Una aplicación de redes neuronales y modelos autorregresivos para la estimación de valores de referencia de swaps
Author
Advisor
Type
Trabajo de grado - Maestría
Document language
EspañolPublication Date
2023Metadata
Show full item recordSummary
En este trabajo se realiza una aplicación de redes neuronales y modelos autorregresivos para la estimación del valor de referencia de un swap de tasa de interés teniendo en cuenta el ajuste de valoración por riesgo de crédito de la contraparte (CVA) y el ajuste de valoración de riesgo de crédito de la entidad (DVA) entre dos emisores del sector financiero local. Inicialmente, se utiliza como base del análisis la curva forward IBR, de la cual, se generan diez series de tiempo, cada una relacionada con los periodos de liquidación de los pagos del swap. Para cada serie, se ajusta un modelo de red neuronal y un modelo ARIMA-GARCH, y se evalúan sus respectivas métricas de prueba, con el objetivo de hacer comparaciones entre ellos. Luego, utilizando los modelos obtenidos, se realiza el pronóstico de la curva forward IBR para el siguiente día hábil. Así mismo, se estima la probabilidad de default en cada fecha de liquidación a partir de los respectivos Asset swap spread de los bonos corporativos de los emisores. Posteriormente, se estima el valor razonable del swap a partir del valor libre de riesgo y sus respectivos ajustes. Finalmente, los resultados muestran que para el rango de fechas analizado la valoración estimada a partir del modelo ARIMA-GARCH presenta un menor error de pronóstico en comparación con el modelo de red neuronal, lo que sugiere una mayor precisión en la estimación del valor de referencia del swap. (texto tomado de la fuente)Abstract
This research applies neural networks and autoregressive models to estimate the reference value of an interest rate swap, considering the counterparty credit risk adjustment (CVA) and the entity’s credit risk adjustment (DVA) between two local financial sector issuers. The analysis starts with the forward IBR curve as the foundation, from which ten time series are generated, each associated with the payment settlement periods of the swap. For each series, a neural network model and an ARIMA-GARCH model are fitted, and their respective test metrics are evaluated for comparison. Subsequently, using the obtained models, the forecast of the forward IBR curve is conducted for the next business day. Additionally, the default probability is estimated for each settlement date based on the respective Asset Swap Spreads of the issuers’ corporate bonds. Then, the fair value of the swap is estimated considering the risk-free value and the corresponding adjustments. Finally, the results indicate that, for the analyzed date range, the valuation derived from the ARIMA-GARCH model exhibits lower forecast error compared to the neural network model, suggesting higher precision in estimating the swap’s reference value.Keywords
Collections
