenton reagents. Free Radical Biology and Medicine, 15(4): 435-445.
dc.relation.referencesBokare, A. D., Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275: 121-135.
dc.relation.referencesJawad, A., Chen, Z., Yin, G. (2016). Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment. Chinese Journal of Catalysis, 37(6): 810-825.
dc.relation.referencescherifi-naci, H., Louhab, K., Aksas, H. (2015). Elimination of copper (II) in aqueous solution by adsorption on a pillared clay with polycations of aluminum and iron. Research Journal of Chemistry and Environment, 19: 73-81.
dc.relation.referencesBaloyi, J., Ntho, T., Moma, J. (2018). Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Advances, 8(10): 5197-5211.
dc.relation.referencesMarković, M., Marinović, S., Mudrinić, T., Ajduković, M., Jović-Jovičić, N., Mojović, Z., Orlić, J., Milutinović-Nikolić, A., Banković, P. (2019). Co(II) impregnated Al(III)-pillared montmorillonite–Synthesis, characterization and catalytic properties in Oxone® activation for dye degradation. Applied Clay Science, 182: 105276.
dc.relation.referencesJawad, A., Li, Y., Lu, X., Chen, Z., Liu, W., Yin, G. (2015). Controlled leaching with prolonged activity for Co-LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. Journal of Hazardous Materials, 289: 165-173.
dc.relation.referencesJawad, A., Lu, X., Chen, Z., Yin, G. (2014). Degradation of chlorophenols by supported Co-Mg-Al layered double hydrotalcite with bicarbonate activated hydrogen peroxide. Journal of Physical Chemistry A, 118(43): 10028-10035.
dc.relation.referencesZhou, L., Song, W., Chen, Z., Yin, G. (2013). Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environmental Science and Technology, 47(8): 3833-3839.
dc.relation.referencesCerrón, D., Unterlass, M. (2018). Ecofriendly synthesis of colorants. Revista de Química (PUCP), 32(1): 18- 31.
dc.relation.referencesDecelles, C. (1949). The story of dyes and dyeing. Journal of Chemical Education, 26(11): 583-587.
dc.relation.referencesIndependent Commodity Intelligence Services. (2008). Germany Beat the British to Dominate Dyes. Consultado el 13 de abril de 2021. Disponible en https://www.icis.com/explore/resources/news/2008/05/12/9122542/germany-beat-the-british-to-dominate-dyes/.
dc.relation.referencesAramouni, F., Deschenes, K. (2014). Chapter 6. Food Additives, In: Methods for Developing New Food Products: An Instructional Guide. Aramouni, F., Deschenes, K. (Eds). DEStech Publications, Inc: Lancaster-Pennsylvania, USA, pg. 87-124.
dc.relation.referencesChequer, F., Olivera, G. A. R., Ferraz, E., Cardoso, J., Zanoni, M., Olivera, D. P. (2013). Textile dyes: Dyeing process and environmental impact. Eco-Friendly Textile Dyeing and Finishing, 6: 151-176.
dc.relation.referencesAbrahart, E. N. (2019). Dye. Consultado el 28 de abril de 2021. Disponible en https://www.britannica.com/technology/dye.
dc.relation.referencesGürses, A., Açıkyıldız, M., Güneş, K., Gürses, M. S. (2016). Chapter 2. Their Structure and Properties, In: Dyes and Pigments. Sharma, S. K. (Ed). Springer International: Jaipur, IND, pg. 13-29.
dc.relation.referencesHanna Instruments. Fotometría como Ténica Instrumental en el Análisis de Agua. Consultado el 13 de mayo de 2021. Disponible en https://www.hannainst.es/blog/1498/Fotometria-como-tecnica-instrumental-agua.
dc.relation.referencesSelim, Y., Mohamed, A. (2017). Role of dyestuff in improving dye-sensitized solar cell performance. Renewable Energy and Sustainable Development, 3(1): 79-82.
dc.relation.referencesRamírez, L. C. C., Lozano, L. C. (2020). Principios físicoquímicos de los colorantes utilizados en microbiología. NOVA, 18(33): 73-100.
dc.relation.referencesFernández, G. Espectroscopía Visible Ultravioleta. Grupos Cromóforos y Auxocromos. Consultado el 30 de marzo de 2021. Disponible en https://www.quimicaorganica.org/espectroscopia-visible-ultraviolata/735-grupos-cromoforos-y-auxocromos.html.
dc.relation.referencesGürses, A., Açıkyıldız, M., Güneş, K., Gürses, M. S. (2016). Chapter 3. Classification of Dye and Pigments, In: Dyes and Pigments. Heron, B. M., Wainwright, M. (Eds). SpringerBriefs: Jaipur, IND, pg. 31-45.
dc.relation.referencesEl-Sikaily, A., Khaled, A., El Nemr, A. (2012). Chapter 2. Textile Dyes Xenobiotic and Their Harmful Effect, In: Non-Conventional Textile Waste Water Treatment. Nemr, A. E. (Ed). Nova Science: EGY pg. 31-64.
dc.relation.referencesNational Center for Biotechnology Information. (2005). PubChem Compound Summary for CID 2724063, Naphthol Yellow S. Consultado el 30 de abril de 2021. Disponible en https://pubchem.ncbi.nlm.nih.gov/compound/2724063.
dc.relation.referencesNational Center for Biotechnology Information. (2005). PubChem Compound Summary for CID 6915910, Naphthol Green B. Consultado el 30 de abril de 2021. Disponible en https://pubchem.ncbi.nlm.nih.gov/compound/6915910.
dc.relation.referencesNational Center for Biotechnology Information. (2005). PubChem Compound Summary for CID 13297, Sudan I. Consultado el 30 de abril de 2021. Disponible en https://pubchem.ncbi.nlm.nih.gov/compound/13297.
dc.relation.referencesNational Center for Biotechnology Information. (2005). PubChem Compound Summary for CID 11294, Malachite Green. Consultado el 30 de abril de 2021. Disponible en https://pubchem.ncbi.nlm.nih.gov/compound/11294.
dc.relation.referencesNational Center for Biotechnology Information. (2005). PubChem Compound Summary for CID 2723854, Indigo Carmine. Consultado el 30 de abril de 2021. Disponible en https://pubchem.ncbi.nlm.nih.gov/compound/2723854.
dc.relation.referencesNational Center for Biotechnology Information. (2005). PubChem Compound Summary for CID 25863, Procion Blue MX-R. Consultado el 30 de abril de 2021. Disponible en https://pubchem.ncbi.nlm.nih.gov/compound/25863.
dc.relation.referencesSezgin, A., Ayyıldız, S. (2017). Food Additives: Colorants, In: Science within Food: Up-to-Date Advances on Research and Educational Ideas Méndez, A. (Ed). Printed: ESP, pg. 87-94.
dc.relation.referencesCoultate, T., Blackburn, R. (2018). Food colorants: Their past, present and future. Coloration Technology, 134(2010): 1-21.
dc.relation.referencesChung, K.-T. (2016). Azo dyes and human health: A review. Journal of Environmental Science and Health, 34(4): 233-261.
dc.relation.referencesCorradini, M. (2018). Synthetic Food Colors, In: Reference Module in Food Science. Beddows, C. (Ed). Elsevier Inc: Amsterdam, NLD, pg. 1-6.
dc.relation.referencesFood and Drug Administration. (2021). Report on the Certification of Color Additives: 2nd Quarter, Fiscal Year 2021, January 1-March 31. Consultado el 20 de mayo de 2021. Disponible en https://www.fda.gov/industry/color-certification-reports/report-certification-color-additives-2nd-quarter-fiscal-year-2021-january-1-march-31.
dc.relation.referencesShah, K. (2014). Biodegradation of azo dye compounds. International Research Journal of Biochemistry and Biotechnology, 1(2): 005-013.
dc.relation.referencesAl-Rubaie, L., Abd-Alredha, R., Jameel Mhessn, R. (2012). Synthesis and characterization of azo dye para red and new derivatives. E-Journal of Chemistry, 9(1): 465-470.
dc.relation.referencesArvizu, I., Alvarez, L. H., Almaguer, V., Garcia-Reyes, B., Olivo, D., Del Angel, Y. (2019). Biotransformación de colorantes azo por microorganismos reductores del humus. BioTecnología, 23(3): 61-73.
dc.relation.referencesBenkhaya, S., M'Rabet, S., El Harfi, A. (2020). Classifications, properties, recent synthesis and applications of azo dyes. Heliyon, 6(1): e03271.
dc.relation.referencesGriffiths, J. (1990). The Evolution of Present-Day Dye Technology, In: The Chemistry and Application of Dyes. Waring, D. R., Hallas, G. (Eds). Springer US: Boston, USA, pg. 1-16.
dc.relation.referencesBerrie, B., Lomax, S. (1997). Azo pigments: Their history, synthesis, properties, and use in artists' materials. Studies in the History of Art, 57: 8-33.
dc.relation.referencesBafana, A., Devi, S. S., Chakrabarti, T. (2011). Azo dyes: past, present and the future. Environmental Reviews, 19: 350-370.
dc.relation.referencesSiddiquee, S., Shafwanah, A. M. S. (2020). Chapter 10. Toxicology and Analytical Methods for the Analysis of Allura Red (E129) in Food and Beverage Products: A Current Perspective, In: Safety Issues in Beverage Production. Grumezescu, A., Holban, A. M. (Eds). Academic Press: Oxford, GBR, pg. 335-357.
dc.relation.referencesRovina, K., Siddiquee, S., Shaarani, S. M. (2016). Extraction, analytical and advanced methods for detection of allura red AC (E129) in food and beverages products. Frontiers in Microbiology, 7: 798 - 811.
dc.relation.referencesKönig, J. (2015). Chapter 2. Food Colour Additives of Synthetic Origin, In: Colour Additives for Foods and Beverages. Scotter, M. J. (Ed). Woodhead Publishing: Oxford, GBR, pg. 35-60.
dc.relation.referencesBoyles, C., Sobeck, S. J. S. (2020). Photostability of organic red food dyes. Food Chemistry, 315: 126249.
dc.relation.referencesNational Center for Biotechnology Information. (2005). PubChem compound summary for CID 33258, Allura Red AC. Consultado el 30 de abril de 2021. Disponible en https://pubchem.ncbi.nlm.nih.gov/compound/Allura-Red-AC.
dc.relation.referencesPereira, L., Alves, M. (2012). Chapter 4. Dyes-Environmental Impact and Remediation, In: Environmental Protection Strategies for Sustainable Development. Grohmann, E., Malik, A. (Eds). Springer: Dordrecht, NLD, pg. 111-162.
dc.relation.referencesRuíz, Á., Garces Giraldo, L. (2009). Removal of azo amaranth dye from aqueous solution by the use of electro coagulation. Revista Lasallista de Investigación, 6(2): 31-38.
dc.relation.referencesHao, O., Kim, H., Chiang, P.-C. (1999). Decolorization of wastewater. Critical Reviews in Environmental Science and Technology, 30: 449-505.
dc.relation.referencesTkaczyk, A., Mitrowska, K., Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the Total Environment, 717: 137222.
dc.relation.referencesSubramaniam, M. N., Goh, P. S., Lau, W. J., Ng, B. C., Ismail, A. F. (2018). Chapter 3. Development of Nanomaterial-Based Photocatalytic Membrane for Organic Pollutants Removal, In: Advanced Nanomaterials for Membrane Synthesis and its Applications. Lau, W. J., Ismail, A. F., Isloor, A., Al-Ahmed, A. (Eds). IWA publishing: London, GBR, pg. 45-67.
dc.relation.referencesScotter, M. J., Castle, L. (2004). Chemical interactions between additives in foodstuffs: A review. Food Additives and Contaminants, 21(2): 93-124.
dc.relation.referencesHussain, S., Khan, N., Gul, S., Khan, S., Khan, H. (2019). Contamination of Water Resources by Food Dyes and its Removal Technologies, In: Water Chemistry. Eyvaz, M., Yüksel, E. (Eds). IntechOpen: London, GBR, pg. 1-14.
dc.relation.referencesJajpura, L. (2019). Biotechnology Applications in Textiles, In: Advanced Functional Textiles and Polymers: Fabrication, Processing and Applications. Islam, S., Butola, B. (Eds). Scrivener Publishing: Beverly, USA, pg. 99-127.
dc.relation.referencesJulkapli, N. M., Bagheri, S., Hamid, S. B. A. (2014). Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. The Scientific World Journal, 2014: 1-25.
dc.relation.referencesWojnárovits, L., Takács, E. (2008). Irradiation treatment of azo dye containing wastewater: An overview. Radiation Physics and Chemistry, 77(3): 225-244.
dc.relation.referencesWakelyn, P. J. (2007). Chapter 14. Health and Safety Issues in Cotton Production and Processing, In: Cotton: Science and Technology. Gordon, S., Hsieh, Y. L. (Eds). Woodhead Publishing: Cambridge, GBR, pg. 460-483.
dc.relation.referencesOller, I., Malato, S., Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination-a review. Science of the Total Environment, 409(20): 4141-4166.
dc.relation.referencesShindhal, T., Rakholiya, P., Varjani, S., Pandey, A., Ngo, H. H., Guo, W., Ng, H. Y., Taherzadeh, M. J. (2021). A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered, 12(1): 70-87.
dc.relation.referencesPunzi, M., Nilsson, F., Anbalagan, A., Svensson, B. M., Jönsson, K., Mattiasson, B., Jonstrup, M. (2015). Combined anaerobic-ozonation process for treatment of textile wastewater: Removal of acute toxicity and mutagenicity. Journal of Hazardous Materials, 292: 52-60.
dc.relation.referencesBuscio, V., Marín, M. J., Crespi, M., Gutiérrez-Bouzán, C. (2015). Reuse of textile wastewater after homogenization–decantation treatment coupled to PVDF ultrafiltration membranes. Chemical Engineering Journal, 265: 122-128.
dc.relation.referencesManekar, P., Patkar, G., Aswale, P., Mahure, M., Nandy, T. (2014). Detoxifying of high strength textile effluent through chemical and bio-oxidation processes. Bioresource Technology, 157: 44-51.
dc.relation.referencesEl Enshasy, H. A., Hanapi, S. Z., Abdelgalil, S. A., Malek, R. A., Pareek, A. (2017). Mycoremediation: Decolourization Potential of Fungal Ligninolytic Enzymes, In: Mycoremediation and Environmental Sustainability. Prasad, R. (Ed). Springer International Publishing: Oxford, UK, pg. 69-104.
dc.relation.referencesNational Center for Biotechnology Information. (2021). PubChem Compound Summary for CID 33258, Allura Red AC. Consultado el 10 de abril de 2021. Disponible en https://pubchem.ncbi.nlm.nih.gov/compound/Allura-Red-AC.
dc.relation.referencesNawaz, H., Umar, M., Ullah, A., Razzaq, H., Zia, K. M., Liu, X. (2021). Polyvinylidene fluoride nanocomposite super hydrophilic membrane integrated with polyaniline-graphene oxide nano fillers for treatment of textile effluents. Journal of Hazardous Materials, 403: 123587.
dc.relation.referencesSartaj, S., Ali, N., Khan, A., Malik, S., Bilal, M., Khan, M., Ali, N., Hussain, S., Khan, H., Khan, S. (2020). Performance evaluation of photolytic and electrochemical oxidation processes for enhanced degradation of food dyes laden wastewater. Water Science and Technology, 81(5): 971-984.
dc.relation.referencesTorres-Perez, J., Huang, Y., Bazargan, A., Khoshand, A., McKay, G. (2020). Two-stage optimization of allura direct red dye removal by treated peanut hull waste. SN Applied Sciences, 2: 475.
dc.relation.referencesStreit, A. F. M., Côrtes, L. N., Druzian, S. P., Godinho, M., Collazzo, G. C., Perondi, D., Dotto, G. L. (2019). Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions. Science of the Total Environment, 660: 277-287.
dc.relation.referencesAlayli Gungor, A., Nadaroglu, H., Kalkan, E., Celebi, N. (2016). Fenton process-driven decolorization of allura red AC in wastewater using apolaccase-modified or native nanomagnetite immobilized on silica fume. Desalination and Water Treatment, 57(34): 15889-15899.
dc.relation.referencesFarghali, A. A., Zaki, A. H., Khedr, M. H. (2016). Control of selectivity in heterogeneous photocatalysis by tuning TiO2 morphology for water treatment applications. Nanomaterials and Nanotechnology, 6(1): 12.
dc.relation.referencesLiang, T. W., Huang, C. T., Dzung, N. A., Wang, S. L. (2015). Squid pen chitin chitooligomers as food colorants absorbers. Marine Drugs, 13(1): 681-696.
dc.relation.referencesXu, Y. L., Zhong, D. J., Jia, J. P. (2008). Electrochemical-assisted photodegradation of allura red and textile effluent using a half-exposed rotating TiO2/Ti disc electrode. Journal of Environmental Science and Health, 43(5): 503-510.
dc.relation.referencesGlaze, W. H., Kang, J.-W., Chapin, D. H. (1987). The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone: Science and Engineering, 9(4): 335-352.
dc.relation.referencesKiran, S., Nosheen, S., Abrar, S., Anjum, F., Gulzar, T., Naz, S. (2019). Advanced Approaches for Remediation of Textile Wastewater: A Comparative Study, In: Advanced Functional Textiles and Polymers: Fabrication, Processing and Applications. Islam, S., Butola, B. S. (Eds). Scrivener Publishing: Beverly, USA, pg. 201-264.
dc.relation.referencesGaleano, L. A., Guerrero-Flórez, M., Sánchez, C. A., Gil, A., Vicente, M. Á. (2019). Disinfection by Chemical Oxidation Methods, In: Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment. A., G., L., G., M., V. (Eds). Springer: CHE, pg. 257-295.
dc.relation.referencesAl-Kdasi, A., Idris, A., Saed, K., Guan, C. T. (2004). Treatment of textile wastewater by advanced oxidation processes– A review. Global NEST. International Journal, 6(3): 222-230.
dc.relation.referencesJaciw-Zurakowsky, I., Snowdon, M. R., Schneider, O. M., Zhou, Y. N., Liang, R. L. (2020). Advanced Oxidation Processes Using Catalytic Nanomaterials for Air and Water Remediation, In: Nanomaterials for Air Remediation. Abdeltif, A., Assadi, A., Tri, P., Nguyen, T. D., Rtimi, S. (Eds). Elsevier: Oxford, GBR, pg. 167-192.
dc.relation.referencesAmor, C., Marchão, L., Lucas, M. S., Peres, J. A. (2019). Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: A review. Water, 11(2): 205.
dc.relation.referencesHuang, C. P., Dong, C., Tang, Z. (1993). Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment. Waste Management, 13(5-7): 361-377.
dc.relation.referencesWalling, C. (1975). Fenton's reagent revisited. Accounts of Chemical Research, 8(4): 125-131.
dc.relation.referencesWalling, C. (1998). Intermediates in the reactions of Fenton type reagents. Accounts of Chemical Research, 31(4): 155-157.
dc.relation.referencesPignatello, J. J. (1992). Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environmental Science and Technology, 26(5): 944-951.
dc.relation.referencesPignatello, J. J., Liu, D., Huston, P. (1999). Evidence for an additional oxidant in the photoassisted Fenton reaction. Environmental Science and Technology, 33(11): 1832-1839.
dc.relation.referencesSafarzadeh-Amiri, A., Bolton, J. R., Cater, S. R. (1996). Ferrioxalate-mediated solar degradation of organic contaminants in water. Solar Energy, 56(5): 439-443.
dc.relation.referencesSafarzadeh-Amiri, A., Bolton, J. R., Cater, S. R. (1997). Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water. Water Research, 31(4): 787-798.
dc.relation.referencesBigda, R. J. (1995). Consider Fenton’s chemistry for wastewater treatment. Chemical Engineering Progress, 91(12): 62-66.
dc.relation.referencesSafarzadeh-Amiri, A., Bolton, J. R., Cater, S. R. (1996). The use of iron in advanced oxidation processes. Journal of Advanced Oxidation Technologies, 1(1): 18-26.
dc.relation.referencesLin, S. H., Lo, C. C. (1997). Fenton process for treatment of desizing wastewater. Water Research, 31(8): 2050-2056.
dc.relation.referencesPan, H., Gao, Y., Li, N., Zhou, Y., Lin, Q., Jiang, J. (2021). Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. Chemical Engineering Journal, 408: 127332.
dc.relation.referencesRichardson, D. E., Yao, H., Frank, K. M., Bennett, D. A. (2000). Equilibria, kinetics, and mechanism in the bicarbonate activation of hydrogen peroxide: Oxidation of sulfides by peroxymonocarbonate. Journal of the American Chemical Society, 122(8): 1729-1739.
dc.relation.referencesDrago, R. S., Frank, K. M., Yang, Y. C., Wagner, G. W. (1998). Proceedings of 1997 ERDEC scientific conference on chemical and biological defense research. Edgewood Chemical Biological Center, 1999: 285-292.
dc.relation.referencesRichardson, D. E., Yao, H. X., C., Drago, R. S., Frank, K. M., Wagner, G. W., Yang, Y.-C. (1999). Proceedings of 1998 ERDEC scientific conference on chemical and biological defense research. Edgewood Chemical Biological Center, 2000: 341-342.
dc.relation.referencesLong, X., Yang, Z., Wang, H., Min, C., Peng, K., Zeng, Q.-F., Aihua, X. (2012). Selective degradation of orange II with the cobalt(II)–bicarbonate–hydrogen peroxide system. Industrial and Engineering Chemistry Research, 51(37): 11998–12003.
dc.relation.referencesXu, A., Li, X., Ye, S., Yin, G., Zeng, Q. (2011). Catalyzed oxidative degradation of methylene blue by in situ generated cobalt (II)-bicarbonate complexes with hydrogen peroxide. Applied Catalysis B: Environmental, 102(1-2): 37-43.
dc.relation.referencesLi, Y., Li, L., Chen, Z. X., Zhang, J., Gong, L., Wang, Y. X., Zhao, H. Q., Mu, Y. (2018). Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: Process, kinetics, and mechanisms. Chemosphere, 192: 372-378.
dc.relation.referencesLi, X., Xiong, Z., Ruan, X., Xia, D., Zeng, Q., Xu, A. (2012). Kinetics and mechanism of organic pollutants degradation with cobalt–bicarbonate–hydrogen peroxide system: Investigation of the role of substrates. Applied Catalysis A: General, 411-412: 24-30.
dc.relation.referencesYang, Z., Wang, H., Chen, M., Luo, M., Xia, D., Xu, A., Zeng, Q. (2012). Fast degradation and biodegradability improvement of reactive brilliant red X-3B by the cobalt(II)/bicarbonate/hydrogen peroxide system. Industrial and Engineering Chemistry Research, 51(34): 11104-11111.
dc.relation.referencesXu, A., Li, X., Xiong, H., Yin, G. (2011). Efficient degradation of organic pollutants in aqueous solution with bicarbonate-activated hydrogen peroxide. Chemosphere, 82(8): 1190-1195.
dc.relation.referencesMacías-Quiroga, I. F., Rojas-Méndez, E. F., Giraldo-Gómez, G. I., Sanabria-González, N. R. (2020). Experimental data of a catalytic decolorization of ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data in Brief, 30: 105463.
dc.relation.referencesBruland, K., Donat, J., Hutchins, D. (1991). Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnology and Oceanography, 36(8): 1555-1577.
dc.relation.referencesBarceloux, D. G., Barceloux, D. (1999). Cobalt. Journal of Toxicology: Clinical Toxicology, 37(2): 201-216.
dc.relation.referencesDuan, L., Chen, Y., Zhang, K., Luo, H., Huang, J., Xu, A. (2015). Catalytic degradation of Acid Orange 7 with hydrogen peroxide using CoxOy-N/GAC catalysts in a bicarbonate aqueous solution. RSC Advances, 5(102): 84303-84310.
dc.relation.referencesGuo, X., Li, H., Zhao, S. (2015). Fast degradation of acid orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst. Journal of the Taiwan Institute of Chemical Engineers, 55: 90-100.
dc.relation.referencesRache, M. L., Garcia, A. R., Zea, H. R., Silva, A. M. T., Madeira, L. M., Ramirez, J. H. (2014). Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst-kinetics with a model based on the Fermi's equation. Applied Catalysis B: Environmental, 146: 192-200.
dc.relation.referencesLopez Lopez, C., Martin Pascual, J., Martinez Toledo, M. V., Munio, M. M., Hontoria, E., Poyatos, J. M. (2015). Kinetic modelling of TOC removal by H2O2/UV, photo-Fenton and heterogeneous photocatalysis processes to treat dye-containing wastewater. International Journal of Environmental Science and Technology, 12(10): 3255-3262.
dc.relation.referencesHaji, S., Al-Bastaki, N. (2011). Degradation of methyl orange by UV/H2O2 advanced oxidation process. Chemical Engineering Journal, 168: 134-139.
dc.relation.referencesAttri, P., Garg, S., Ratan, J. K., Giri, A. S. (2022). Comparative study using advanced oxidation processes for the degradation of model dyes mixture: Reaction kinetics and biodegradability assay. Materials Today: Proceedings, 57: 1533-1538.
dc.relation.referencesKan, H., Soklun, H., Yang, Z., Wu, R., Shen, J., Qu, G., Wang, T. (2020). Purification of dye wastewater using bicarbonate activated hydrogen peroxide: Reaction process and mechanisms. Separation and Purification Technology, 232: 115974.
dc.relation.referencesMacías‑Quiroga, I. F., Pérez‑Flórez, A., Arcila, J. S., Giraldo‑Goméz, G. I., Sanabria‑Gonzalez, N. R. (2021). Synthesis and characterization of Co/Al‑PILCs for the oxidation of an azo dye using the bicarbonate‑activated hydrogen peroxide system. Catalysis Letters, 7: 152.
dc.relation.referencesRodríguez, P., Álvarez García, B. (2019). Origen y distribución de arcillas utilizadas en la fabricación de búcaros: Bucarofagia en la Edad Moderna. Iberian-African-AmericanJournal of Physical Geography and Environment, 1(1): 57-71.
dc.relation.referencesRytwo, G. (2008). Clay minerals as an ancient nanotechnology: Historical uses of clay organic interactions, and future possible perspectives. Sociedad Española de Mineralogía, 9: 15-17.
dc.relation.referencesBergaya, F., Lagaly, G. (2006). Chapter 1. General Introduction: Clays, Clay Minerals, and Clay Science, In: Developments in Clay Science. Bergaya, F., Theng, B. K. G., Lagaly, G. (Eds). Elsevier: Oxford, GBR, pg. 1-18.
dc.relation.referencesGuggenheim, S., Martin, R. T., Alietti, A., Drits, V. A., Formoso, M., Galán, E., Köster, H. M., Morgan, D. J., Paquet, H., Watanabe, T., Bain, D. C., Ferrell, R. E., Bish, D., Fanning, D. S., Kodama, H., Wicks, F. J. (1995). Definition of clay and clay mineral: Joint report of the AIPEA nomenclature and CMS nomenclature committees. Clays and Clay Minerals, 43(2): 255-256.
dc.relation.referencesGuggenheim, S., Martin, R. T. (1996). Reply to the comment by D. M. Moore on “Definition of clay and clay mineral: Joint report of the AIPEA nomenclature and CMS nomenclature committees”. Clays and Clay Minerals, 44(5): 713-715.
dc.relation.referencesWimpenny, J. (2018). Clay Minerals, In: Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth. White, W. M. (Ed). Springer International Publishing: Ithaca, USA, pg. 265-275.
dc.relation.referencesChoy, J.-H., Choi, S.-J., Oh, J.-M., Park, T. (2007). Clay minerals and layered double hydroxides for novel biological applications. Applied Clay Science, 36(1): 122-132.
dc.relation.referencesBrigatti, M. F., Galan, E., Theng, B. K. G. (2006). Chapter 2. Structures and Mineralogy of Clay Minerals, In: Developments in Clay Science. Bergaya, F., Theng, B. K. G., Lagaly, G. (Eds). Elsevier: Oxford, GBR, pg. 19-86.
dc.relation.referencesBarton, C. D., Karathanasis, A. D. (2002). Clay Minerals. Dekker, Marcel: New York, USA, pg. 192.
dc.relation.referencesFossum, J. (2020). Clay nanolayer encapsulation, evolving from origins of life to future technologies. The European Physical Journal Special Topics, 229(17-18): 2863-2879.
dc.relation.referencesWilliams, L. B., Haydel, S. E. (2010). Evaluation of the medicinal use of clay minerals as antibacterial agents. International Geology Review, 52(7/8): 745-770.
dc.relation.referencesMokaya, R. (2000). Novel Layered Materials: Non-Phosphates, In: Ion Exchange. Wilson, I. (Ed). Academic Press: Oxford, GBR, pg. 1610-1617.
dc.relation.referencesOdom, I. E. (1984). Smectite clay minerals: Properties and uses. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 311(1517): 391-409.
dc.relation.referencesGiesse, R. F., Van Oss, C. J. (2002). Colloid and Surface Properties of Clays and Related Minerals. Marcel Dekker, INC: New York, USA, pg. 312.
dc.relation.referencesPergher, S., Corma, A., Fornes, V. (1999). Materiales laminares pilareados: Preparación y propiedades. Química Nova, 22(5): 693-709.
dc.relation.referencesGarcía, E., Suárez, M. (2002). Las Arcillas: Propiedades y Usos. Universidad Complutense, Universidad de Salamanca: Madrid, ESP, pg. 16.
dc.relation.referencesKhalifa, A. Z., Cizer, Ö., Pontikes, Y., Heath, A., Patureau, P., Bernal, S. A., Marsh, A. T. M. (2020). Advances in alkali-activation of clay minerals. Cement and Concrete Research, 132: 106050.
dc.relation.referencesArchives, Global Trade Daily, News. Global Bentonite Market Slipped Back Slightly to $4.3b. Consultado el 15 de abril de 2021. Disponible en: https://www.globaltrademag.com/tag/global-bentonite-production/.
dc.relation.referencesLaguna, O., G, C., Moreno, S., Molina, R. (2008). Mineralogical nature of smectites from the honda formation (north east Tolima - Colombia). Boletín de Ciencias de la Tierra, 23: 55-68.
dc.relation.referencesCamacho, J. A., Celada, C. M. (2004). Definición de Zonas Potenciales para Esmectitas en los Departamentos del Valle del Cauca, Tolima y Caldas. Instituto Colombiano de Geología y Minería: Bogotá, COL, pg. 43.
dc.relation.referencesKloprogge, J. T. (2017). Infrared and Raman Spectroscopies of Pillared Clays, In: Developments in Clay Science. Gates, W. P., Kloprogge, J. T., Madejová, J., Bergaya, F. (Eds). Elsevier: Oxford, GBR, pg. 411-446.
dc.relation.referencesVicente, M. A., Gil, A., Bergaya, F. (2013). Chapter 10.5. Pillared Clays and Clay Minerals, In: Developments in Clay Science. Bergaya, F., Lagaly, G. (Eds). Elsevier B.V.: Oxford, GBR, pg. 523-557.
dc.relation.referencesSchoonheydt, R. A., Pinnavaia, T., Lagaly, G., Gangas, N. (1999). Pillared clays and pillared layered solids. Pure and Applied Chemistry, 71(12): 2367-2371.
dc.relation.referencesBergaya, F., Aouad, A., Mandalia, T. (2006). Chapter 7.5. Pillared Clays and Clay Minerals. Developments in Clay Science, In: Handbook of Clay Science. Bergaya, F., Theng, B. K. G., Lagaly, G. (Eds). Elsevier: FRA, pg. 393-421.
dc.relation.referencesBasiony, M. S., Gaber, S. E., Ibrahim, H., Elshehy, E. A. (2020). Synthesis and characterization of Al-pillared bentonite for remediation of chlorinated pesticide-contaminated water. Clays and Clay Minerals 68: 197-210.
dc.relation.referencesRouquerol, J., Llewellyn, P., Sing, K. (2014). Chapter 12. Adsorption by Clays, Pillared Clays, Zeolites and Aluminophosphates, In: Adsorption by Powders and Porous Solids Rouquerol, F., Rouquerol, J., Sing, K., Llewellyn, P., Maurin, G. (Eds). Academic Press: Oxford, GBR, pg. 467-527.
dc.relation.referencesCool, P., Vansant, E. F. (1998). Pillared Clays: Preparation, Characterization and Applications, In: Synthesis. Karge, H. G., Weitkamp, J. (Eds). Springer Berlin Heidelberg: Berlin, DEU, pg. 265-288.
dc.relation.referencesHoward, B. H., Lekse, J. W. (2018). Clay Mineralogy, In: Green Energy and Technology. Romanov, V. (Ed). Springer Verlag: Pittsburgh, USA, pg. 55-75.
dc.relation.referencesGraham, T. R., Chun, J., Schenter, G. K., Zhang, X., Clark, S. B., Pearce, C. I., Rosso, K. M. (2022). 27Al NMR diffusometry of Al13 Keggin nanoclusters. Magnetic Resonance in Chemistry, 60(2): 226-238.
dc.relation.referencesAllouche, L., Huguenard, C., Taulelle, F. (2001). 3QMAS of three aluminum polycations: space group consistency between NMR and XRD. Journal of Physics and Chemistry of Solids, 62(8): 1525-1531.
dc.relation.referencesAllouche, L., Taulelle, F. (2003). Conversion of Al13 Keggin into Al30: A reaction controlled by aluminum monomers. Inorganic Chemistry Communications, 6(9): 1167-1170.
dc.relation.referencesFurrer, G., Ludwig, C., Schindler, P. W. (1992). On the chemistry of the Keggin Al13 polymer : I. Acid-base properties. Journal of Colloid and Interface Science, 149(1): 56-67.
dc.relation.referencesWang, J., Guan, J., Santiwong, S. R., Waite, T. D. (2008). Characterization of floc size and structure under different monomer and polymer coagulants on microfiltration membrane fouling. Journal of Membrane Science, 321(2): 132-138.
dc.relation.referencesChu, Y. B., Gao, B. Y., Yue, Q. Y., Wang, S. G., Wang, Y. (2005). Purification of Al13 species in polyaluminum chloride (PAC) by column chromatography and the character of the fractions. Environmental Science, 26(3): 87-91.
dc.relation.referencesFeng, C., Tang, H., Wang, D. (2007). Differentiation of hydroxyl-aluminum species at lower OH/Al ratios by combination of 27Al NMR and Ferron assay improved with kinetic resolution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 305(1-3): 76-82.
dc.relation.referencesWu, K., Ye, Q., Wu, R., Chen, S., Dai, H. (2020). Carbon dioxide adsorption behaviors of aluminum-pillared montmorillonite-supported alkaline earth metals. Journal of Environmental Science China, 98: 109-117.
dc.relation.referencesKim, S., Kim, D., Lee, G., Kang, J., Lee, D. K., Yang, Y. K. (2002). Catalytic Wet Oxidation of Reactive Dyes with H2O2 Over Mixed (Al−Cu) Pillared Clays, In: Studies in Surface Science and Catalysis. Aiello, R., Giordano, G., Testa, F. (Eds). Elsevier: KOR, pg. 683-690.
dc.relation.referencesLouloudi, A., Michalopoulos, J., Gangas, N., Papayannakos, N. (2003). Hydrogenation of benzene on Ni/Al-pillared saponite catalysts. Applied Catalysis A-General, 242(1): 41-49.
dc.relation.referencesGonzález, E., Moronta, A. (2004). The dehydrogenation of ethylbenzene to styrene catalyzed by a natural and an Al-pillared clays impregnated with cobalt compounds: A comparative study. Applied Catalysis A: General, 258(1): 99-105.
dc.relation.referencesBradley, S. M., Kydd, R. A. (1993). A comparison of the catalytic activities of Ga13-, Al13-, GaAl12-, and chromium-pillar interlayered clay minerals and Ga-H-ZSM-5 zeolite in the dehydrocyclodimerization of propane. Journal of Catalysis, 142(2): 448-454.
dc.relation.referencesManos, G., Yusof, I. Y., Gangas, N. H., Papayannakos, N. (2002). Tertiary recycling of polyethylene to hydrocarbon fuel by catalytic cracking over aluminum pillared clays. Energy Fuels, 16(2): 485-489.
dc.relation.referencesGil, A., Gandía, L. M., Vicente, M. A. (2000). Recent advances in the synthesis and catalytic applications of pillared clays. Catalysis Reviews - Science and Engineering, 42(1-2): 145-212.
dc.relation.referencesBartley, G. J. J., Burch, R. (1985). Zr-containing pillared interlayer clays. Part III. Influence of method of preparation on the thermal and hydrothermal stability. Applied Catalysis, 19(1): 175-185.
dc.relation.referencesBartley, G. J. J. (1988). Zirconium pillared clays. Catalysis Today, 2(2-3): 233-241.
dc.relation.referencesBellaloui, A., Plee, D., Meriaudeau, P. (1990). Gallium containing pillared interlayer clays. Preparation, characterization and catalytic properties. Applied Catalysis, 63(1): L7-L10.
dc.relation.referencesCoelho, A. V., Poncelet, G. (1991). Gallium, aluminium and mixed gallium-aluminium pillared montmorillonite. Preparation and characterization. Applied Catalysis, 77(2): 303-314.
dc.relation.referencesGonzález, F., Pesquera, C., Benito, I., Mendioroz, S. (1991). Aluminium-gallium pillared montmorillonite with high thermal stability. Journal of the Chemical Society, Chemical Communications (8): 587-588.
dc.relation.referencesBradley, S. M., Kydd, R. A., Yamdagni, R., Fyfe, C. A. (1991). Ga13, GaAl12 and Al13 Polyoxocations and Pillared Clays, In: Expanded Clays and Other Microporous Solids. Occelli, M. L., Robson, H. E. (Eds). Springer US: Boston, USA, pg. 13-31.
dc.relation.referencesKiricsi, I., Molnár, A., Pálinko, I., Fudala, A., Nagy, J. B. (1997). Nanoscale redox catalysts: Cr- and Cr,Al-pillared layer clays: Characterization and catalytic activity. Solid State Ionics, 101-103(Part 2): 793-797.
dc.relation.referencesPinnavaia, T. J., Tzou, M. S., Landau, S. D. (1985). New chromia pillared clay catalysts. Journal of the American Chemical Society, 107(16): 4783-4785.
dc.relation.referencesSychev, M., De Beer, V. H. J., Kodentsov, A., Van Oers, E. M., Van Santen, R. A. (1997). Chromia- and chromium sulfide-pillared clays: Preparation, characterization, and catalytic activity for thiophene hydrodesulfurization. Journal of Catalysis, 168(2): 245-254.
dc.relation.referencesSychev, M., Shubina, T., Rozwadowski, M., Sommen, A. P. B., De Beer, V. H. J., Van Santen, R. A. (2000). Characterization of the microporosity of chromia- and titania-pillared montmorillonites differing in pillar density: Adsorption of nitrogen. Microporous and Mesoporous Materials, 37(1-2): 187-200.
dc.relation.referencesBarrault, J., Abdellaoui, M., Bouchoule, C., Majeste, A., Tatibouët, J. M., Louloudi, A., Papayannakos, N., Gangas, N. H. (2000). Catalytic wet peroxide oxidation over mixed (Al-Fe) pillared clays. Applied Catalysis B: Environmental, 27(4): L225-L230.
dc.relation.referencesBelver, C., Vicente, M. A., Martínez-Arias, A., Fernández-García, M. (2004). Fe-saponite pillared and impregnated catalysts: II. Nature of the iron species active for the reduction of NOx with propene. Applied Catalysis B: Environmental, 50(4): 227-234.
dc.relation.referencesBelver, C., Banares-Muñoz, M. A., Vicente, M. A. (2004). Fe-saponite pillared and impregnated catalysts: I. Preparation and characterisation. Applied Catalysis B: Environmental, 50(2): 101-112.
dc.relation.referencesCarriazo, J., Guélou, E., Barrault, J., Tatibouët, J. M., Molina, R., Moreno, S. (2005). Synthesis of pillared clays containing Al, Al-Fe or Al-Ce-Fe from a bentonite: Characterization and catalytic activity. Catalysis Today, 107-108(2005): 126-132.
dc.relation.referencesLakshmi Kantam, M., Lakshmi Santhi, P., Ram Prasad, K. V., Figueras, F. (2000). Iron pillared clay - An efficient catalyst for ring opening of oxiranes. Journal of Molecular Catalysis A: Chemical, 156(1-2): 289-292.
dc.relation.referencesYamanaka, S., Hattori, M. (1988). Iron oxide pillared clay. Catalysis Today, 2(2-3): 261-270.
dc.relation.referencesBarrault, J., Bouchoule, C., Echachoui, K., Frini-Srasra, N., Trabelsi, M., Bergaya, F. (1998). Catalytic wet peroxide oxidation (CWPO) of phenol over mixed (Al-Cu)-pillared clays. Applied Catalysis B: Environmental, 15(3-4): 269-274.
dc.relation.referencesCarriazo, J. G., Guélou, E., Barrault, J., Tatibouët, J. M., Moreno, S. (2003). Catalytic wet peroxide oxidation of phenol over Al-Cu or Al-Fe modified clays. Applied Clay Science, 22(6): 303-308.
dc.relation.referencesKim, S. C., Lee, D. K. (2004). Effects of Cu on the catalytic wet peroxide oxidation of reactive dye solutions with Al-Cu pillared clays. Studies in Surface Science and Catalysis, 154: 2958-2965.
dc.relation.referencesXu, X. F., Suo, Z. H., Wei, Y. P., Gong, B. A., An, L. D. (2001). Preparation of Cu, Co-exchanged Al-pillared montmorillonite and its catalytic activity for N2O decomposition. Journal of Fuel Chemistry and Technology, 29(3): 247-250.
dc.relation.referencesFrini, N., Crespin, M., Trabelsi, M., Messad, D., Van Damme, H., Bergaya, F. (1997). Preliminary results on the properties of pillared clays by mixed Al-Cu solutions. Applied Clay Science, 12(3): 281-292.
dc.relation.referencesGonzález, F., Pesquera, C., Benito, I., Mendioroz, S., Poncelet, G. (1992). High conversion and selectivity for cracking of n-heptane on cerium-aluminium montmorillonite catalysts. Journal of the Chemical Society, Chemical Communications, 0(6): 491-493.
dc.relation.referencesHernando, M. J., Pesquera, C., Blanco, C., Benito, I., González, F. (1996). Effect of Ce on catalytic properties of pillared montmorillonite with Al and GaAl-polyoxications. Applied Catalysis A: General, 141(1-2): 175-183.
dc.relation.referencesHernando, M. J., Pesquera, C., Blanco, C., González, F. (2001). Synthesis, characterization, and catalytic properties of pillared montmorillonite with aluminum/cerium polyoxycations. Chemistry of Materials, 13(6): 2154-2159.
dc.relation.referencesHernando, M. J., Pesquera, C., Blanco, C., González, F. (2001). Comparative study of the texture of montmorillonites pillared with aluminum and aluminum/cerium. Langmuir, 17(17): 5156-5159.
dc.relation.referencesHernando, M. J., Blanco, C., Pesquera, C., González, F. (2002). Study of the porosity of montmorillonite pillared with aluminum/cerium. Studies in Surface Science and Catalysis, 142: 1253-1260.
dc.relation.referencesHernando, M. J., Pesquera, C., Blanco, C., González, F. (2002). Increase in thermal stability of the texture in montmorillonites pillared with aluminum/cerium polyoxocations. Langmuir, 18(14): 5633-5636.
dc.relation.referencesRinaldi, N. (2011). Preparation of Ni-Mo catalysts using the pillared clay as a support for hydrodesulfurization of coker naphtha. Widyariset, 14(3): 657-664.
dc.relation.referencesZuo, S., Yang, P., Wang, X. (2017). Efficient and environmentally friendly synthesis of AlFe-PILC-supported MnCe catalysts for benzene combustion. ACS Omega, 2(8): 5179-5186.
dc.relation.referencesGil, A., Massinon, A., Grange, P. (1995). Analysis and comparison of the microporosity in Al, Zr and Ti-pillared clays. Microporous Materials, 4(5): 369-378.
dc.relation.referencesMunnik, P., de Jongh, P. E., de Jong, K. P. (2015). Recent developments in the synthesis of supported catalysts. Chemical Reviews, 115(14): 6687-6718.
dc.relation.referencesChe, M., Bonneviot, L. (1989). The Change of Properties of Transition Metal Ions and the Role of the Support as a Function of Catalyst Preparation, In: Studies in Surface Science and Catalysis. Inui, T. (Ed). Elsevier: Amsterdam, NLD, pg. 147-158.
dc.relation.referencesCarriazo, J. G., Martínez, L. M., Odriozola, J. A., Moreno, S., Molina, R., Centeno, M. A. (2007). Gold supported on Fe, Ce, and Al pillared bentonites for CO oxidation reaction. Applied Catalysis B: Environmental, 72(1): 157-165.
dc.relation.referencesGil, A., Vicente, M. A., Lambert, J. F., Gandı́a, L. M. (2001). Platinum catalysts supported on Al-pillared clays: Application to the catalytic combustion of acetone and methyl-ethyl-ketone. Catalysis Today, 68(1): 41-51.
dc.relation.referencesRanga Rao, G., Mishra, B. G. (2007). Al-pillared clay supported CuPd catalysts for nitrate reduction. Journal of Porous Materials, 14(2): 205-212.
dc.relation.referencesPan, J., Wang, C., Guo, S., Li, J., Yang, Z. (2008). Cu supported over Al-pillared interlayer clays catalysts for direct hydroxylation of benzene to phenol. Catalysis Communications, 9(1): 176-181.
dc.relation.referencesAchma, R. B., Ghorbel, A., Dafinov, A., Medina, F. (2008). Copper-supported pillared clay catalysts for the wet hydrogen peroxide catalytic oxidation of model pollutant tyrosol. Applied Catalysis A: General, 349(1): 20-28.
dc.relation.referencesMacías-Quiroga, I. F., Henao-Aguirre, P. A., Marín-Flórez, A., Arredondo-López, S. M., Sanabria-González, N. R. (2021). Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: global and Ibero-American research trends. Environmental Science and Pollution Research, 28: 23791- 23811.
dc.relation.referencesJawad, A., Li, Y., Guo, L., Khan, A., Chen, Z., Wang, J., Yang, J., Liu, W., Yin, G. (2016). Bimetallic synergistic degradation of chlorophenols by CuCoOx-LDH catalyst in bicarbonate-activated hydrogen peroxide system. RSC Advances, 6(76): 72643-72653.
dc.relation.referencesWWAP (2009). United Nations World Water Assessment Programme. The United Nations World Water Development Report 3: Water in a Changing World. UNESCO (Ed). Paris, FRA.
dc.relation.referencesPizarro, A. H., Monsalvo, V. M., Molina, C. B., Mohedano, A. F., Rodriguez, J. J. (2015). Catalytic hydrodechlorination of p-chloro-m-cresol and 2,4,6-trichlorophenol with Pd and Rh supported on Al-pillared clays. Chemical Engineering Science, 273: 363-370.
dc.relation.referencesUN Periódico Digital. (2018). Arcilla tolimense remueve metales pesados de aguas contaminadas. Consultado el 2 de mayo de 2021. Disponible en https://unperiodico.unal.edu.co/pages/detail/arcilla-tolimense-remueve-metales-pesados-de-aguas-contaminadas/.
dc.relation.referencesGeo Minerales. Bentonita sódica y bentonita cálcica. Consultado el 24 de enero de 2022. Disponible en http://www.geaminerales.com/pr-bentonita-sodica.html.
dc.relation.referencesMacías-Quiroga, I. F., Giraldo-Gómez, G. I., Sanabria-González, N. R. (2018). Characterization of Colombian clay and its potential use as adsorbent. The Scientific World Journal, 2018: 1-11.
dc.relation.referencesGuy, H. (1969). Chapter 1. Laboratory Theory and Methods for Sediment Analysis, In: Techniques of Water-Resources Investigations of the United States Geological Survey McKelvey, V. E. (Ed). USGS (Science for a Changing World): Washington, USA, pg. 1-18.
dc.relation.referencesCarrado, K. A., Decarreau, A., Petit, S., Bergaya, F., Lagaly, G. (2006). Chapter 4. Synthetic Clay Minerals and Purification of Natural Clays, In: Developments in Clay Science. Bergaya, F., Theng, B. K. G., Lagaly, G. (Eds). Elsevier: Oxford, GBR, pg. 115-139.
dc.relation.referencesCool, P., Vansant, E. F. (1998). Pillared Clays: Preparation, Characterization and Applications, In: Synthesis. Karge, H. G., Weitkamp, J. (Eds). Springer Berlin Heidelberg: Berlin, DEU, pg. 265-288.
dc.relation.referencesFigueras, F. (1988). Pillared Clays as Catalysts. Catalysis Reviews, 30(3): 457-499.
dc.relation.referencesCañizares, P., Valverde, J. L., Sun Kou, M. R., Molina, C. B. (1999). Synthesis and characterization of PILCs with single and mixed oxide pillars prepared from two different bentonites. A comparative study. Microporous Mesoporous Materials, 29(3): 267-281.
dc.relation.referencesGe, Z., Li, D., Pinnavaia, T. J. (1994). Preparation of alumina-pillared montmorillonites with high thermal stability, regular microporosity and Lewis/Brönsted acidity. Mesoporous Material, 3(1): 165-175.
dc.relation.referencesCarriazo, J. G., Guélou, E., Barrault, J., Tatibouët, J. M., Moreno, S. (2003). Catalytic wet peroxide oxidation of phenol over Al-Cu or Al-Fe modified clays. Applied Clay Science, 22(6): 303-308.
dc.relation.referencesBaloyi, J., Ntho, T., Moma, J. (2018). Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Advances, 8(10): 5197-5211.
dc.relation.referencesSietsma, J. R. A., Jos van Dillen, A., de Jongh, P. E., de Jong, K. P. (2006). Application of ordered mesoporous materials as model supports to study catalyst preparation by impregnation and drying, In: Studies in Surface Science and Catalysis. Gaigneaux, E. M., Devillers, M., De Vos, D. E., Hermans, S., Jacobs, P. A., Martens, J. A., Ruiz, P. (Eds). Elsevier: Ámsterdam, NLD, pg. 95-102.
dc.relation.referencesHerney-Ramirez, J., Lampinen, M., Vicente, M. A., Costa, C. A., Madeira, L. M. (2008). Experimental design to optimize the oxidation of orange II dye solution using a clay-based fenton-like catalyst. Industrial & Engineering Chemistry Research, 47(2): 284-294.
dc.relation.referencesKalmakhanova, M. S., Diaz de Tuesta, J. L., Massalimova, B. K., Gomes, H. T. (2020). Pillared clays from natural resources as catalysts for catalytic wet peroxide oxidation: Characterization and kinetic insights. Environmental Engineering Research, 25(2): 186-196.
dc.relation.referencesGutiérrez Pulido, H., Salazar, R. (2012). Análisis y Diseño de Experimentos. Mc Graw Hill: MEX, pg. 506.
dc.relation.referencesAy, F., Catalkaya, E. C., Kargi, F. (2009). A statistical experiment design approach for advanced oxidation of Direct Red azo-dye by photo-Fenton treatment. Journal of Hazardous Materials, 162(1): 230-236.
dc.relation.referencesRamirez, H., Lampinen, M., Vicente, M. A., Costa, C., Madeira, L. (2007). Experimental design to optimize the oxidation of orange II dye solution using a clay-based fenton-like catalyst. Industrial & Engineering Chemistry Research, 47(2): 284–294.
dc.relation.referencesZhou, L., Song, W., Chen, Z., Yin, G. (2013). Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environmental Science and Technology, 47(8): 3833-3839.
dc.relation.referencesGuo, X., Li, H., Zhao, S. (2015). Fast degradation of acid orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst. Journal of the Taiwan Institute of Chemical Engineers, 55: 90-100.
dc.relation.referencesDuan, L., Chen, Y., Zhang, K., Luo, H., Huang, J., Xu, A. (2015). Catalytic degradation of Acid Orange 7 with hydrogen peroxide using CoxOy-N/GAC catalysts in a bicarbonate aqueous solution. RSC Advances, 5(102): 84303-84310.
dc.relation.referencesJawad, A., Li, Y., Lu, X., Chen, Z., Liu, W., Yin, G. (2015). Controlled leaching with prolonged activity for Co-LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. Journal of Hazardous Materials, 289: 165-173.
dc.relation.referencesAttri, P., Garg, S., Ratan, J. K., Giri, A. S. (2022). Comparative study using advanced oxidation processes for the degradation of model dyes mixture: Reaction kinetics and biodegradability assay. Materials Today: Proceedings, 57: 1533-1538.
dc.relation.referencesMacías-Quiroga, I. F., Rojas-Méndez, E. F., Giraldo-Gómez, G. I., Sanabria-González, N. R. (2020). Experimental data of a catalytic decolorization of ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data in Brief, 30: 105463.
dc.relation.referencesKumar, V., Singh, K., Shah, M. P. (2021). Chapter 1. Advanced Oxidation Processes for Complex Wastewater Treatment, In: Advanced Oxidation Processes for Effluent Treatment Plants. Shah, M. P. (Ed). Elsevier: Oxford, GBR, pg. 1-31.
dc.relation.referencesGosetti, F., Gianotti, V., Polati, S., Gennaro, M. (2005). HPLC-MS degradation study of E110 Sunset Yellow FCF in a commercial beverage. Journal of chromatography. A, 1090: 107-115.
dc.relation.referencesCamacho, J. A., Celada, C. M. (2004). Definición de Zonas Potenciales para Esmectitas en los Departamentos del Valle del Cauca, Tolima y Caldas. Instituto Colombiano de Geología y Minería: Bogotá, COL, pg. 43.
dc.relation.referencesSilva, L. C. A., da Silva, E., Monteiro, M. R., Silva, C., Teleken, J. G., Alves, H. (2014). Effect of the chemical composition of smectites used in KF/Clay catalysts on soybean oil transesterification into methyl esters. Applied Clay Science, 102: 121-127.
dc.relation.referencesSivrikaya, O., Uzal, B., Ozturk, Y. E. (2017). Practical charts to identify the predominant clay mineral based on oxide composition of clayey soils. Applied Clay Science, 135: 532-537.
dc.relation.referencesAmigó, J. (1994). Caracterización y control de materiales por DRX. Cerámica Información, 199: 29-41.
dc.relation.referencesTuesta, E., Huaypar, Y. Aplicación de la técnica de difracción de rayos X (DRX) en la insdutria minera. Laboratorio de caracterización menralógina. Buenaventua Ingenieros.
dc.relation.referencesCarriazo, J., Saavedra, M., Molina, M. F. (2009). XRD study on the intercalation-pillaring of a 2:1 clay mineral with aluminum polyoxocationic species. Revista Mexicana de Ingeniera Qumica, 8: 299-305.
dc.relation.referencesSanabria, N., Molina, R., Moreno, S. (2008). Effects of ultrasound in the synthesis of aluminum pillared clay in concentrated media. Revista Colombiana de Química, 37: 325-335.
dc.relation.referencesMa, H., Yao, Q., Fu, Y., Ma, C., Dong, X. (2010). Synthesis of zeolite of type a from bentonite by alkali fusion activation using Na2CO3. Industrial & Engineering Chemistry Research, 49(2): 454-458.
dc.relation.referencesZhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J., He, H. (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science, 123: 239-258.
dc.relation.referencesFossum, J. (2020). Clay nanolayer encapsulation, evolving from origins of life to future technologies. The European Physical Journal Special Topics, 229(17-18): 2863-2879.
dc.relation.referencesVicente, M. A., Lambert, J.-F. (2003). Al-pillaring of saponite with the Al polycation [Al13(OH)24 (H2O)24]15+ using a new synthetic route. Clays & Clay Minerals, 51: 168-171.
dc.relation.referencesMarković, M., Marinović, S., Mudrinić, T., Mojović, Z., Ajduković, M., Milutinović-Nikolić, A., Banković, P. (2018). Cobalt impregnated pillared montmorillonite in the peroxymonosulfate induced catalytic oxidation of tartrazine. Reaction Kinetics, Mechanisms and Catalysis, 125(2): 827-841.
dc.relation.referencesVicente, M. A., Belver, C., Trujillano, R., Rives, V., Álvarez, A. C., Lambert, J. F., Korili, S. A., Gandía, L. M., Gil, A. (2004). Preparation and characterisation of Mn- and Co-supported catalysts derived from Al-pillared clays and Mn- and Co-complexes. Applied Catalysis A: General, 267(1-2): 47-58.
dc.relation.referencesMushtaq, M., Tan, I., Ismail, L., Nadeem, M., Sagir, M., Azam, R., Hashmet, M. (2014). Influence of PZC (Point of Zero Charge) on the static adsorption of anionic surfactants on a malaysian sandstone. Journal of Dispersion Science and Technology, 35(3): 343-349.
dc.relation.referencesBakatula, E. N., Richard, D., Neculita, C. M., Zagury, G. J. (2018). Determination of point of zero charge of natural organic materials. Environmental Science and Pollution Research, 25(8): 7823-7833.
dc.relation.referencesGouttal, K., Benghalem, A., Mimanne, G., Karim, B. (2018). Removal of organic matter from wastewater using M/Al-pillared clays (M = Fe or Mn) as coagulants. Water Science & Technology, 78(3): 534-544.
dc.relation.referencesMnasri, S., Hamdi, N., Frini-Srasra, N., Srasra, E. (2017). Acid–base properties of pillared interlayered clays with single and mixed Zr–Al oxide pillars prepared from Tunisian-interstratified illite–smectite. Arabian Journal of Chemistry, 10(8): 1175-1183.
dc.relation.referencesLambert, J. F., Poncelet, G. (1997). Acidity in pillared clays: Origin and catalytic manifestations. Topics in Catalysis, 4(1): 43-56.
dc.relation.referencesMohamed, M. A., Jaafar, J., Ismal, A. F., Othman, M. H. D., Rahman, M. A. (2017). Chapter 1. Fourier transform infrared (FTIR) spectroscopy: development, techniques, and application in the analyses of fats and oils, In: Fourier Transform Infrared Spectroscopy Elsevier, pg. 1-36.
dc.relation.referencesPiqué, T. M., Vázquez, A. (2012). Uso de Espectroscopía Infrarroja con Transformada de Fourier (FTIR) en el estudio de la hidratación del cemento. Concreto y Cemento: Investigación y Desarrollo, 3(2): 62-71.
dc.relation.referencesMadejová, J. (2003). FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31(1): 1-10.
dc.relation.referencesDjomgoue, P., Njopwouo, D. (2013). FT-IR spectroscopy applied for surface clays characterization. Journal of Surface Engineered Materials and Advanced Technology, 03: 275-282.
dc.relation.referencesRezende, J. C. T., Ramos, V. H. S., Oliveira, H., Oliveira, R., De Jesus, E. (2018). Removal of Cr(VI) from aqueous solutions using clay from calumbi geological formation, N. Sra. Socorro, SE State, Brazil. Materials Science Forum, 912: 1-6.
dc.relation.referencesLouati, S., Baklouti, S., Samet, B. (2016). Geopolymers based on phosphoric acid and Illito-Kaolinitic clay. Advances in Materials Science and Engineering, 2016: 1-7.
dc.relation.referencesThommes, M., Kaneko, K., Neimark, A., Olivier, J., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87: 1052-1069.
dc.relation.referencesMacías-Quiroga, I. F., Giraldo-Gómez, G. I., Sanabria-González, N. R. (2018). Characterization of Colombian clay and its potential use as adsorbent. The Scientific World Journal, 2018: 1-11.
dc.relation.referencesKumar, K. V., Gadipelli, S., Wood, B., Ramisetty, K. A., Stewart, A. A., Howard, C. A., Brett, D. J. L., Rodriguez-Reinoso, F. (2019). Characterization of the adsorption site energies and heterogeneous surfaces of porous materials. Journal of Materials Chemistry A, 7(17): 10104-10137.
dc.relation.referencesKadeche, A., Ramdani, A., Adjdir, M., Guendouzi, A., Taleb, S., Kaid, M., Deratani, A. (2020). Preparation, characterization and application of Fe-pillared bentonite to the removal of Coomassie blue dye from aqueous solutions. Research on Chemical Intermediates, 46(11): 4985-5008.
dc.relation.referencesMacías‑Quiroga, I. F., Pérez‑Flórez, A., Arcila, J. S., Giraldo‑Goméz, G. I., Sanabria‑Gonzalez, N. R. (2021). Synthesis and characterization of Co/Al‑PILCs for the oxidation of an azo dye using the bicarbonate‑activated hydrogen peroxide system. Catalysis Letters, 7: 152.
dc.relation.referencesRemy, M. J., Vieira Coelho, A. C., Poncelet, G. (1996). Surface area and microporosity of 1.8 nm pillared clays from the nitrogen adsorption isotherm. Microporous Materials, 7(6): 287-297.
dc.relation.referencesFaraldos, M., Goberna, C. (2011). Técnicas de Análisis y Caracterización de Materiales. CSIC Consejo Superior de Investigación Científicas: ESP, pg. 1023.
dc.relation.referencesBevziuk, K., Chebotarev, A., Snigur, D., Bazel, Y., Fizer, M., Sidey, V. (2017). Spectrophotometric and theoretical studies of the protonation of Allura Red AC and Ponceau 4R. Journal of Molecular Structure, 1144: 216-224.
dc.relation.referencesRodríguez, M. C., Schenone, A., Silvina, S., Marsili, N. (2013). Cuantificación simultánea de colorantes en bebidas deportivas utilizando espectroscopia visible y PLS–1. Facultad de Bioquímica y Ciencias Biológicas, 17: 74-84.
dc.relation.referencesMiller, J. N., Miller, J. C. (2002). Estadística y Quimiometría para Química Analítica. Prentice Hall: Madrid, ESP, pg. 286.
dc.relation.referencesBehera, S. K., Meena, H., Chakraborty, S., Meikap, B. C. (2018). Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. International Journal of Mining Science and Technology, 28(4): 621-629.
dc.relation.referencesGutiérrez Pulido, H., Salazar, R. (2012). Análisis y Diseño de Experimentos. Mc Graw Hill: MEX, pg. 506.
dc.relation.referencesJawad, A., Chen, Z., Yin, G. (2016). Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment. Chinese Journal of Catalysis, 37(6): 810-825.
dc.relation.referencesGuo, X., Li, H., Zhao, S. (2015). Fast degradation of acid orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst. Journal of the Taiwan Institute of Chemical Engineers, 55: 90-100.
dc.relation.referencesXu, A., Li, X., Ye, S., Yin, G., Zeng, Q. (2011). Catalyzed oxidative degradation of methylene blue by in situ generated cobalt (II)-bicarbonate complexes with hydrogen peroxide. Applied Catalysis B: Environmental, 102(1-2): 37-43.
dc.relation.referencesHerney-Ramirez, J., Lampinen, M., Vicente, M. A., Costa, C. A., Madeira, L. M. (2008). Experimental design to optimize the oxidation of orange II dye solution using a clay-based fenton-like catalyst. Industrial & Engineering Chemistry Research, 47(2): 284-294.
dc.relation.referencesMacías-Quiroga, I. F., Rojas-Méndez, E. F., Giraldo-Gómez, G. I., Sanabria-González, N. R. (2020). Experimental data of a catalytic decolorization of ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data in Brief, 30: 105463.
dc.relation.referencesPunathil, S., Ghime, D., Mohapatra, T., Thakur, C., Ghosh, P. (2020). Fixed bed reactor for removal of methylene blue dye using heterogeneous fenton catalyst. Journal of Hazardous, Toxic, and Radioactive Waste, 24: 04020037.
dc.relation.referencesFragoso, C. T., Battisti, R., Miranda, C., de Jesus, P. C. (2009). Kinetic of the degradation of C.I. Food Yellow 3 and C.I. Food Yellow 4 azo dyes by the oxidation with hydrogen peroxide. Journal of Molecular Catalysis A: Chemical, 301(1): 93-97.
dc.relation.referencesEl Haddad, M., Abdelmajid, R., Rachid, L., Rachid, M., Nabil, S. (2014). Use of Fenton reagent as advanced oxidative process for removing textile dyes from aqueous solutions. Journal of Materials and Environmental Science, 5: 2028-2508.
dc.relation.referencesZuorro, A., Lavecchia, R. (2014). Evaluation of UV/H2O2 advanced oxidation process (AOP) for the degradation of diazo dye Reactive Green 19 in aqueous solution. Desalination and Water Treatment, 52(7-9): 1571-1577.
dc.relation.referencesLaftani, Y., Boussaoud, A., Chatib, B., El Makhfouk, M., Hachkar, M., Khayar, M. (2019). Comparison of advanced oxidation processes for degrading Ponceau S dye. Application of photo-Fenton process. Macedonian Journal of Chemistry and Chemical Engineering, 38(2): 197-205.
dc.relation.referencesAttri, P., Garg, S., Ratan, J. K., Giri, A. S. (2022). Comparative study using advanced oxidation processes for the degradation of model dyes mixture: Reaction kinetics and biodegradability assay. Materials Today: Proceedings, 57: 1533-1538.
dc.relation.referencesKumar, V., Singh, K., Shah, M. P. (2021). Chapter 1. Advanced Oxidation Processes for Complex Wastewater Treatment, In: Advanced Oxidation Processes for Effluent Treatment Plants. Shah, M. P. (Ed). Elsevier: Oxford, GBR, pg. 1-31.
dc.relation.referencesRamirez, J. H., Costa, C. A., Madeira, L. M., Mata, G., Vicente, M. A., Rojas-Cervantes, M. L., López-Peinado, A. J., Martín-Aranda, R. M. (2007). Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay. Applied Catalysis B: Environmental, 71(1): 44-56.
dc.relation.referencesThiam, A., Sirés, I., Brillas, E. (2015). Treatment of a mixture of food color additives (E122, E124 and E129) in different water matrices by UVA and solar photoelectro-Fenton. Water Research, 81: 178-187.
dc.relation.referencesZhou, Z., Liang, Z., Liu, Y., Ma, Y., Zhu, X., Zhang, X., Li, Q., Ren, Z. J. C. E., Intensification, P. P. (2017). Intensification of degradation of Sunset Yellow using packed bed in a pulsed high-voltage hybrid gas-liquid discharge system: Optimization of operating parameters, degradation mechanism and pathways. Chemical Engineering and Processing - Process Intensification, 115: 23-33.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalRojo allura
dc.subject.proposalPeróxido de hidrógeno activado con bicarbonato
dc.subject.proposalCo/Al-PILC
dc.subject.proposalDecoloración
dc.subject.proposalColorante azo
dc.subject.proposalProcesos de oxidación avanzados
dc.subject.proposalAllura red
dc.subject.proposalBicarbonate activated hydrogen peroxide
dc.subject.proposalKinetics
dc.subject.proposalDiscoloration
dc.subject.proposalImpregnation
dc.subject.proposalAzo dyes
dc.subject.proposalAdvanced oxidation processes
dc.subject.proposalChromatography
dc.subject.unescoContaminación del agua
dc.subject.unescoTratamiento de desechos
dc.subject.unescoWaste treatment
dc.subject.unescoQuímica ambiental
dc.subject.unescoEnvironmental chemistry
dc.title.translatedCatalytic oxidation of an azo dye in a heterogeneous medium using the peroxide system activated with bicarbonate
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentImage
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleDesarrollo científico y tecnológico de un tratamiento emergente para la oxidación catalítica de efluentes coloreados de la industria de alimentos
oaire.fundernameHermes
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaQuímica Y Procesos.Sede Manizales
dc.contributor.orcidMarín González, Nataia [0000-0002-1199-9863]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit